Dr. Alexis Bordet - Multifunctional Catalytic Systems

Dr. Alexis Bordet
Head of Group Multifunctional Catalytic Systems
Department Molecular Catalysis


EngineerUniversity of Toulouse/INP ENSIACET (2010-2013)
M. Sc.
University of Toulouse (2012-2013)
Ph.D.University of Toulouse/LPCNO (Dr. Bruno Chaudret), France (2013-2016)
Post-Doc RWTH Aachen University (Prof. Dr. Walter Leitner), Germany (2017-2018)
Group Leader 'Multifunctional Catalytic Systems', MPI CEC (seit 2018)


Selected Publications

Patent: Nanoparticules de carbure de fer, procédé pour leur préparation et leur utilisation pour la production de chaleur. A. Bordet, K. Soulantica, B. Chaudret. N°WO2017103492A3. 22/06/2017.

Enhancement of Carbon Oxides Hydrogenation on Iron‐Based Nanoparticles by In‐Situ Water Removal. A. Bordet, J. M. Asensio, K. Soulantica, B. Chaudret* ChemCatChem, 2018, 10, 1-6. Link

Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet, J. Carrey, B. Chaudret, A. Rouet* Nature Energy, 2018, 3, 476-483. Link

Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. A. Bordet, L.-M. Lacroix, P.-F. Fazzini, J. Carrey, K. Soulantica, B. Chaudret* Angewandte Chemie International Edition, 2016, 128, 16126 [DOI: 10.1002/ange.201609477].

Enhancing the Catalytic Properties of Ruthenium Nanoparticle-SILP Catalysts by Dilution with Iron. K. L. Luska, A. Bordet, S. Tricard, I. Sinev, W. Grü, B. Chaudret, W. Leitner* ACS Catalysis, 2016, 6, 3719 [DOI: 10.1021/acscatal.6b00796].

A New Approach to the Mechanism of Fischer-Tropsch Syntheses Arising from Gas Phase NMR and Mass Spectrometry. A. Bordet, L.-M. Lacroix, K. Soulantica, B. Chaudret* ChemCatChem, 2016, 8, 1727 [DOI: 10.1002/cctc.201600245].



  • Dr. Deven Estes
  • Hannah Kreissl

PhD students

  • Gilles Moos
  • Lisa Ramona Offner-Marko
  • Simon Rengshausen

Lab staff

  • Norbert Dickmann
  • Alina Jakubowski

Research in Multifunctional Catalytic Systems

In the 'Multifunctional Catalytic Systems'-Group, we focus on the design and the synthesis of metallic nanoparticles (NPs) immobilized on supported ionic liquid phases (SILP) for catalysis.

Metal nanoparticles (monometallic, bimetallic) are synthesized through the in-situ decomposition of organometallic precursors under H2 in the SILP. This organometallic approach provides a fine control over the nanoparticles size, dispersion, and in the case of bimetallic nanoparticles, composition.

These so-called NPs@SILP systems are fully tunable, and a rational choice of the individual parameters (nature of the metal nanoparticles, ionic liquid, and support) provides control over the resulting catalysts' reactivity. We are especially interested in combining molecular design (ionic liquid structure) and nanoparticle design to produce innovative catalytic systems which can address challenging chemical transformations.

Besides purely chemical functions, we are also interested in the development of multifunctional catalysts combining chemical and physical functionalities (e.g. magnetic properties), with the idea to go towards switchable and adaptive catalytic systems.
The applications for our catalysts include fine chemical synthesis, biomass conversion and CO2 valorization.