PD Dr. Andreas Vorholt - Multiphase Catalysis

PD Dr. Andreas Vorholt
Head of Group Multiphase Catalysis
Department Molecular Catalysis


Diploma (Chemistry)TU Dortmund (2003-2008)
Semester abroadUniversity of Queensland, Brisbane, Australia (2007)
Master of ScienceEconomic Sciences, TU Dortmund (2009-2011)
Doctorate (Dr. rer. nat.)Industrial Chemistry (summa cum laude), TU Dortmund (2008-2011)
Consultant Implementation of LEAN Management in middle size production enterprises (since 2012)
Assistant professor (Habilitation)Institute for Technische Chemie, TU Dortmund; Manager of a new independent research group for Resource Efficient Chemistry (2012-2017)
Visiting scientistWith Dr. M. V. Garland at A*Star Institute for Chemical and engineering sciences, Singapore (01/2015-04/2015)
LectureshipInstitute for Industrial Chemistry & Petrochemistry, RWTH Aachen: multiphasic catalysis and immobilisation (since 2016)
LectureshipInstitute for Technische Chemie, TU Dortmund: value added in chemical industry & chemical processes in case studies (since 2018)
Group leaderMPI CEC (since 2018)
Habilitation Venia Legendi
Technical Chemistry
TU Dortmund (2018)
Deputy professor
Technical Chemistry and Petrol Chemistry, RWTH Aachen (10/2018-03/2019)


Full publications list | ORCID

Selected MPI CEC publications

  • Terhorst, M., Heider, C., Vorholt, A.J., Vogt, D., Seidensticker, T. (2020). Productivity leap in the homogeneous ruthenium-catalyzed alcohol amination through catalyst recycling avoiding volatile organic solvents ACS Sustainable Chemistry & Engineering 8(27), 9962-9967. https://doi.org/10.1021/acssuschemeng.0c03413
  • Esteban, J., Vorholt, A.J., Leitner, W. (2020). An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: a rational selection of solvents using COSMO-RS and selection guides Green Chemistry 22(7), 2097-2128. https://doi.org/10.1039/C9GC04208C
  • Terhorst, M., Kampwerth, A., Marschand, A., Vogt, D., Vorholt, A.J., Seidensticker, T. (2020). Facile catalyst recycling by thermomorphic behaviour avoiding organic solvents: a reactive ionic liquid in the homogeneous Pd-catalysed telomerisation of the renewable β-myrcene Catalysis Science & Technology 10(6), 1827-1834. https://doi.org/10.1039/C9CY02569C
  • Vogelsang, D., Vondran J., Hares, K., Schäfer, K., Seidensticker, T., Vorholt, A.J. (2020). Palladium catalysed acid‐free Carboxytelomerisation of 1,3‐Butadiene with Alcohols accessing Pelargonic Acid Derivatives including Triglycerides under selectivity control Advanced Synthesis & Catalysis 362(3), 679-687. https://doi.org/10.1002/adsc.201901383
  • Strohmann, M., Bordet, A., Vorholt, A.J., Leitner, W. (2019). Tailor-Made Biofuel 2 Butyltetrahydrofuran from the Continuous Flow Hydrogenation and Deoxygenation of Furfuralacetone Green Chemistry 21(23), 6299-6306. https://doi.org/10.1039/c9gc02555c
  • Bianga, J., Künnemann, K.U. Gaide, T., Vorholt, A.J., Seidensticker, T., Dreimann, M., Vogt, D. (2019). Thermomorphic Multiphase Systems ‐ Switchable Solvent Mixtures for the Recovery of Homogeneous Catalysts in Batch and Flow Processes Chemistry - A European Journal 25(50), 11586-11608. https://doi.org/10.1002/chem.201902154
  • Esteban, J., Warmeling, H., Vorholt, A.J. (2019). Utilization of deep eutectic solvents based on choline chloride in the biphasic hydroformylation of 1-decene with rhodium complexes Catalysis Communications 129, 105721. https://doi.org/10.1016/j.catcom.2019.105721
  • Plass, C., Hinzmann, A., Terhorst, M., Brauer, W., Oike, K., Yavuzer, H., Asano, Y., Vorholt, A.J., Betke, T., Gröger, H. (2019). Approaching Bulk Chemical Nitriles from Alkenes: A Hydrogen Cyanide-Free Approach through Combination of Hydroformylation and Biocatalysis ACS Catalysis 9, 5198-5203. https://doi.org/10.1021/acscatal.8b05062
  • Dreimann, J.M., Kohls, E., Warmeling, H.F.W., Stein, M., Guo, L.F., Garland, M., Dinh, T.N., Vorholt, A.J. (2019). In-situ infrared spectroscopy as a tool for monitoring molecular catalyst for hydroformylation in continuous processes ACS Catalysis 9, 4308–4319. https://doi.org/10.1021/acscatal.8b05066 
  • Schrimpf, M., Esteban, J., Rösler, T., Vorholt, A.J., Leitner, W. (2019). Intensified Reactors for Gas Liquid-Liquid Multiphase Catalysis: from Chemistry to Engineering Chemical Engineering Journal 372, 917-939. https://doi.org/10.1016/j.cej.2019.03.133
  • Esteban, J., Warmeling, H., Vorholt, A.J. (2019). An Approach to Chemical Reaction Engineering and Process Intensification for the Lean Aqueous Hydroformylation Using a Jet Loop Reactor Chemie Ingenieur Technik 91(5), 560-566. https://doi.org/10.1002/cite.201800137
  • Kuhlmann, R., Künnemann, K.U., Hinderink, L., Behr, A., Vorholt, A.J. (2019) CO2 based synthesis of various formamides in miniplant scale: a two-step process design ACS Sustainable Chemistry & Engineering 7(5), 4924-4931. https://doi.org/10.1021/acssuschemeng.8b05477
  • Faßbach, T.A., Vorholt, A.J., Leitner, W. (2019). The Telomerization of 1,3 Dienes – A Reaction Grows Up ChemCatChem 11(4), 1153-1166. https://doi.org/10.1002/cctc.201801821
  • Rösler, T., Faβbach, T.A., Schrimpf, M., Vorholt, A.J., Leitner, W. (2019). Towards water-based recycling techniques: Methodologies for homogeneous catalyst recycling in liquid/liquid multiphase media and their implementation in continuous processes Industrial & Engineering Chemistry Research 58(7), 2421-2436. https://doi.org/10.1021/acs.iecr.8b04295
  • Fuchs, S., Lichtem D., Jolmes, T., Rösler, T., Meier, G., Strutz, H., Behr, A., Vorholt, A.J. (2018). Synthesis of industrial primary diamines via intermediate diols - combining hydroformylation, hydrogenation and amination ChemCatChem 10(18), 4126-4133. https://doi.org/10.1002/cctc.201800950
  • Vogelsang, D., Vondran, J., Vorholt, A.J. (2018). One-step palladium catalysed synthetic route to unsaturated pelargonic C9-amides directly from 1,3-butadiene Journal of Catalysis 365,24-28. https://doi.org/10.1016/j.jcat.2018.06.004
  • Vogelsang, D., Dittmar, M., Seidensticker, T., Vorholt, A.J. (2018). Palladium-catalysed carboxytelomerisation of β-myrcene to highly branched C21-esters Catalysis Science & Technology 8, 4332-4337. https://doi.org/10.1039/C8CY00769A
  • Hernandez, R., Dreimann, J.M., Vorholt, A.J., Behr, A., Engell, S. (2018). An Iterative Real-time Optimization Scheme for the Optimal Operation of Chemical Processes under Uncertainty. Proof of Concept in a Miniplant Industrial & Engineering Chemistry Research 57(26), 8750-8770. https://doi.org/10.1021/acs.iecr.8b00615
  • Faßbach, T.A., Püschel, S., Behr A., Romanski, S., Leinweber, D., Vorholt, A.J. (2018). Towards a process for the telomerization of butadiene with N-methylglucamine Chemical Engineering Science 181, 122-131. https://doi.org/10.1016/j.ces.2018.02.012
  • Vogelsang, D., Faβbach, T.A., Kossmann, P.P., Vorholt, A.J. (2018). Terpene-Derive Highly Branched C30-Amines via Palladium-Catalysed Telomerisation of β-Farnesene Advanced Synthesis & Catalysis 360(10), 1987-1991. https://doi.org/10.1002/adsc.201800089
  • Faβbach, T.A., Sommer, F.O., Vorholt, A.J. (2018). Hydroaminomethylation in Aqueous Solvent Systems - An Efficient Pathway To Highly Functionalized Amines Advanced Synthesis & Catalysis 360 (7), 1473-1482. https://doi.org/10.1002/adsc.201701463
  • Dreimann, J., Behr, A., Vorholt, A.J. (2018). Reaktoren für Fluid-Fluid-Reaktionen: Strahldüsenreaktoren Handbuch Chemische Reaktoren 1-28. https://doi.org/10.1007/978-3-662-56444-8_29-1

Group members


  • Dr. Thiemo Faßbach
  • Dr. Jing Jin

PhD students

  • Kira Ruth Ehmann
  • Simon Kleine
  • Katrin Köhnke (Guest)
  • Paul Peter Kossmann
  • Sebastian Püschel
  • Thorsten Rösler
  • Marco Schrimpf
  • Marc Strohmann
  • Jeroen Thomas Vossen (Guest)

Research Assistants

  • Philipp Andreas Graefe
  • Dirk Schütte
  • Nico Thanheuser
  • Tabea von Söhnen
  • Niklas Wessel

Master students

  • Maurice Belleflamme

Lab staff

  • Bastian Hesselmann
  • Tabea Mußfeldt
  • Vanessa Richter

Research in Multiphase Catalysis

The transition from a fossil resource-based economy to one relying on renewable energy and feedstocks does not come without multiple challenges, among which is the chemical transformation of resources for energy storage and materials.

We at the multiphase catalysis group, within the department of molecular catalysis, want to tackle the research in chemical reaction following a multiscale approach to gain a deeper understanding of the underlying phenomenology, starting from the molecular and phase behaviors up to the process level to make them more sustainable and efficient.

The development of this knowledge falls at the interface between Catalysis, Chemical Reaction Engineering and Process Intensification, to which the Green Chemistry principles must be added. For this reason, the work of this group joins the forces of Chemistry and Chemical Engineering to undertake a series of lines of work, including:

  • Proposal of new reaction schemes to obtain substitute products to existing goods (e.g., fuels) from alternative starting resources.
  • Study of different recycling strategies for homogeneous catalysts in multiphase systems combining computational predictions with experimental efforts.
  • Development of novel reactor concepts for intensified catalysis to enhance mass transfer and catalyst recyclability.

The overall goal is to use the knowledge acquired in these aspects to conduct the implementation of process concepts at the miniplant scale with a focus on flow chemistry and on-line analytics to monitor the long-term stability of catalysts.