Dr. Alexis Bordet - Multifunctional Catalytic Systems

Dr. Alexis Bordet
Head of Group Multifunctional Catalytic Systems
Department Molecular Catalysis


EngineerUniversity of Toulouse/INP ENSIACET (2010-2013)
M. Sc.
University of Toulouse (2012-2013)
Ph.D.University of Toulouse/LPCNO (Dr. Bruno Chaudret), France (2013-2016)
Post-Doc RWTH Aachen University (Prof. Dr. Walter Leitner), Germany (2017-2018)
Group Leader MPI CEC (seit 2018)


Full publications list | ORCID

Selected MPI CEC publications

  • Goclik, L., Offner-Marko, L., Bordet, A., Leitner, W. (2020). Selective Hydrodeoxygenation of Hydroxyacetophenones to Ethyl-Substituted Phenol Derivatives Using a FeRu@SILP Catalyst Chemical Communications 56(66), 9509-9512. https://doi.org/10.1039/D0CC03695A
  • Chatterjee, B., Kalsi, D., Kaithal, A., Bordet, A., Leitner, W., Gunanathan, C. (2020). One-pot dual catalysis for the hydrogenation of heteroarenes and arenes Catalysis Science & Technology https://doi.org/10.1039/D0CY00928H
  • Moos, G., Emondts, M., Bordet, A., Leitner, W. (2020). Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst Angewandte Chemie International Edition 59(29), 11977-11983. https://doi.org/10.1002/anie.201916385
  • Estes, D.P., Leutzsch, M., Schubert, L., Bordet, A., Leitner, W. (2020). The Effect of Ligand Electronics on the Reversible Catalytic Hydrogenation of CO2 to Formic Acid using Ruthenium Polyhydride Complexes: A Thermodynamic and Kinetic Study ACS Catalysis 10(5), 2990-2998. https://doi.org/10.1021/acscatal.0c00404
  • El Sayed, S., Bordet, A., Weidenthaler, C., Hetaba, W., Luska, K., Leitner, W. (2020) Selective Hydrogenation of Benzofurans using Lewis Acid Modified Ruthenium-SILP Catalysts ACS Catalysis 10(3), 2124-2130. https://doi.org/10.1021/acscatal.9b05124
  • Strohmann, M., Bordet, A., Vorholt, A.J., Leitner, W. (2019). Tailor-Made Biofuel 2 Butyltetrahydrofuran from the Continuous Flow Hydrogenation and Deoxygenation of Furfuralacetone Green Chemistry 21(23), 6299-6306. https://doi.org/10.1039/c9gc02555c
  • Bordet, A., Landis, R., Lee, Y., Tonga, G., Asensio, J., Li, C., Fazzini, P.-F., Soulantica, K., Rotello, V., Chaudret, B. (2019). Water-Dispersible and Biocompatible Iron Carbide Nanoparticles with High Specific Absorption Rate ACS Nano 13(3), 2870-2878. https://doi.org/10.1021/acsnano.8b05671
  • Rengshausen, S., Etscheidt, F., Großkurth, J., Luska, K.L., Bordet, A., Leitner, W. (2019). Catalytic Hydrogenolysis of Substituted Diaryl Ethers by Using Ruthenium Nanoparticles on an Acidic Supported Ionic Liquid Phase (Ru@SILP-SO3H) Synlett 30(04), 405 412. https://doi.org/10.1055/s-0037-1611678
  • Offner-Marko, L., Bordet, A., Moos, G., Tricard, S., Rengshausen, S., Chaudret, B., Luska, K.L., Leitner, W. (2018). Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates Angewandte Chemie International Edition 57(39), 12721-12726. https://doi.org/10.1002/anie.201806638
  • Bordet, A., Asensio, J.M., Soulantica, K., Chaurdet, B. (2018). Enhancement of carbon oxides hydrogenation on iron-based nanoparticles by in-situ water removal ChemCatChem 10(18), 4047 4051. https://doi.org/10.1002/cctc.201800821


Head of Instrumental Analytics

  • Justus Werkmeister


  • Dr. Deepti Kalsi
  • Dr. Hannah Kreissl
  • Dr. Natalia Levin Rojas
  • Dr. Sheetal Sisodiya

PhD students

  • Lisa Goclik
  • Souha Kacem
  • Savarithai Jenani Louis Anandaraj
  • Gilles Moos
  • Peter Schlichter
  • Johannes Zenner (Guest)

Lab staff

  • Norbert Dickmann
  • Yasmin Phyllis Eisenmann
  • Annika Gurowski
  • Alina Jakubowski
  • Julia Zerbe

Research in Multifunctional Catalytic Systems

In the 'Multifunctional Catalytic Systems'-Group, we focus on the design and the synthesis of metallic nanoparticles (NPs) immobilized on supported ionic liquid phases (SILP) for catalysis.

Metal nanoparticles (monometallic, bimetallic) are synthesized through the in-situ decomposition of organometallic precursors under H2 in the SILP. This organometallic approach provides a fine control over the nanoparticles size, dispersion, and in the case of bimetallic nanoparticles, composition.

These so-called NPs@SILP systems are fully tunable, and a rational choice of the individual parameters (nature of the metal nanoparticles, ionic liquid, and support) provides control over the resulting catalysts' reactivity. We are especially interested in combining molecular design (ionic liquid structure) and nanoparticle design to produce innovative catalytic systems which can address challenging chemical transformations.

Besides purely chemical functions, we are also interested in the development of multifunctional catalysts combining chemical and physical functionalities (e.g. magnetic properties), with the idea to go towards switchable and adaptive catalytic systems.
The applications for our catalysts include fine chemical synthesis, biomass conversion and CO2 valorization.