Due to the diverse applications of methanol, whether as a fuel source, fuel additive or for power generation via fuel cells, it is of scientific and industrial interest to develop economical and sustainable methods for the production of industrial quantities.
The enzyme methane monooxygenase (MMO) catalyzes the oxidation of methane to methanol. In nature, two variants of this enzyme exist. The soluble MMO (sMMO) features a diiron core in its active center, while the particulate MMO (pMMO) utilizes copper. While a detailed understanding of the structure of these enzymes in all of its catalytic states is crucial for an in-depth insight of the reaction mechanism, scientists have debated for years about the structure of the key intermediate Q in sMMO.
Rebeca Gómez Castillo, PhD student at MPI CEC (in <link internal-link internal link in current>IMPRS RECHARGE), and <link internal-link internal link in current>Prof. Serena DeBeer, director of the department ‚<link internal-link internal link in current>Iorganic Spectroscopy’ at MPI CEC, in a collaborative effort with the research groups of <link http: bioinorg.chem.umn.edu quespace external-link-new-window internal link in current>Prof. Lawrence Que Jr. and <link https: cbs.umn.edu contacts john-d-lipscomb external-link-new-window internal link in current>Prof. John D. Lipscomb of <link https: twin-cities.umn.edu external-link-new-window internal link in current>University of Minnesota, performed a detailed study on the controversial structure of the active site of intermediate Q.
This research was based on the local technique Kα HERFD-XAS (high energy resolution fluorescence detected X-ray absorption near edge structure), a powerful tool that overcomes the limitations of conventional x-ray absorption spectroscopy. When compared with synthetic model complexes spectra and supported by quantum chemical calculations, the analysis of the Kα HERFD-XAS data provides valuable information for clarifying the controversial structure of intermediate Q.
The study is published in the "<link http: pubs.acs.org journal jacsat external-link-new-window internal link in current>Journal of the American Chemical Society" (JACS).
Find the publication in JACS:
<link http: pubs.acs.org doi jacs.7b09560 external-link-new-window internal link in current>High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase
J. Am. Chem. Soc., Article ASAP DOI: 10.1021/jacs.7b09560