Dr. Saskia Heumann - Carbon Synthesis and Applications

Dr. Saskia Heumann
Leiterin der Gruppe Carbon Synthesis and Applications
Abteilung Heterogene Reaktionen


DiplomChristian-Albrechts-Universität zu Kiel, Dipl. Chem. (2003-2008)
Diplom thesisIFM-GEOMAR, Leibnitz Institut, Maritime Chemistry (2009)
Dr. rer. nat.Christian-Albrechts-Universität zu Kiel, Inorganic Chemistry (Prof. Dr. W. Bensch) (2012)
GruppenleiterinMPI CEC (seit 2012)


Download: Publikationsliste (.pdf)

ResearcherID: J-5225-2013
ORCiD: 0000-0003-3594-6392


  • Gu, Q.; Ding, Y.; Liu, Z.; Lin, Y.; Schlögl, R.; Heumann, S.; Su, D. (2019). Probing the intrinsic catalytic activity of carbon nanotubes for the metal-free oxidation of aromatic thiophene compounds in ionic liquids Journal of Energy Chemistry 32, 131-137. https://doi.org/10.1016/j.jechem.2018.07.004
  • Lin, Y.; Lu, Q.; Song, F.; Yu, L.; Mechler, A.; Schlögl, R.; Heumann, S. (2019) Oxygen Evolution Reaction at Carboon Edge Sites: Activity Evolution and Structure-Function Relationships Clarified by Polycyclic Aromatic Hydrocarbons. Angewandte Chemie doi.org/10.1002/anie.201902884, doi.org/10.1002/ange.201902884


  • Rodenas, T.; Beeg, S.; Spanos, I.; Neugebauer, S.; Girgsdies, F.; Algara-Siller, G.; Schleker, P.P.M.; Jakes, P.; Pfänder, N.; Willinger, M.; Greiner, M.; Prieto, G.; Schlögl, R.; Heumann, S. (2018). 2D Metal Organic Framework-Graphitic Carbon Nanocomposites as Precursors for High-Performance O2-Evolution Electrocatalysts Advanced Energy Materials, 8(35), 1802404. https://doi.org/10.1002/aenm.201802404
  • Lin, Y.; Wu, K.-H.; Lu, Q.; Gu, Q.; Zhang, L.; Zhang, B.; Sheng Su, D.; Plodinec, M.; Schlögl, R.; Heumann, S. (2018). Electrocatalytic Water Oxidation at Quinone-on-Carbon: A Model System Study Journal of the American Chemical Society, 140(44), 14717-14724. https://doi.org/10.1021/jacs.8b07627
  • Düngen, P.; Greiner, M.; Böhm, K.H.; Spanos, I.; Huang, X.; Auer, A.A.; Schlögl, R.; Heumann, S. (2018). Atomically dispersed vanadium oxides on multiwalled carbon nanotubes via atomic layer deposition: A multiparameter optimization Journal of Vacuum Science & Technology A, 36(1), 01A126. https://doi.org/10.1116/1.5006783
  • Ding, Y.; Klyushin, A.; Huang, X.; Jones, T.; Teschner, D.; Girgsdies, F.; Rodenas, T.; Schlögl, R.; Heumann, S. (2018). Cobalt Bridged with Ionic Liquid Polymer on Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity Angewandte Chemie International Edition, 57(13), 3514-3518. https://doi.org/10.1002/anie.201711688 (EN)
  • Ding, Y.; Klyushin, A.; Huang, X.; Jones, T.; Teschner, D.; Girgsdies, F.; Rodenas, T.; Schlögl, R.; Heumann, S. (2018). Cobalt Bridged with Ionic Liquid Polymer on Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity Angewandte Chemie International Edition, 57(13), 3514-3518. Ein aktiver und stabiler Cobaltkatalysator für die Sauerstoffentwicklungsreaktion: Polymerisation einer ionischen Flüssigkeit, https://doi.org/10.1002/ange.201711688 (DE)
  • Düngen, P.; Schlögl, R.; Heumann, S. (2018). Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups Carbon, 130, 614-622. https://doi.org/10.1016/j.carbon.2018.01.047
  • Straten, J.W.; Schlecker.; P.; Krasowska, M.; Veroutis, E.; Granwehr, J.; Auer, A.A.; Hetaba, W.; Becker, S.; Schlögl, R.; Heumann, S. (2018). N-Funtionalized Hydrothermal Carbon Materials using Urotropine as N-Precursor Chemistry - A European Journal, 24(47), 12298-12317. https://doi.org/10.1002/chem.201800341


  • Yi, Y., Weinberg, G., Prenzel, M., Greiner, M., Heumann, S., Becker, S., Schloegl, R. (2017) Electrochemical corrosion of a glassy carbon electrode, Catalysis Today, 295 32-40. http://dx.doi.org/10.1016/j.cattod.2017.07.013
  • Düngen, P., Prenzel, M., Van Stappen, C., Pfänder, N., Heumann, S., Schlögl, R. (2017) Investigation of Different Pre-Treated Multi-Walled Carbon Nanotubes by Raman Spectroscopy, Materials Sciences and Applications, 8. https://doi.org/10.4236/msa.2017.88044
  • Lin, Y., Wu, K. (Tim), Yu, L., Heumann, S., Su, D. S. (2017) Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond. ChemSusChem DOI: 10.1002/cssc.201700968 WOSUID: MEDLINE:28665485
  • Gu, Q., Lin, Y., Heumann, S., Su, D. (2017) Nanocarbons for Catalytic Desulfurization, Chemistry-an Asian Journal DOI: 10.1002/asia.201700995 WOSUID: WOS:000415372600003
  • Hävecker, M., Düngen, P., Buller, S., Knop-Gericke, A., Trunschke, A., Schlögl, R. (2017) Restructuring of silica supported vanadia during propane oxidative dehydrogenation studied by combined synchrotron radiation based in situ soft X-ray absorption and photoemission, Catalysis, Structure & Reactivity DOI: 10.1080/2055074X.2017.1287535


  • Buller, S.; Heise-Podleska, M.; Pfänder, N.; Willinger, M.; Schlögl, R. (2016) Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: Influences of pre-treatment procedures. Journal of Energy Chemistry DOI: 10.1016/j.jechem.2016.01.022 WOSUID: WOS:000375334900013
  • Buller, S.; Strunk, J. (2016) Nanostructure in energy conversion. Journal of Energy Chemistry DOI: 10.1016/j.jechem.2016.01.025 WOSUID: WOS:000375334900003


  • Winkler, M., Liu, X., König, J. D., Buller, S., Schürmann, U., Kienle, L., Bensch W.,  Böttner, H. (2012) Electrical and structural properties of Bi2Te3 and Sb2Te3 thin films grown by the nanoalloying method with different deposition patterns and compositions. Journal of Materials Chemistry DOI: 10.1039/c2jm30363a EID: 2-s2.0-84861326299
  • Buller, S., Koch, C., Bensch, W., Zalden, P., Sittner, R., Kremers, S., Wuttig, M., Schürmann, U., Kienle, L., Leichtweiss, T., Janek, J., Schönborn, B. (2012) Influence of partial substitution of Te by Se and Ge by Sn on the properties of the blu-ray phase-change material Ge8Sb2Te11. Chemistry of Materials DOI: 10.1021/cm301809g


  • König, J. D., Winkler, M., Buller, S., Bensch, W., Schürmann, U., Kienle, L., Böttner, H. (2011) Bi2Te3-Sb2Te3 Superlattices Grown by Nanoalloying. Journal of Electronic Materials DOI: 10.1007/s11664-011-1578-0 EID: 2-s2.0-84864167469
  • Zalden, P., Bichara, C., v. Eijk J., Hermann, R. P., Sergueev, I., Bruns, G., Buller, S., Bensch, W., Matsunaga, T., Yamada, N., Wuttig, M. (2011) Thermal and elastic properties of Ge-Sb-Te based phase-change-materials, MRS Online Proceedings, doi: 10.1557/opl.2011.1030
  • Schürmann, U., Duppel, V., Buller, S., Bensch, W., Kienle, L. (2011) Precession Electron Diffraction - a versatile tool for the characterization of Phase Change Materials, Crystal Research & Technology, doi: 10.1002/crat.201000516
  • Winkler, M., Koenig , J. D., Buller , S., Schuermann U., Kienle L., Bensch W., Boettner, H. (2011) Nanoalloyed Bi2Te3, Sb2Te3 and Bi2Te3/Sb2Te3 Multilayers, MRS Online, doi: 10.1557/opl.2011.1237


  • Tomforde, J., Buller, S., Ried, M., Bensch, W., Wamwangi, D., Heidelmann, M., Wuttig, M. (2009) The influence of Se doping upon the phase change characteristics of GeSb2Te4, Solid State Sciences, doi: 10.1016/j.solidstatesciences.2008.10.014


Wissenschaftliche Mitarbeiter

  • Dr. Yang-Ming Lin
  • Dr. Zigeng Liu
  • Dr. Lin-Hui Yu


  • Dr. Guillermo Álvarez Ferrero
  • Dr. Yuxiao Ding
  • Dr. Peter Philipp Maria Schleker

PhD Studenten

  • Sakeb Hasan Choudhury
  • Heeyong Park
  • Fabian Wachholz


  • Marius Heise-Podleska
  • Natalia Kowalew
  • Teresa Stamm
  • Tobias Stamm


  • Christian Feike
  • John-Tommes Krzeslack
  • Till Wehner

Carbon Synthesis and Application

The aim of our research is the knowledge-based development of advanced electrode materials consisting of a structured carbon backbone. The work is focused on electrode materials for the oxygen evolution reaction (OER) in water electrolysis. The general idea is to use glucose as model precursor for biomass (a), which can be used as cheap and abundant carbon source. The initial liquid solutions convert into modified liquid and solid carbonaceous materials during the autoclave process (b) under high pressure and temperature. The liquid products can be further converted in biorefinery facilities to produce fuels or other value-added chemicals. The solid products can be pressed into mechanically stable pellets by an annealing step under inert gas atmosphere. The high number of functional groups within the hydrothermal carbon (HTC) lead to intrinsic binding properties during the pellet formation (c). No additional binder, like for instance Nafion, is needed and the specific material properties can be investigated.

The carbon based electrode materials are applied in electrochemical cells (d) to investigate their electrochemical activity as well as stability. The gaseous products of hydrogen and oxygen are produced during the water splitting process. In this way, the electrical energy from renewable sources like solar or wind energy is converted into the chemical energy carrier hydrogen, which can be further converted to methanol or ammonia by using exhaust gases from industry (e).

Interests & Challenges:

  • increasing long-term stability while maintaining high activity
  • investigation of active sites
  • increasing the surface areas
  • understanding of the condensation process in the autoclaves
  • investigation of the carbonaceous structures
  • influence of hetero-atoms in the autoclave process
  • incorporation of nitrogen / metal (oxides)
  • understanding of structure-property correlations

Hydrothermal Carbon Synthesis1,2

The carbon synthesis strategy of the group is based on the use of molecular precursors and controllable condensation reactions in liquid phase. Glucose is used for this bottom-up approach to obtain solid hydrothermal carbons. The incorporation of oxygen or nitrogen functional groups can be adjusted by varying the initial synthesis pH and by the addition of nitrogen containing precursor like for example urotropine. The distribution of the oxygen functional groups, as well as the morphology of the carbonaceous product, is controlled by process parameters, in particular the pH. For lower initial synthesis pH, i. e. pH 0, extended carbonaceous structures were confirmed by Raman spectroscopy, whereas for pH > 3 furanic structural entities from the 5-hydroxymethyl furfural intermediate remained the dominant structural motive of the carbon. The high number of functional groups leads to intrinsic binding properties that allow the preparation of functional disc electrodes by pressing and thermal annealing to 900°C. In the absence of Nafion, material-only properties can be studied for further fundamental understanding of electrochemical processes. The macroscopic dimension of the bulk electrode allows quantitative analytical investigations after electrochemical testing.

Post-functionalization techniques such as plasma treatment, electrochemical oxidation and (hydro)thermal treatments in active gases/solvents complete the methodical variety for the introduction of desired surface termination for the stabilization of catalysts.


In order to distinguish differently functionalized carbon materials established characterization methods were modified to obtain deeper knowledge about the synthesized carbon materials and their modification under electrochemical conditions. For Raman spectroscopy, a single-phonon resonance (SPR) fitting procedure was developed for graphitic materials based on multi-walled carbon nanotubes (MWCNT). The theory derived fit resulted in accurate ratios of the ideal graphitic lattice vibrations (G-Band) and lattice vibrations induces by defects/functional groups (D- and D'-Band). Furthermore, the direct speciation separation of functional groups could be achieved with a non-linear heating procedure by the thermogravimetric mass spectrometry setup. Supported by further characterization techniques such as microscopy and XPS the type and quantity of functionalization of graphitic carbon materials can be derived.

Metal deposition6,7

We further studied options of anchoring metals on structured carbon materials. A strong interaction between catalytic active species and electric conductive carbon support is essential for high activity and stability of the catalyst materials. Techniques like atomic layer deposition (ALD), wet impregnation, adsorption of colloids or the usage of polymerized ionic liquids were applied to achieve intense synergy effects. We applied different pre-treated multi-walled carbon nanotubes as support materials and were able to generate atomically dispersed metal oxides on their surface. The materials showed remarkably high activities as well as stabilities.


1. S. Reiche, N. Kowalew, R. Schlögl, Influence of Synthesis pH and Oxidative Strength of the Catalyzing Acid on the Morphology and Chemical Structure of Hydrothermal Carbon, ChemPhysChem. https://doi.org/10.1002/cphc.201402834

2. J. W. Straten, P. Schlecker, M. Krasowska, E. Veroutis, J. Granwehr, A.A. Auer, W. Hateba, S. Becker, R. Schlögl, S. Heumann, N-Funtionalized Hydrothermal Carbon Materials using Urotropine as N-Precursor, Chemistry - A European Journal, https://doi.org/10.1002/chem.201800341

3. P. Düngen, M. Prenzel, Casey Van Stappen, Norbert Pfänder, Saskia Heumann, and Robert Schlögl, Investigation of different pre-treated multi-walled carbon nanotubes by Raman spectroscopy, Materials Sciences and Applications https://doi.org/10.4236/msa.2017.88044

4.  P. Düngen, R. Schlögl, S. Heumann, Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups, Carbon https://doi.org/10.1016/j.carbon.2018.01.047

5.  Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Electrochemical corrosion of a glassy carbon electrode, Catalysis Today https://doi.org/10.1016/j.cattod.2017.07.013

6.  P. Düngen, M. Greiner, K.-H. Boehm, I. Spanos, X. Huang, A.A. Auer, R. Schloegl, S. Heumann, Atomically dispersed vanadium oxides on multiwalled carbon nanotubes via atomic layer deposition: A multiparameter optimization, Journal of Vacuum Science & Technology A https://doi.org/10.1116/1.5006783

7.  Y. Ding, A. Klyushin, X. Huang, T. Jones, D. Teschner, F. Girgsdies, T. Rodenas, R. Schlögl, S. Heumann, Cobalt Bridged with Ionic Liquid Polymer on Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity, Angewandte Chemie Int. Ed, doi.org/10.1002/anie.201711688, https://doi.org/10.1002/ange.201711688


Dr. Sylvia Becker   Dr. Jan Willem Straten
Dr. Qingqing Gu   Dr. Shuchang Wu
Dr. Marina Prenzel   Dr. Youngmi Yi
Dr. Tania Rodenas