Dr. Thomas Weyhermüller - Chemical Synthesis, X-ray structure analysis

Dr. Thomas Weyhermüller
Head of Group Chemical Synthesis, X-ray structure analysis
Department Inorganic Spectroscopy

Vita

Diploma (Chemistry)Ruhr-University Bochum (1989)
Ph.D. and staff scientistRuhr-University Bochum (1990-1994)
Dr. rer. nat.Ruhr-University Bochum (1994)
Group leader MPI for Bioinorganic Chemistry; today: MPI CEC (since 1995)

Publications

Download: Publikationsliste (.pdf)

Link: Researcher ID
Link: ORCID

2019

  • Kalläne, S.I., Hahn, A.W., Weyhermüller, T., Bill, E., Neese, F., DeBeer, S., van Gastel, M. (2019). Spectroscopic and Quantum Chemical Investigation of Benzene-1,2- dithiolate-Coordinated Diiron Complexes with Relevance to Dinitrogen Activation Inorganic Chemistry https://doi.org/10.1021/acs.inorgchem.9b00177
  • Bhand, S., Landem D.N., Pereira, E., Gejji, S.P., Weyhermüller, T., Chakravarty, D., Puranik, V.G., Salunke-Gawali, S. (2019). Amphiphilic polypyridyl ruthenium complexes: Synthesis, Characterization and Aggregation studies Polyhedron 164, 96-107. https://doi.org/10.1016/j.poly.2019.02.035
  • Römelt, C., Weyhermüller, T., Wieghardt, K. (2019). Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels Coordination Chemistry Reviews 380, 287-317. https://doi.org/10.1016/j.ccr.2018.09.018
  • Wang, M., Römelt, C., Weyhermüller, T., Wieghardt, K. (2019). Coordination Modes, Oxidation, and Protonation Levels of 2,6-Pyridinediimine and 2,2′:6′,2′́-Terpyridine Ligands in New Complexes of Cobalt, Zirconium, and Ruthenium. An Experimental and Density Functional Theory Computational Study Inorganic Chemistry 58(1), 121-132. https://doi.org/10.1021/acs.inorgchem.8b01949

2018

  • Erken, C., Kaithal, A., Sen, S., Weyhermüller, T., Hölscher, M., Werlé, C., Leitner, W. (2018). Manganese-catalyzed hydroboration of carbon dioxide and other challenging carbonyl groups Nature Communications, 9, 4521. https://doi.org/10.1038/s41467-018-06831-9
  • Kundu, S., Dutta, D., Maity, S., Weyhermüller, T., Ghosh, P. (2018). Proton-Coupled Oxidation of a Diarylamine: Amido and Aminyl Radical Complexes of Ruthenium(II) Inorganic Chemistry, 57(19), 11948-11960. https://doi.org/10.1021/acs.inorgchem.8b01401
  • Levin, N., Codesido N.O., Marcolongo, J.P., Alborés, Weyhermüller, T., Olabe, J.A., Slep, L.D. (2018). Remarkable Changes of the Acidity of Bound Nitroxyl (HNO) in the [Ru(Me3[9]aneN3)(L2)(NO)]n+ Family (n = 1–3). Systematic Structural and Chemical Exploration and Bioinorganic Chemistry Implications Inorganic Chemistry, 57(19), 12270-12281. https://doi.org/10.1021/acs.inorgchem.8b01958
  • Hahn, A.W., Van Kuiken, B.E., Chilkuri, V.G., Levin, N., Bill, E., Weyhermüller, T., Nicolaou, A., Miyawaki, J., Harada, Y., DeBeer, S. (2018). Probing the Valence Electronic Structure of Low-Spin Ferrous and Ferric Complexes Using 2p3d Resonant Inelastic X‑ray Scattering (RIXS) Inorganic Chemistry, 57(37), 11918-11923. https://doi.org/10.1021/acs.inorgchem.8b01550
  • Van Kuiken, B.E., Hahn, A.W., Nayyar, B., Schiewer, C.E., Lee, S.C., Meyer, F., Weyhermüller, T., Nicolaou, A., Cui, Y-T., Miyawaki, J., Hatada, Y., DeBeer, S. (2018). Electronic Spectra of Iron-​Sulfur Complexes Measured by 2p3d RIXS Spectroscopy Inorganic Chemistry, 57(12), 7355-7361. https://doi.org/10.1021/acs.inorgchem.8b01010
  • Römelt, C., Weyhermüller, T., van Gastel, M.,  Bill, E.,  Ye, S., Neese, F. (2018)
    The Electronic Structure and Spin Multiplicity of Iron Tetraphenylporphyrins in Their Reduced States as Determined by a Combination of Resonance Raman Spectroscopy and Quantum Chemistry Inorganic Chemistry, 57(37), 2141-2148.

2017

  • J.A. Rees, R. Bjornsson, J.K. Kowalska, F.A. Lima, J. Schlesier, D. Sippel, T. Weyhermüller, O. Einsle, J.A. Kovacs, S. DeBeer: Comparative Electronic Structures of Nitrogenase FeMoco and FeVco. Dalton Trans. 2017, 46, 2445-2455 
  • E.A. Suturina, J. Nehrkorn, J.M. Zadrozny, S. Hill, J. Liu, M. Atanasov, T. Weyhermüller, D. Maganas, A. Schnegg, E. Bill, J.R. Long, F. Neese: Magneto-Structural Correlations in Pseudo-Tetrahedral [CoII(SPh)4]2- Complexes: Magnetometry, MCD, Advanced EPR and Ab Initio Study Inorg. Chem. 2017, 56, 3102–3118 
  • A.R. Chowdhury, B.G. Roy, S. Jana, T. Weyhermüller, P. Banerjee: A simple cleft shaped hydrazine-functionalized colorimetric new Schiff base chemoreceptor for selective detection of F− in organic solvent through PET signaling: Development of a chemoreceptor based sensor kit for detection of fluoride. Sensors & Actuators 2017, B241, 706-715 
  • C. Römelt, J. Song, M. Tarrago, T. Weyhermüller, S. DeBeer, E. Bill, F. Neese, S. Ye: Electronic Structure of a Formal Iron(0) Porphyrin Complex Relevant to CO2 Reduction. Inorg. Chem. 2017, 56, 4746-4751 
  • M.V. Manickavasagar, M. Thangaraju, T. Weyhermüller, P. Velmurugan, N. Murthy N, B.U. Nair: Novel mononuclear Cu(II) terpyridine complexes: Impact of fused ring thiophene and thiazole head groups towards DNA/BSA interaction, cleavage and antiproliferative activity on triple negative CAL-51 cell line. Eur. J. Med. Chem. 2017, 135, 434-446 
  • G. Sabenya, L. Lázaro, I. Gamba, V. Martin-Diaconescu, E. Andris, T. Weyhermüller, F. Neese, J. Roithova, E. Bill, J. Lloret-Fillol, M. Costas: Generation, Spectroscopic and Chemical Characterization of an Octahedral Iron(V)–Nitrido Species with a Neutral Ligand Platform J. Am. Chem. Soc. 2017,139, 9168-9177 
  • A.W. Hahn, B.E. Van Kuiken, M. al Samarai, M. Atanasov. T. Weyhermüller, Yi-Tao Cui, J. Miyawaki, y. Harada, A. Nicolaou. S. DeBeer: Measurement of the Ligand Field Spectra of Ferrous and ferric Iron Chlorides Using 2p3d RIXS. Inorg. Chem. 2017, 56, 8203-8211
  • J.K. Kowalska, B. Nayyar, J.A. Rees, C.E.Schiewer, S.C. Lee, J.A. Kovacs, F. Meyer, T. Weyhermüller, E. Otero, S. DeBeer: Iron L2,3-edge X-ray Absorption and X-ray Magnetic Circular Dichroism Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of Nitrogenase. Inorg. Chem. Inorg. Chem. 2017, 56, 8147-8158 
  • M. Khannam, T. Weyhermüller, U. Goswami, C. Mukherjee: A Highly Stable L-Alanine-Based Mono(aquated) Mn(II) Complex as T1-weighted MRI Contrast Agent. Dalton Trans. 2017, 46, 10426-10432 
  • T. Weyhermüller, S. Bera, S. Maity, M. Shit, P. Ghosh: Coordination of o-benzosemiquinonate, o-iminobenzo-semiquinonate and imine anion radicals to oxidovanadium(IV) New J. Chem. 2017, 41, 4564-4572
  • Levin, N., Perdomenico, J., Bill, E., Weyhermüller, T., Slep, L.: Pushing the photodelivery of nitric oxide to the visible: Are {FeNO}7 complexes good candidates? Dalton Trans. 2017, 46, 16058-16064

2016

  • S. Bera, M. Shit, S. Maity, S. Maji, T. Weyhermüller, P. Ghosh: Oxidovanadium Complexes of 2,2′-Bipyridine, 1,10 Phenanthronline and p-Nitro-o-aminophenol - Radical versus Nonradical States. Eur. J. Inorg. Chem. 2016, 330-338
  • S. Bera, S.Maity, T. Weyhermüller, P. Ghosh: Radical non radical states of the [Ru(PIQ)] core in complexes (PIQ = 9,10-phenathreneiminoquinone). Dalton Trans. 2016, 45, 8236-8247
  • S. Bera, S. Mondal, S. Maity, T. Weyhermüller, P. Ghosh: Radical Non-radical States of the [Os(PIQ)] Core (PIQ = 9,10-Phenanthreneiminoquinone): Iminosemiquinone to Iminoquinone Conversion Promoted o-Metalation Reaction. Inorg. Chem. 2016, 55, 4746-4757
  • M. Wang, T. Weyhermüller, E. Bill, K. Wieghardt, S. Ye: Structural and Spectroscopic Characterization of Rhenium Complexes Containing Neutral, Mono-, and Dianionic Ligands of  2,2’-Bipyridines and 2,2’:6,2’’-Terpyridines. An Experimental and Density Functional Theory (DFT)-Computational Study. Inorg. Chem. 2016, 55, 5019-5036
  • U.A. Dar,S. Bhand, D.N. Lande, S.S. Rao, Y.P. Patil, S.P. Gejji, M. Nathaji, T. Weyhermüller, S. Salunke-Gawali: Molecular Structures of 2-hydroxy-1,4-naphthoqinone derivatives and their Zinc(II) complexes : Combining Experiment and Density Functional Theory.
    Polyhedron 2016, 113, 61-72
  • S. Bhand, R. Patil, Y. Shinde, D.N. Lande, S.S. Rao, L. Kathawate, S.P. Gejji, T. Weyhermüller, S. Salunke-Gawali: Tautomerism in o-Hydroxyanilino-1,4-naphthoquinone Derivatives: Structure, NMR, HPLC and Density Functional Theoretic Iinvestigation. J. Mol. Struct. 2016, 1123, 245-260
  • S. Kundu, A. Mondal, T. Weyhermüller, S. Sproules, P. Ghosh: Molecular and Electronic Structures of Copper-Cuprizone and Analogues. Inorg. Chim. Acta 2016, 451, 23-30
  • S. Maity, S. Kundu, S. Bera, T. Weyhermüller, P. Ghosh: Mixed-Valence o-Iminobenzoquinone and o-Iminobenzosemiquinonate Anion Radical Complexes of Cobalt: Valence Tautomerism. Eur. J. Inorg. Chem. 2016, 3680-3690
  • S. Maity, S. Kundu, S. Bera, T. Weyhermüller, P. Ghosh: o-Iminobenzoquinone and o-Iminobenzosemiquinonate Anion Radical Complexes of Rhodium and Ruthenium. Eur. J. Inorg. Chem. 2016, 3691-3697
  • N. Levin Rojas, N. Osa Codesido, E. Bill, T. Weyhermüller, A. Gaspari, R. Santana da Silva, J. Olabe, L. Slep: Structural, spectroscopic and photochemical investigation of an octahedral NO releasing {RuNO}7 species. Inorg. Chem. 2016, 55, 7808-7810
  • S. Maity, M. Shit,  S. Bera, T. Weyhermüller, P. Ghosh: Coordination of o-benzosemiquinonate, o-iminobenzosemiquinonate, 4,4'-di-tert-butyl-2,2'-bipyridine and 1,10-phenanthroline anion radicals to oxidovanadium(IV). New J. Chem. 2016, 40, 10305-10315
  • S. Bera, S. Maity, T. Weyhermüller, P. Ghosh: Arylamino radical complexes of ruthenium and osmium: dual radical counter in a molecule. Dalton Trans. 2016, 45, 19428-19440

2015

  • R. Bjornsson, M.U. Delgado-Jaime, F.A. Lima, D. Sippel, J. Schlesier, T. Weyhermüller, O. Einsle, F. Neese, S. DeBeer: Mo L-Edge Spectra of MoFe Nitrogenase.
    Z. Anorg. Allg. Chem. 2015, 65-71
  • M. Wang, T. Weyhermüller, K. Wieghardt: Determining the Electronic Structure of a Series of [(phen)3M]0 (M = Ti, V, Mo) and [(pdi)2M]n+ (M = Cr, Mo) Complexes: Neutral Ligands vs. p-Radical Anions. Eur. J. Inorg. Chem. 2015, 3246-3254
  • S. Chaudhuri, S. Kundu, M.K. Biswas,T. Weyhermüller, P. Ghosh: Mononuclear Zinc(II), Cadmium(II), Cobalt(III) and Di-nuclear Nickel(II) Complexes of a 14 Electron Diimine Ligand: Syntheses, Structures, Photoluminescence and DFT Investigations .
    Inorg. Chim. Acta 2015, 430, 199-207
  • P. Ghosh, S. Maity, S. Kundu, T.Weyhermüller, A. Roy: Orthometallation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV) and Rhodium(III) Ions and Orthometallated [RuNO]6/7 Derivatives. Inorg. Chem. 2015, 54, 1384-1394
  • D. Chadar, M. Camilles, A. Khan, T. Weyhermüller, S. Salunke-Gawali: Synthesis and characterization of n-alkylamino derivatives of vitamin K3: Molecular structure of 2-methyl-3-(n-propylamino)-1,4-naphthoquinone and antibacterial activities. J. Mol. Struct. 2015, 179-189
  • S. Maity, S. Kundu, T. Weyhermuller, P. Ghosh: Tris 2,2′-Azobispyridine Complexes of Copper(II): X-ray Structures, Reactivities and the Radical Non-Radical bis Analogues.
    Inorg. Chem. 2015, 54, 1300-1313
  • J.P. Marcolongo, T. Weyhermüller and L.D. Slep: Exploring the Photo-stability of the {Ru(py)4}2+ Fragment. Inorg. Chim. Acta 2015, 429, 174-182
  • A.P. Ware, A. Patil, S. Klomane, S.S. Pingale, T. Weyhermüller, S. Salunke-Gawali: Naphthoquinone based chemosensor 2-(2'-aminomethylpyridine)-3-chloro-1,4-naphthoquinone for metal ions: Single crystal X-ray structure, experimental and TD-DFT study. J. Mol. Struct. 2015, 1093, 39-48
  • M. Wang, J. England, T. Weyhermüller, K. Wieghardt: Electronic Structures of “low valent” Neutral Complexes [NiL2]0 (S = 0) (L = bpy, phen, tpy): An Experimental and DFT Computational Study. Eur. J. Inorg. Chem. 2015, 1511-1523
    Kochem, T. Weyhermüller, F. Neese, M. van Gastel: EPR and Quantum Chemical Investigation of a Bioinspired Hydrogenase Model with a Redox Active Ligand in the First Coordination Sphere. Organometallics 2015, 34, 995-1000
    K. Weber, T. Weyhermüller, E. Bill, Ö.F. Erdem, W. Lubitz: Design and Characterization of Phosphine Iron Hydrides: Towards Hydrogen Producing Catalysts.
    Inorg. Chem. 2015, 54, 6928-6937
  • D. Chadar, S.S. Rao, A. Khan, S.P. Gejji, K.S. Bhat, T. Weyhermüller, S. Salunke-Gawali:
    Benzo[α]phenoxazines and Benzo[α]phenothiazine from Vitamin K3: Synthesis, Molecular Structures, DFT Studies and Cytotoxic Activity. RSC Adv. 2015, 5, 57917-57929
  • S. Pal, V.B. Konkimalla, L.Kathawate, S.S. Rao, S.P. Gejii, V.G. Puranik, T.Weyhermüller, S. Salunke-Gawali: Targeting chemorefractory COLO205 (BRAF V600E) cell lines using substituted benzo[]phenoxazines. RSC Advances 2015, 82549-82263
  • L. Maxwell, S. Gómez-Coca, T. Weyhermüller, D. Panyella, E. Ruiz: A Trinuclear Cu(II) Complex with Functionalized s-Heptazine N-ligands: Molecular Chemistry from a g-C3N4 Fragment.
    Dalton Trans. 2015, 44, 15761-15763
  • L. Rapatskiy, W. Ames, M. Perez Navarro, A. Savitsky, J. Griese, T. Weyhermüller, H. Shafaat, M. Högbom, F. Neese, D. Pantazis, N. Cox: Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency 17O-Hyperfine EPR Spectroscopies and Density Functional Theory. J. Phys. Chem. 2015, 119, 13904-13921
  • J. England, E. Bill, T. Weyhermüller, F. Neese, M. Atanasov, K. Wieghardt: Molecular Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2’:6,2’’-Terpyridine, 2,2’-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study.
    Inorg. Chem. 2015, 54, 12002-12018

2014

  • R. Bjornsson, F.A. Lima, T. Weyhermüller, P. Glatzel, T. Spatzal, O. Einsle, E. Bill, F. Neese, S. DeBeer: Identification of a spin-coupled Mo(III) in the Nitrogenase Iron-Molybdenum Cofactor
    Chem. Sci. 2014, 5, 3096-3103
  • K.S. Pedersen, M. Sigrist, M.A. Sörensen, A.L. Barra, T. Weyhermüller, S. Piligkos, C.A.Thuesen, M.G. Vinum, H. Mutka, H. Weihe, R. Clearc, J. Bendix:  [ReF6]2-: A Robust Module for the Design of Molecule-Based Magnetic Materials. Angew. Chem. Int. Ed. 2014, 53, 1351-1354
  • K. Weber, Ö.F. Erdem, E. Bill, T. Weyhermüller, W. Lubitz: Modeling the Active Site of [NiFe]-Hydrogenases and the [NiFeu] Subsite of the C-Cluster of Carbon Monoxide Dehydrogenases: Low-Spin Iron(II) Versus High Spin Iron(II). Inorg. Chem. 2014, 53, 6329-6337
  • M. Wang, T. Weyhermüller, K. Wieghardt: The Electron Transfer Series [Mo(bpy)3]n (n = 3+, 2+, 1+, 0, 1-), and the Dinuclear Species [{MoCl(Mebpy)2}2(µ2-O)]Cl2 and [{MoIV(tpy)2}2(µ2-MoO4)](PF6)2•4MeCN. Chem. Eur. J. 2014, 20, 9037-9044
  • M. Wang, E. Bill, T. Weyhermüller, K. Wieghardt: The Neutral Complex [CrIII43-O)22-CH3CO2)7(tbpy0)(tbpy•)]0 - A Tetranuclear Cr(III) Species Containing a Neutral (bpy0) and a π-Radical Anion (bpy•)1-. Can. J. Chem. 2014, 92, 913-917
  • C. Plenk, T. Weyhermüller,  E. Rentschler: Folded Cr12Co12 and Cr12Ni12 Wheels: A Sharp Increase in Nuclearity of Heterometallic Chromium Rings. Chem. Commun. 2014, 50, 3871-3873
  • D. Maganas, M. Roemelt, T. Weyhermüller, R. Blume, M. Hävecker, A. Knop Gericke, S. DeBeer, R. Schlögl, F. Neese: L-Edge X-Ray Absorption Study of Mononuclear Vanadium Complexes and Spectral Predictions Using a Restricted Open Shell Configuration Interaction Ansatz. Phys. Chem. Chem. Phys. 2014, 16, 264-276
  • K. Weber, I. Heise, T. Weyhermüller, W. Lubitz: Synthesis and characterization of nickel compounds with tetradentate thiolate-thioether ligands as precursors for [NiFe] hydrogenase models. Eur. J. Inorg. Chem. 2014, 148-155
  • S. Salunke-Gawali, O. Pawar, M. Nikalje, R. Patil, T. Weyhermüller, V.G. Puranik , V.B. Konkimalla: Synthesis, characterization and molecular structures of homologated analogs of 2-bromo-3-(n-alkylamino)-1,4-napthoquinone. J. Mol. Struct. 2014, 1056-1057, 97-103
  • N. Osa Codesido, T. Weyhermüller, J.A. Olabe, L. Slep: Nitrosyl-Centered Redox and Acid-Base Interconversions in [Ru(Me3[9]aneN3)(bpy)(NO)]3,2,1+. The pKa of Bound HNO in Aqueous Solution. Inorg. Chem. 2014, 53, 981-997
  • M. Wang, J. England, T. Weyhermüller, K. Wieghardt: Molecular and Electronic Structures of the Members of the Electron Transfer Series [Mn(bpy)3]n (n = 2+, 1+, 0, 1–) and [Mn(tpy)2]m (m = 4+, 3+, 2+, 1+, 0). An Experimental and Density Functional Theory Study. Inorg. Chem. 2014, 53, 2276-2287
  • K.S. Pedersen, G. Lorusso, J.J. Morales, T. Weyhermüller, S. Piligkos, S.K. Singh, M. Schau-Magnussen,G. Rajaraman, M. Evangelisti, J. Bendix: Fluoride-bridged {GdIII3MIII2} (M=Cr, Fe, Ga) Molecular Magnetic Refrigerants. Angew. Chemie Int. Ed. 2014, 53, 2394-2397
  • S.C. Patra, T. Weyhermüller, P. Ghosh: Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones: Radical versus Non-radical States. Inorg. Chem. 2014, 53, 2427-2440
  • S. Chaudhuri, S. Bera, M.K. Biswas, A.S. Roy, T. Weyhermüller, P. Ghosh:
    Oxidovanadium(IV), oxidomolybdenum(VI) and cobalt(III) complexes of o-phenylenediamine derivatives: oxidative dehydrogenation and photoluminescence. Inorg. Chem. Front. 2014, 1, 331-341
  • L. Kathawate, P.V. Joshi, T.K. Dash, S. Pal, M. Nikalje, T. Weyhermüller, S-Salunke-Gawali: Reaction between lawsone and aminophenol derivatives: Synthesis, Chracterization, Molecular Structures and Antiprolifertive Activity. J. Mol. Struc. 2014, 1075, 397-405
  • R. Patil, D. Chadar, D. Chaudhari, J. Peter, M. Nikalje, T. Weyhermüller, S. Salunke-Gawali: Synthesis and characterization of 2-(n-alkylamino)-1,4-napthoquinone: Molecular structures of ethyl and hexyl derivatives. J. Mol. Struc. 2014, 1075, 345-351
  • B.U. Nair, T. Weyhermüller, V. M. Manikandamathavan, R. P. Parameswari,  M. Sathishkumar,  V. Subramanian: DNA/Protein Interaction and Cytotoxic Activity of Imidazole Terpyridine Derived Cu(II)/Zn(II) Metal Complexes. Dalton Trans 2014, 43, 13018-13031
  • S.C. Patra, A.S. Roy, V.Manivannan, T. Weyhermüller, P. Ghosh: Ruthenium, Osmium and Rhodium complexes of 1,4-diazabutdiene: Radical versus Non-radical States. Dalton. Trans. 2014, 43, 13731-13741
  • P. Saha, A.S. Roy, T. Weyhermüller, P. Ghosh: Metal ion promoted tautomerization and C-N bond cleavage: conversion of catechol to p-benzoquinone derivative.
    Chem. Commun. 2014, 50, 13073-13076

2013

  • Kochem, F. Thomas, O. Jarjayes, G. Gelon, C. Philouze, T. Weyhermüller, F. Neese, M. van Gastel: Structural and Spectroscopic Investigation of an  Anilinosalen Cobalt Complex with Relevance to Hydrogen Production. Inorg. Chem. 2013, 52, 14428-14438
  • F.A. Lima, R. Bjornsson, T. Weyhermüller, P. Chandraskaran, P. Glatzel, F. Neese, S. DeBeer: High-Resolution Molybdenum K-edge X-ray Absorption Spectroscopy Analyzed with Time-Dependent Density Functional Theory. Phys. Chem. Chem. Phys. 2013, 15, 20911-20920
  • S. Hazra, M. Singh, L. Carrella, E. Rentschler, T. Weyhermüller, G. Rajaraman, S. Mohanta: Syntheses, Structures, Magnetic Properties and Density Functional Theoretical Magneto-Structural Correlations of Bis(μ-Phenoxo) and Bis(μ-Phenoxo)-μ-Acetate/ Bis(μ-Phenoxo)-Bis(μ-Acetate) Dinuclear FeIIINiII Compounds. Inorg. Chem. 2013, 52, 12881-12892
  • M. Wang, T. Weyhermüller, J. England, K. Wieghardt: Molecular and Electronic Structures of Six-Coordinate “Low-Valent” [M(Mebpy)3]0 (M = Ti, V, Cr, Mo) and [M(tpy)2]0 (M = Ti, V, Cr), and Seven-Coordinate [MoF(Mebpy)3](PF6) and [MX(tpy)2](PF6) (M = Mo, X = Cl and M = W, X = F). Inorg. Chem. 2013, 52, 12763-12776
  • S. Chaudhuri, S.C. Patra, P.Saha, A.S. Roy, S.Maity, S. Bera, P.S. Sardar, S.Ghosh,P. Ghosh, T. Weyhermüller: Zinc(II), iron(II/III) and ruthenium(II) complexes of o-phenylenediamine derivatives: oxidative dehydrogenation and photoluminescence. Dalton Trans. 2013, 42, 15028-15042
  • Morgenstern, C. Neis, A. Zaschka, J. Romba, T. Weyhermüller, K. Hegetschweiler: Formation and Base Hydrolysis of Oxydimethaneamine Bridges in CoIII-Amine Complexes. Inorg. Chem. 2013, 52, 12080-12097
  • Tondreau, S.C. Stieber, C. Milsmann, E. Lobkovsky, T. Weyhermüller, S. Semproni,
    P. Chirik: Oxidation and Reduction of Bis(imino)pyridine Iron Dinitrogen Complexes: Evidence for Formation of a Chelate Trianion. Inorg. Chem. 2013, 52, 635-646
  • K. Wieghardt. T. Weyhermüller, A. Bowman, S. Sproules, J. England: Electronic Structures of Homoleptic [Tris(2,2’-bipyridine)M]n Complexes of the Early Transition Metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-). An Experimental and Density Functional Theoretical Study. Inorg. Chem. 2013, 52, 2242-2256
  • M. Menelaou, T. Weyhermüller, M. Soler, N. Aliaga Alcalde: Novel Paramagnetic-Luminescent Building Blocks containing Manganese(II) and Anthracene-based Curcuminoids. Polyhedron 2013, 52, 398-405
  • M.K. Biswas, S.C. Patra, A.N. Maity, S.C. Ke, T. Weyhermüller, P. Ghosh: Asymmetric Cleavage of 2,2´-Pyridil to Picolinic Acid Anion Radical Coordinated to Ruthenium(II): Splitting of Water to Hydrogen. Chem. Commun.2013, 49, 4522-4524
  • M. Wang, J. England, T. Weyhermüller, S.  Kokatam, C.J. Pollock, S. DeBeer, J. Shen, G.P.A. Yap, K.H. Theopolt. K. Wieghardt: New Complexes of Chromium(III) Containing Organic -Radical Ligands: An Experimental and DFT Computational Study. Inorg. Chem. 2013, 52, 4472-448
  • J. Arpita, T. Weyhermüller, S. Mohanta: Metal complex analogues of crown ethers as the preorganized motif to stabilize aquated proton in solid state. Cryst. Eng. Comm. 2013, 15, 4099-4106
  • P. Ghosh, M.K. Biswas, T. Weyhermüller, S.C. Patra, A.N. Maity, S.C. Ke: 9,10-Phenanthrenesemiquinone Radical Complexes of Ruthenium(III), Osmium(III) and Rhodium(III) and redox series. Dalton Transactions 2013,  42, 6538-6552
  • S. Kundu, S. Maity, T. Weyhermüller, Prasanta Ghosh: Oxidovanadium Catechol Complexes: Radical versus Non-Radical States and Redox Series. Inorg. Chem. 2013, 52, 7417-7430
  • S. Pal, M. Jadhav, T. Weyhermüller, Y. Patil, M. Nethaji, U. Kasabe, L. Kathawate, V. Badireenath Konkimalla, S. Salunke-Gawali: Molecular Structures and Antiproliferative Activity of Side-Chain Saturated and Homologated Analogs of 2-Chloro-3-(n-alkylamino)-1,4-naphtoquinone. J. Mol. Struc. 2013, 355-361
  • V. Hoeke, E. Krickemeyer, M. Heidemeier, H. Theil, A. Stammler, H. Bögge, T. Weyhermüller, J. Schnack, T. Glaser: A Comprehensive Study on Triplesalen-Based [MnIII6FeIII]3+ and [MnIII6FeII]2+ Complexes: Redox-Induced Variation of Molecular Magnetic properties. Eur. J. Inorg. Chem. 2013, 4398-4409

Publikationen vor 2013 im PDF

Functions

  • since 2000 head of the analytical und preparative GC/HPLC-group

Group Members

Lab staff

  • Dagmar Merkl
  • Fabian Otto

Chemical synthesis, X-ray structure analysis

Small Molecular Model Systems to Learn About Electronic Structure and Function

Chemical activation of inert small molecules like CO2, CH4, N2 is a key problem in energy research. In the future, energy from renewable sources will be used on a big scale to transform these abundant materials to chemicals for industry and agriculture. Metal catalysts are needed to make such transformations energetically and chemically efficient and selective. We strongly believe that a deep understanding of mechanistic functionality and electronic structure of catalytic systems vastly supports the process of developing better catalysts. It is our approach to combine in-house spectroscopic methods (EPR, MCD, Mössbauer, Resonance Raman, X-Ray methods, etc.) with quantum theory to shine light on the chemical and electronic structure of catalytically active centers. The combination of spectroscopy and theory allows to interpret even very complicated spectroscopic data and to extract the desired chemical information.

Research in my group focuses on the synthesis of small molecular metal complexes for spectroscopic investigations. Directed variation of structural and electronic parameters in a series of compounds allows to systematically studying their spectroscopic response. Our samples are typically analyzed by standard methods (elemental analysis, IR, UV/vis, NMR, XRD) before they are further investigated as mentioned above. Such compounds with known molecular structure provide a reliable basis to collect high quality spectroscopic data. In the following, two examples of recent projects are given.

Attempts to Model the Interstitial Carbon Atom in Nitrogenase

Nitrogenase is a bacterial enzyme which catalyzes the conversion of nitrogen from air to ammonia, an essential source for the biosynthesis of nitrogen containing compounds like peptides or nucleobases. The activation of nitrogen is very challenging since it is probably the most inert small molecule one could think of. We have learned a lot about the chemistry and structure of nitrogenase but the exact electronic structure, the catalytic mechanism and the function of an interstitial carbon atom[1] in the molybdenum cofactor remains extremely challenging.

One of the two metal containing cofactors in nitrogenase, namely FeMoco, has been identified to be the active site of the enzyme where nitrogen binds and ammonia is released. It is basically composed of seven iron-, a molybdenum-center, nine sulfides, and a central carbide ion (see structure I in Figure 1).

After we have recently worked on model complexes of FeMoco to shine light on the oxidation state of the Mo ion in the resting state[2] we started a project to synthesize iron clusters with bridging carbon ligands to model the central carbon atom in FeMoco. Very few examples of such complexes have been reported in literature and synthetic strategies allowing the introduction of C-based ligands bonded to more than one Fe atom (μ2-6-C-based ligands) are very rare, explaining the lack of suitable model systems.

We felt that ylides could be suitable ligands to build up carbon bridged complexes and investigated the reaction of ylides with Fe(II) diamido species [Fe(N(SiMe3)2)2] which, in a first step, formed mononuclear higly reactive three coordinate iron(II) complexes[3a] of type A or more general E (Figure 1).

Further experiments showed that E can undergo a self-protolysis reaction at elevated temperatures since a carbon bound proton of the ylid is in close proximity to a strong base L which allows formation of doubly yldiide-bridged diiron(II) complexes of type F and HL.

Complexes 1 and 2 represent the first examples of dinuclear ylid-supported Fe2C2 iron diamond cores (Figure 2). Fe-C-Fe angles are found to be very acute at about 78.5° and the Fe…Fe distances are very short at ~2.58 Å. Mössbauer and x-ray absorption spectra in combination with magnetic susceptibility studies showed that the complexes are strongly antiferromagnetically coupled high-spin iron(II) dimers. Density functional calculations (DFT) reproduce the experimental data well and exclude a direct metal-metal bond.

We are continuing this project with sulfur containing ligands of a similar type which better model the sulfur-carbon ligation environment of the iron centers in FeMoco and have successfully isolated diiron complexes containing a distorted tetrahedral C2S2 environment and trigonal bipyramidal C2S2N coordination shell. All full spectroscopic characterization and DFT study is on the way.[3b]

X-Ray Structure Determination

In close collaboration with the x-ray diffraction facility of the MPI für Kohlenforschung, my group provides service for the x-ray determination of compounds produced in the MPI CEC. Research on molecular transition metal compounds for catalysis or spectroscopic investigations heavily relies on single crystal structure determinations since self-assembly often dominates in coordination chemistry and directed synthesis to obtain target compounds is in many cases limited. X-ray structure analysis delivers highly precise information about the three-dimensional arrangement of atoms, thereby providing bond length and bond angles, which are of enormous importance in understanding chemical properties. Since it is our aim to correlate experimental features and functional properties with structure, X-ray structure analysis is vital to this area of research.

As an example, Figure 3 displays two crystal structures from a recent paper of the department of Molecular Catalysis (Prof. Leitner) in which a precatalyst 1 forms a reaction intermediate 2 upon addition of pinacol borane in KOtBu/THF solution.[4] The system is highly active and catalyses the reductive hydroboration of various aliphatic and aromatic carboxylic acids and even CO2.

References

[1] a) Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S., X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor. Science 2011, 334 (6058), 974.
b) Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O., Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor. Science 2011, 334 (6058), 940-940.

[2] a) R. Bjornsson, F.A. Lima, T. Weyhermüller, P. Glatzel, T. Spatzal, O. Einsle, E. Bill, F. Neese, S. DeBeer: Identification of a spin-coupled Mo(III) in the Nitrogenase Iron-Molybdenum Cofactor. Chem. Sci. 2014, 5, 3096-3103.
b) R. Bjornsson, M.U. Delgado-Jaime, F.A. Lima, D. Sippel, J. Schlesier, T. Weyhermüller, O. Einsle, F. Neese, S. DeBeer: Mo L-Edge Spectra of MoFe Nitrogenase. Z. Anorg. Allg. Chem. 2015, 65-71

[3] a) S. Yogendra, T. Weyhermüller, A.W. Hahn, S. DeBeer: From Ylides to Doubly Yldiide-Bridged Iron(II) High Spin Dimers via Self-Protolysis. Inorg. Chem. 2019 ,58, 9358-9367
b) manuscript in preparation

[4] A. Kaithal, S. Sen, C. Erken, T. Weyhermüller, M. Hölscher, C. Werlé, W. Leitner: Manganese-Catalysed Hydroboration of Carboxylic Acids, Carbonates, and Carbon Dioxide. Nature Communications 2018, 9, Art. 4521; DOI: 10.1038/s41467-018-06831-9