Molekularer Sauerstoff (O2) ist ein bevorzugtes Oxidationsmittel der Green Chemistry. Allerdings erfordert die Aktivierung von O2 und die Kontrolle seiner Reaktivität eine präzise Einstellung der Spinzustände in den reaktiven Zwischenprodukten. In der Natur wird dies durch Metalloenzyme erreicht, die O2 an Eisen- oder Kupferionen binden und Spin-Flip-Prozesse durch metallvermittelte Spin-Bahn-Kopplungen ermöglichen. Bei Dikupfer-Metalloproteinen des Typs III, die am Sauerstofftransport und an der Oxygenierung phenolischer Substrate beteiligt sind, war über den Weg, der nach der Bindung von Triplett-Sauerstoff zu einer Dikupfer-Peroxo-Schlüsselspezies mit stark stabilisiertem Singulett-Grundzustand führt, bisher nur wenig bekannt.
Durch ein ausgeklügeltes Ligandendesign ist es der Arbeitsgruppe um Prof. Franc Meyer an der Universität Göttingen nun gelungen eine Serie von Modellkomplexen zu isolieren, die das Anfangsstadium der Sauerstoffbindung an Dikupferstellen nachbilden und einen Triplett-Grundzustand aufweisen. Forscher des EPR4Energy-Joint labs von HZB und MPI CEC ergänzten diesen Durchbruch in der chemischen Synthese durch einen neuen Ansatz der THz-EPR-Spektroskopie. Diese Methode, die in der Gruppe von Alexander Schnegg am MPI CEC entwickelt wurde, wurde zum ersten Mal angewandt, um den funktionsbestimmenden antisymmetrischen Austausch in gekoppelten Dikupfer(II)-Komplexen zu untersuchen. Die neue Methode ermöglichte den Nachweis der Gesamtheit der Spinzustandsübergänge im System und im vorliegenden Fall die Identifikation von antisymmetrischen Austauschwechselwirkungen als effizientem Mischungsmechanismus für den Triplett-zu-Singlett-Übergang in biologisch relevanten Peroxodicopper(II)-Zwischenstufen. Thomas Lohmiller, einer der Erstautoren der Studie, erklärt: "Neben dem erzielten Erkenntnisgewinn über dieses wichtige System eröffnet unsere Methode die Möglichkeit, bisher nicht zugängliche Spin-Spin-Wechselwirkungen in einer Vielzahl neuartiger katalytischer und magnetischer Materialien zu untersuchen."
Die Forschungsergebnisse sind jetzt als Featured Artikel in der Open-Access-Zeitschrift JACS Au verfügbar.
Original Publikation: Lohmiller, T., Spyra, C., Dechert, S., Demeshko, S., Bill, E., Schnegg, A., Meyer, F. (2022) Antisymmetric Spin Exchange in a μ‑1,2-Peroxodicopper(II) Complex with an Orthogonal Cu−O−O−Cu Arrangement and S = 1 Spin Ground State Characterized by THz-EPR. JACS Au. https://doi.org/10.1021/jacsau.2c00139