PD Dr. Andreas Vorholt - Multiphase Catalysis

PD Dr. Andreas Vorholt
Head of Group Multiphase Catalysis
Department Molecular Catalysis


Diploma (Chemistry)TU Dortmund (2003-2008)
Semester abroadUniversity of Queensland, Brisbane, Australia (2007)
Master of ScienceEconomic Sciences, TU Dortmund (2009-2011)
Doctorate (Dr. rer. nat.)Industrial Chemistry (summa cum laude), TU Dortmund (2008-2011)
Consultant Implementation of LEAN Management in middle size production enterprises (since 2012)
Assistant professor (Habilitation)Institute for Technische Chemie, TU Dortmund; Manager of a new independent research group for Resource Efficient Chemistry (2012-2017)
Visiting scientistWith Dr. M. V. Garland at A*Star Institute for Chemical and engineering sciences, Singapore (01/2015-04/2015)
LectureshipInstitute for Industrial Chemistry & Petrochemistry, RWTH Aachen: multiphasic catalysis and immobilisation (since 2016)
LectureshipInstitute for Technische Chemie, TU Dortmund: value added in chemical industry & chemical processes in case studies (since 2018)
Group leader'Multiphase Catalysis', MPI CEC (since 2018)
Habilitation Venia Legendi
Technical Chemistry
TU Dortmund (2018)
Deputy professor
Technical Chemistry and Petrol Chemistry, RWTH Aachen (since 10/2018)


Download: Publikationsliste (.pdf)

Link: ResearcherID

Ausgewählte Publikationen

  • J. M. Dreimann, E. Kohls, H. F. W. Warmeling, M. Stein, L. F. Guo, M. Garland, T. N. Dinh, A. J. Vorholt "In-situ infrared spectroscopy as a tool for monitoring molecular catalyst for hydroformylation in continuous processes", ACS Catal., 2019, accepted, DOI: 10.1021/acscatal.8b05066
  • D. Vogelsang, J. Vondran, A. J. Vorholt, "One-Step Palladium Catalysed Synthetic Route to unsaturated Pelargonic C9-Amides directly from 1,3 Butadiene", J. Catal., 2018, 365, 24-28, DOI: 10.1016/j.jcat.2018.06.004
  • R. Kuhlmann, M. Nowotny, K. U. Künnemann, A. Behr, A. J. Vorholt, "Identification of key mechanics in the ruthenium catalyzed synthesis of N,N-dimethylformamide from carbon dioxide in biphasic solvent systems", J. Catal., 2018, 361, 45-50, DOI: 10.1016/j.jcat.2018.02.006
  • T. Gaide, J. Bianga, K. Schlipköter, A. Behr, and A. J. Vorholt, “Linear Selective Isomerization/ Hydroformylation of Unsaturated Fatty Acid Methyl Esters: A Bimetallic Approach”, ACS Catal., 2017, DOI: 10.1021/acscatal.7b00249
  • H. Warmeling, D. Janz, M. Peters, A. J. Vorholt, “Acceleration of lean aqueous hydroformylation in an innovative jet loop reactor concept”, Chem. Eng. J., 2017, DOI: 10.1016/j.cej.2017.07.152
  • J. M. Dreimann, F. Hoffmann, M. Skiborowski, A. Behr and A. J. Vorholt, „Merging Thermomorphic Solvent Systems and Organic Solvent Nanofiltration for Hybrid Catalyst Recovery in a Hydroformylation Process” Ind. Eng. Chem Res., 2017, DOI 10.1021/acs.iecr.6b04249
  • T. Gaide, J. M. Dreimann, A. Behr and A. J. Vorholt, “Overcoming Phase-Transfer Limitations in the Conversion of Lipophilic Oleo Compounds in Aqueous Media—A Thermomorphic Approach” Angew. Chem. Int. Ed., 2016, DOI: 10.1002/anie.201510738
  • A. Behr and A. J. Vorholt, „Homogeneous Catalysis with renewables”, Springer, 2017, DOI: 10.1007/978-3-319-54161-7


Group members


  • Dr. Jesús Esteban Serrano
  • Dr. Thiemo Faßbach
  • Dr. Jing Jin

PhD students

  • Kira Ruth Ehmann
  • Katrin Köhnke (Guest)
  • Paul Peter Kossmann
  • Simon Musch
  • Sebastian Püschel
  • Thorsten Rösler
  • Marco Schrimpf
  • Marc Strohmann

Research Assistant

  • Alexandra Emilie Kaczyna
  • Jeroen Thomas Vossen

Lab staff

  • Bastian Hesselmann
  • Tabea Mußfeldt

Research in Multiphase Catalysis

The transition from a fossil resource-based economy to one relying on renewable energy and feedstocks does not come without multiple challenges, among which is the chemical transformation of resources for energy storage and materials.

We at the multiphase catalysis group, within the department of molecular catalysis, want to tackle the research in chemical reaction following a multiscale approach to gain a deeper understanding of the underlying phenomenology, starting from the molecular and phase behaviors up to the process level to make them more sustainable and efficient.

The development of this knowledge falls at the interface between Catalysis, Chemical Reaction Engineering and Process Intensification, to which the Green Chemistry principles must be added. For this reason, the work of this group joins the forces of Chemistry and Chemical Engineering to undertake a series of lines of work, including:

  • Proposal of new reaction schemes to obtain substitute products to existing goods (e.g., fuels) from alternative starting resources.
  • Study of different recycling strategies for homogeneous catalysts in multiphase systems combining computational predictions with experimental efforts.
  • Development of novel reactor concepts for intensified catalysis to enhance mass transfer and catalyst recyclability.

The overall goal is to use the knowledge acquired in these aspects to conduct the implementation of process concepts at the miniplant scale with a focus on flow chemistry and on-line analytics to monitor the long-term stability of catalysts.