Dr. Alexis Bordet - Multifunktionale Katalytische Systeme

Dr. Alexis Bordet
Leiter der Gruppe Multifunktionale Katalytische Systeme
Abteilung Molekulare Katalyse


EngineerUniversity of Toulouse/INP ENSIACET (2010-2013)
M. Sc.
University of Toulouse (2012-2013)
Ph.D.University of Toulouse/LPCNO (Dr. Bruno Chaudret), France (2013-2016)
Post-Doc RWTH Aachen University (Prof. Dr. Walter Leitner), Germany (2017-2018)
Group Leader 'Multifunctional Catalytic Systems', MPI CEC (seit 2018)


Download: Publikationsliste (.pdf)



  • Kale, S. S., Asensio. J. M., Estrader, M., Werner, M., Bordet, A., Yi, D., Marbaix, J., Fazzini, P.-F., Soulantica, K., Chaudret, B. (2019). Iron Carbide or Iron Carbide / Cobalt Nanoparticles for Magnetically-Induced CO2 Hydrogenation over Ni/SiRAlOx Catalysts. Catalysis Science and Technology, 9, 2601-2607. https://doi.org/10.1039/C9CY00437H
  • Bordet, A., Landis, R., Lee, Y., Tonga, G., Asensio, J., Li, C., Fazzini, P.-F., Soulantica, K., Rotello, V., Chaudret, B. (2019). Water-Dispersible and Biocompatible Iron Carbide Nanoparticles with High Specific Absorption Rate ACS Nano 13(3), 2870-2878. https://doi.org/10.1021/acsnano.8b05671
  • Rengshausen, S., Etscheidt, F., Großkurth, J., Luska, K.L., Bordet, A., Leitner, W. (2019). Catalytic Hydrogenolysis of Substituted Diaryl Ethers by Using Ruthenium Nanoparticles on an Acidic Supported Ionic Liquid Phase (Ru@SILP-SO3H) Synlett 30(04), 405-412. https://doi.org/10.1055/s-0037-1611678


  • Offner-Marko, L., Bordet, A., Moos, G., Tricard, S., Rengshausen, S., Chaudret, B., Luska, K.L., Leitner, W. (2018). Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates Angewandte Chemie International Edition, 57(39), 12721-12726. https://doi.org/10.1002/anie.201806638
  • Bordet, A., Asensio, J.M., Soulantica, K., Chaurdet, B. (2018). Enhancement of carbon oxides hydrogenation on iron-based nanoparticles by in-situ water removal ChemCatChem, 10(18), 4047-4051. https://doi.org/10.1002/cctc.201800821 
  • Niether, C., Faure, S., Bordet, A., Deseure, J., Chatenet, M., Carrey, J., Chaudret, B., Rouet, A. (2018). Improved Water Electrolysis Using Magnetic Heating of FeC–Ni Core–Shell Nanoparticles. Nature Energy, 3(6), 476-483. Link


  • Bordet, A., Soulantica, K. Chaudret, B. (2017) Iron Carbide Nanoparticles, Method for Preparing Same and Use Thereof for Heat Generation. Patent N°WO2017103492A2.


  • Bordet, A., Lacroix, L.-M., Fazzini, P.-F., Carrey, J., Soulantica, K., Chaudret, B. (2016). Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angewandte Chemie International Edition, 55(51), 15894-15898 [DOI: 10.1002/ange.201609477].
  • Bordet, A., Lacroix, L.-M., K. Soulantica, K., Chaudret, B. (2016). A New Approach to the Mechanism of Fischer–Tropsch Syntheses Arising from Gas Phase NMR and Mass Spectrometry. ChemCatChem, 8(9), 1727-1731 [DOI: 10.1002/cctc.201600245].
  • Luska, K. L., Bordet, A., Tricard, S., Sinev, I., Grünert, W., Chaudret, B., Leitner W. (2016). Enhancing the Catalytic Properties of Ruthenium Nanoparticle-SILP Catalysts by Dilution with Iron. ACS Catalysis, 6, 3719 [DOI: 10.1021/acscatal.6b00796].


Leiter Instrumentelle Analytik

  • Justus Werkmeister


  • Dr. Deepti Kalsi
  • Hannah Kreissl
  • Dr. Natalia Levin Rojas
  • Dr. Sheetal Sisodiya

PhD Studenten

  • Lisa Goclik
  • Souha Kacem
  • Savarithai Jenani Louis Anandaraj
  • Gilles Moos
  • Lisa Ramona Offner-Marko (Gast)
  • Simon Rengshausen (Gast)

wissenschaftliche Hilfskraft

  • Johannes Zenner


  • Norbert Dickmann
  • Yasmin Phyllis Eisenmann
  • Annika Gurowski
  • Alina Jakubowski

Research in Multifunctional Catalytic Systems

In the 'Multifunctional Catalytic Systems'-Group, we focus on the design and the synthesis of metallic nanoparticles (NPs) immobilized on supported ionic liquid phases (SILP) for catalysis.

Metal nanoparticles (monometallic, bimetallic) are synthesized through the in-situ decomposition of organometallic precursors under H2 in the SILP. This organometallic approach provides a fine control over the nanoparticles size, dispersion, and in the case of bimetallic nanoparticles, composition.

These so-called NPs@SILP systems are fully tunable, and a rational choice of the individual parameters (nature of the metal nanoparticles, ionic liquid, and support) provides control over the resulting catalysts' reactivity. We are especially interested in combining molecular design (ionic liquid structure) and nanoparticle design to produce innovative catalytic systems which can address challenging chemical transformations.

Besides purely chemical functions, we are also interested in the development of multifunctional catalysts combining chemical and physical functionalities (e.g. magnetic properties), with the idea to go towards switchable and adaptive catalytic systems.
The applications for our catalysts include fine chemical synthesis, biomass conversion and CO2 valorization.