- An ab initio, DFT and semiempirical SCF-MO package -

Version 4.0.1 - RELEASE -

Design and Scientific Directorship:
Frank Neese

Technical Directorship:
Frank Wennmohs

Max-Planck-Institute for Chemical Energy Conversion
Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany

tccce@mpi-mail.mpg.de

With contributions from:
Daniel Aravena, Michael Atanasov, Ute Becker, Dmytro Bykov,
Vijay G. Chilkuri, Dipayan Datta, Achintya Kumar Dutta,
Dmitry Ganyushin, Yang Guo, Andreas Hansen, Lee Huntington,
Róbert Izsák, Christian Kollmar, Simone Kossmann, Martin Krupička,
Dagmar Lenk, Dimitrios G. Liakos, Dimitrios Manganas,
Dimitrios A. Pantazis, Taras Petrenko, Peter Pinski, Christoph Reimann,
Marius Retegan, Christoph Riplinger, Tobias Risthaus, Michael Roemelt,
Masaaki Saitow, Barbara Sandhöfer, Igor Schapiro,
Kantharuban Sivalingam, Georgi Stoychev, Boris Wezisla

And contributions from our collaborators:
Mihály Kállay, Stefan Grimme, Edward Valeev, Garnet Chan, Jiri Pittner,
Martin Brehm
Additional contributions to the manual from:

Giovanni Bistoni, Wolfgang Schneider

Initial conversion from the original Word document to \LaTeX:

Sarah Lehnhausen
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>1</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XI</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XV</td>
</tr>
<tr>
<td>1 Foreword 2017 (Version 4.0)</td>
<td>XVI</td>
</tr>
<tr>
<td>2 ORCA 4.0 Changes</td>
<td>XIX</td>
</tr>
<tr>
<td>2.1 New Features</td>
<td>XIX</td>
</tr>
<tr>
<td>2.2 Changes of Default Settings & Parameters</td>
<td>XXI</td>
</tr>
<tr>
<td>2.3 Important Bugfixes with respect to ORCA 3.0.3</td>
<td>XXI</td>
</tr>
<tr>
<td>3 FAQ – frequently asked questions</td>
<td>XXIII</td>
</tr>
<tr>
<td>4 General Information</td>
<td>1</td>
</tr>
<tr>
<td>4.1 Program Components</td>
<td>1</td>
</tr>
<tr>
<td>4.2 Units and Conversion Factors</td>
<td>2</td>
</tr>
<tr>
<td>5 Calling the Program (Serial and Parallel)</td>
<td>3</td>
</tr>
<tr>
<td>5.1 Calling the Programm</td>
<td>3</td>
</tr>
<tr>
<td>5.2 Hints on the Use of Parallel ORCA</td>
<td>5</td>
</tr>
<tr>
<td>6 General Structure of the Input File</td>
<td>9</td>
</tr>
<tr>
<td>6.1 Input Blocks</td>
<td>10</td>
</tr>
<tr>
<td>6.2 Keyword Lines</td>
<td>11</td>
</tr>
<tr>
<td>6.2.1 Main Methods and Options</td>
<td>11</td>
</tr>
<tr>
<td>6.2.2 Density Functional Methods</td>
<td>21</td>
</tr>
<tr>
<td>6.3 Basis Sets</td>
<td>23</td>
</tr>
<tr>
<td>6.3.1 Standard basis set library</td>
<td>23</td>
</tr>
<tr>
<td>6.3.2 Use of scalar relativistic basis sets</td>
<td>30</td>
</tr>
<tr>
<td>6.3.3 Effective Core Potentials</td>
<td>30</td>
</tr>
<tr>
<td>6.4 ORCA and Symmetry</td>
<td>33</td>
</tr>
<tr>
<td>6.5 Jobs with Multiple Steps</td>
<td>34</td>
</tr>
<tr>
<td>7 Input of Coordinates</td>
<td>36</td>
</tr>
<tr>
<td>7.1 Reading coordinates from the input file</td>
<td>36</td>
</tr>
<tr>
<td>7.2 Reading coordinates from external files</td>
<td>38</td>
</tr>
<tr>
<td>7.3 Special definitions</td>
<td>39</td>
</tr>
</tbody>
</table>
8 Running Typical Calculations

8.1 Single Point Energies and Gradients
8.1.1 Hartree-Fock
8.1.1.1 Standard Single Points
8.1.1.2 Basis Set Options
8.1.1.3 SCF and Symmetry
8.1.2 MP2
8.1.2.1 MP2 and RI-MP2 Energies
8.1.2.2 Frozen Core Options
8.1.2.3 Orbital Optimized MP2 Methods
8.1.2.4 MP2 and RI-MP2 Gradients and Hessians
8.1.2.5 MP2 Properties, Densities and Natural Orbitals
8.1.2.6 Explicitly correlated MP2 calculations
8.1.2.7 Local MP2 calculations
8.1.3 Coupled-Cluster and Coupled-Pair Methods
8.1.3.1 Basics
8.1.3.2 Coupled-Cluster Densities
8.1.3.3 Static versus Dynamic Correlation
8.1.3.4 Basis Sets for Correlated Calculations. The case of ANOs
8.1.3.5 Automatic extrapolation to the basis set limit
8.1.3.6 Explicitly Correlated MP2 and CCSD(T) Calculations
8.1.3.7 Frozen Core Options
8.1.3.8 Local Coupled Pair and Coupled-Cluster Calculations
8.1.3.9 Cluster in molecules (CIM)
8.1.3.10 Arbitrary Order Coupled-Cluster Calculations
8.1.4 Density Functional Theory
8.1.4.1 Standard Density Functional Calculations
8.1.4.2 DFT Calculations with RI
8.1.4.3 Hartree–Fock and Hybrid DFT Calculations with RIJCOSX
8.1.4.4 Hartree–Fock and Hybrid DFT Calculations with RI-JK
8.1.4.5 DFT Calculations with Second Order Perturbative Correction (Double-Hybrid Functionals)
8.1.4.6 DFT Calculations with Atom-pairwise Dispersion Correction
8.1.4.7 DFT Calculations with Range-Separated Hybrid Functionals
8.1.5 Quadratic Convergence
8.1.6 Counterpoise Correction
8.1.7 Complete Active Space Self-Consistent Field Method
8.1.7.1 Introduction
8.1.7.2 A simple Example
8.1.7.3 Starting Orbitals
8.1.7.4 CASSCF and Symmetry
8.1.7.5 RI, RIJCOSX and RIJK approximations for CASSCF
8.1.7.6 Breaking Chemical Bonds
8.1.7.7 Excited States
8.1.7.8 CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations
8.1.8 N-Electron Valence State Perturbation Theory (NEVPT2)
8.1.9 Full Configuration Interaction Energies and Properties
8.1.10 Scalar Relativistic SCF
8.1.10.1 Douglas-Kroll-Hess
8.9.11 Efficient MR-MP2 Calculations for Larger Molecules 209
8.10 MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster 211
8.10.1 A Simple MR-EOM Calculation 211
8.10.2 Capabilities 218
8.11 Solvation 218
8.12 Calculation of Properties 220
8.12.1 Population Analysis and Related Things 220
8.12.2 Absorption and Fluorescence Bandshapes 224
8.12.3 IR/Raman Spectra, Vibrational Modes and Isotope Shifts 230
8.12.3.1 IR Spectra 230
8.12.3.2 Raman Spectra 231
8.12.3.3 Resonance Raman Spectra 233
8.12.3.4 NRVS Spectra 233
8.12.3.5 Animation of Vibrational Modes 235
8.12.3.6 Isotope Shifts 238
8.12.4 Thermochemistry 239
8.12.5 Anharmonic Analysis 244
8.12.6 Electrical Properties 245
8.12.7 NMR Chemical Shifts 247
8.12.8 Hyperfine and Quadrupole Couplings 251
8.12.9 The EPR g-Tensor and the Zero-Field Splitting Tensor 254
8.12.10 Mössbauer Parameters 257
8.12.11 Broken-Symmetry Wavefunctions and Exchange Couplings 259
8.12.12 Natural Orbitals for Chemical Valence 261
8.12.13 Local Energy Decomposition 263
8.13 QM/MM Calculations 266
8.13.1 ORCA and Gromacs 267
8.13.2 ORCA and pDynamo 268
8.13.3 ORCA and NAMD 271

9 Detailed Documentation 274
9.1 More on Coordinate Input 274
9.1.1 Fragment Specification 274
9.1.2 Defining Geometry Parameters and Scanning Potential Energy Surfaces 274
9.1.3 Inclusion of Point Charges 277
9.2 Choice of Computational Model 279
9.2.1 Features Common to All Calculations 279
9.2.2 Density Functional Calculations 280
9.2.2.1 Choice of Functional 280
9.2.2.2 Choice of Integration Grid 288
9.2.2.3 Using the RI-J Approximation to the Coulomb Part 293
9.2.2.4 The Split-RI-J Coulomb Approximation 295
9.2.2.5 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJONX) 296
9.2.2.6 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX) 297
9.2.2.7 Choice of the COSX Grid and Convergence Issues 299
9.2.2.8 Improved Analytical Evaluation of the Coulomb Term: Split-J 301
9.2.2.9 The Standard Computational Levels 302
9.2.2.10 Treatment of Dispersion Interactions with DFT-D3 302
9.2.2.11 DFT Calculations with the Non-Local, Density Dependent Dispersion Correction: DFT-NL ... 307
9.2.2.12 DFT and HF Calculations with the geometrical Counterpoise Correction: gCP ... 312
9.2.2.13 HF-3c: Hartree-Fock with three corrections ... 315
9.2.2.14 PBEh-3c: A PBE hybrid density functional with small AO basis set and two corrections ... 317

9.2.3 Semiempirical Methods ... 318

9.3 Choice of Basis Set ... 323
9.3.1 Built-in Basis Sets ... 323
9.3.2 Assigning or Adding Basis Functions to an Element 328
9.3.3 Assigning or Adding Basis Functions to Individual Atoms 330
9.3.4 Linear Dependence ... 332
9.3.5 Reading Orbital and Auxiliary Basis Sets from a File 333
9.3.6 Advanced Specification of Effective Core Potentials 334
9.3.7 Embedding Potentials .. 335

9.4 Choice of Initial Guess and Restart of SCF Calculations 336
9.4.1 AutoStart feature ... 336
9.4.2 One Electron Matrix Guess .. 337
9.4.3 Basis Set Projection .. 337
9.4.4 PModel Guess .. 337
9.4.5 Hückel and PAtom Guesses .. 338
9.4.6 Restarting SCF Calculations ... 338
9.4.7 Changing the Order of Initial Guess MOs and Breaking the Initial Guess Symmetry .. 339

9.5 SCF Convergence ... 340
9.5.1 Convergence Tolerances .. 340
9.5.2 Dynamic and Static Damping ... 341
9.5.3 Level Shifting .. 342
9.5.4 Direct Inversion in Iterative Subspace (DIIS) 343
9.5.5 An alternative DIIS algorithm: KDIIS ... 343
9.5.6 Approximate Second Order SCF (SOSCF) 344
9.5.7 Full Second Order SCF (Newton-Raphson SCF) 344
9.5.8 Finite Temperature HF/KS-DFT .. 346
9.5.8.1 Fractional Occupation Numbers .. 347
9.5.8.2 Fractional Occupation Number Weighted Electron Density (FOD) 347

9.6 Choice of Wavefunction and Integral Handling 350
9.6.1 Choice of Wavefunction Type ... 350
9.6.2 UHF Natural Orbitals .. 352
9.6.3 Integral Handling (Conventional, Direct, SemiDirect) 352

9.7 SCF Stability Analysis .. 356

9.8 Frozen Core Options .. 357

9.9 The Second Order Many Body Perturbation Theory Module (MP2) 359
9.9.1 Standard MP2 ... 359
9.9.2 RI-MP2 ... 360
9.9.3 “Double-Hybrid” Density Functional Theory 362
9.9.4 Orbital Optimized MP2 ... 367
9.9.5 RIJCOSX-RI-MP2 Gradients ... 371
9.9.6 MP2 and RI-MP2 Second Derivatives ... 371
9.9.7 Local MP2 ... 372
9.10 The Single Reference Correlation Module .. 375
 9.10.1 Theory ... 375
 9.10.2 Closed-Shell Equations ... 380
 9.10.3 Open-Shell Equations ... 383
 9.10.4 Local correlation ... 383
 9.10.4.1 Including core orbitals in the correlation treatment 389
 9.10.5 Hilbert space multireference coupled-cluster approaches 391
 9.10.6 The singles Fock term ... 393
 9.10.7 Use of the MDCI Module ... 394
9.11 The Complete Active Space Self-Consistent Field (CASSCF) Module 397
 9.11.1 General Description ... 397
 9.11.2 CASSCF Properties ... 417
 9.11.3 Fully Variational Spin-Orbit Coupled CASSCF 418
9.12 N-Electron Valence State Perturbation Theory 424
9.13 Density Matrix Renormalization Group .. 435
 9.13.1 Technical capabilities ... 436
 9.13.2 How to cite ... 436
 9.13.3 Overview of BLOCK input and calculations 436
 9.13.4 Standard commands .. 437
 9.13.4.1 Orbital optimization ... 438
 9.13.4.2 Advanced options ... 438
 9.13.4.3 Troubleshooting ... 440
 9.13.4.4 Complete set of BLOCK options 441
 9.13.5 Appendix: Porphine π-active space calculation 442
9.14 Relativistic Options .. 445
 9.14.1 Approximate Relativistic Hamiltonians 447
 9.14.2 The Regular Approximation ... 448
 9.14.3 The Douglas-Kroll-Hess Method ... 450
 9.14.4 Picture-Change Effects ... 451
 9.14.5 Finite Nucleus Model ... 453
 9.14.6 Basis Sets in Relativistic Calculations 453
9.15 Approximate Full CI Calculations in Subspace: ICE-CI 454
 9.15.1 Introduction .. 454
 9.15.2 The ICE-CI and CIPSI Algorithms ... 455
 9.15.3 A Simple Example Calculations .. 456
 9.15.4 Accuracy ... 458
 9.15.5 Scaling behavior ... 459
 9.15.6 Accuracy of the Wavefunction .. 460
 9.15.7 Potential Energy Surfaces .. 462
 9.15.8 Excited States ... 463
 9.15.9 Tips and Tricks ... 465
 9.15.10 Large-scale approximate CASSCF: ICE-SCF 468
 9.15.11 The entire input block explained ... 469
 9.15.12 A Technical Note: orca_cclib ... 470
9.16 CI methods using generated code .. 471
 9.16.1 Introduction .. 471
 9.16.2 Input .. 471
9.22.3 The reliability of the calculated excitation energy .. 554
9.22.4 Removal of IP and EA states with double excitation character 556
9.22.5 Properties .. 557
9.22.6 Some tips and tricks for STEOMCC calculations .. 557

9.23 Excited States using PNO based coupled cluster .. 558
 9.23.1 General Description .. 558
 9.23.2 Reference State Energy ... 558
 9.23.3 Use of Local Orbitals .. 559
 9.23.4 Some tips and tricks for bt-PNO calculations ... 559

9.24 The Multireference Correlation Module ... 560
 9.24.1 General Description ... 560
 9.24.2 Properties Calculation Using the SOC Submodule 566
 9.24.2.1 Zero-Field Splitting .. 566
 9.24.2.2 Local Zero-Field Splitting .. 574
 9.24.2.3 g-Tensor .. 577
 9.24.2.4 Magnetization and Magnetic Susceptibility .. 582
 9.24.2.5 MCD and Absorption Spectra .. 584
 9.24.2.6 Addition of Magnetic Fields ... 588
 9.24.2.7 Relativistic Picture Change in Douglas-Kroll-Hess SOC and Zeeman Operators .. 590

9.25 Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) Theory 591
 9.25.1 The Steps Required to Run an MR-EOM Calculation 594
 9.25.1.1 State-Averaged CASSCF Calculation .. 594
 9.25.1.2 Selection of the States to Include in the MR-EOM Calculation 595
 9.25.1.3 Running the MR-EOM Calculation ... 597
 9.25.2 Approximate Inclusion of Spin-Orbit Coupling Effects in MR-EOM Calculations .. 599
 9.25.3 A Projection/Singular PT Scheme to Overcome Convergence Issues in the T Amplitude Iterations ... 603
 9.25.4 An Orbital Selection Scheme for More Efficient Calculations of Excitation Spectra with MR-EOM ... 607
 9.25.5 Nearly Size Consistent Results with MR-EOM by Employing an MR-CEPA(0) Shift in the Final Diagonalization Procedure ... 614

9.26 Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the orca asa Program .. 617
 9.26.1 General Description of the Program .. 618
 9.26.2.1 Example: Simple Mode ... 618
 9.26.2.2 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO Model ... 620
 9.26.2.3 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOFa Model .. 622
 9.26.2.4 Example: Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in Absorption and Fluorescence Spectra within the IMDHO Model .. 624
 9.26.2.5 Example: Modelling of Absorption and Resonance Raman Spectra for the $1^1A_g \rightarrow 1^1B_u$ Transition in trans-$1,3,5$-Hexatriene 627
 9.26.2.6 Example: Modelling of Absorption Spectrum and Resonance Raman Profiles for the $1^1A_g \rightarrow 1^1B_u$ Transition in trans-$1,3,5$-Hexatriene 631
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.26.3</td>
<td>Fitting of Experimental Spectra</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>9.26.3.1 Example: Gauss-Fit of Absorption Spectrum</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>9.26.3.2 Example: Fit of Absorption and Resonance Raman Spectra for 1-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1\text{A} \rightarrow 1\text{B}_u) Transition in (\text{trans}-1,3,5)-Hexatriene</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>9.26.3.3 Example: Single-Mode Fit of Absorption and Fluorescence Spectra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1\text{A} \rightarrow 1\text{B}_{2u}) Transition in Tetracene</td>
<td>647</td>
</tr>
<tr>
<td>9.26.4</td>
<td>Quantum-Chemically Assisted Simulations and Fits of Optical Bandshapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Resonance Raman Intensities</td>
<td>651</td>
</tr>
<tr>
<td></td>
<td>9.26.4.1 Example: Quantum-Chemically Assisted Analysis and Fit of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absorption and Resonance Raman Spectra for (1\text{A} \rightarrow 1\text{B}_u) Transition in (\text{trans}-1,3,5)-Hexatriene</td>
<td>651</td>
</tr>
<tr>
<td></td>
<td>9.26.4.2 Important Notes about Proper Comparison of Experimental and</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Quantum Chemically Calculated Resonance Raman Spectra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.26.4.3 Example: Normal Mode Scan Calculations of Model Parameters for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1\text{A} \rightarrow 1\text{B}_u) Transition in (\text{trans}-1,3,5)-Hexatriene</td>
<td>660</td>
</tr>
<tr>
<td>9.27</td>
<td>(\text{Ab initio}) Molecular Dynamics Simulations</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>9.27.1 Input Format</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>9.27.2 Command List</td>
<td>668</td>
</tr>
<tr>
<td></td>
<td>9.27.3 Scientific Background</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>9.27.3.1 Time Integration and Equations of Motion</td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>9.27.3.2 Velocity Initialization</td>
<td>672</td>
</tr>
<tr>
<td></td>
<td>9.27.3.3 Thermostats</td>
<td>673</td>
</tr>
<tr>
<td>9.28</td>
<td>Implicit Solvation Models</td>
<td>674</td>
</tr>
<tr>
<td></td>
<td>9.28.1 The Conductor-like Polarizable Continuum Model (C-PCM)</td>
<td>674</td>
</tr>
<tr>
<td></td>
<td>9.28.2 The Conductor-like Screening Solvation Model (COSMO)</td>
<td>676</td>
</tr>
<tr>
<td></td>
<td>9.28.3 The SMD Solvation Model</td>
<td>676</td>
</tr>
<tr>
<td>9.29</td>
<td>Calculation of Properties</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>9.29.1 Electric Properties</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>9.29.2 The Spin-Orbit Coupling Operator</td>
<td>681</td>
</tr>
<tr>
<td></td>
<td>9.29.2.1 Exclusion of Atomic Centers</td>
<td>684</td>
</tr>
<tr>
<td></td>
<td>9.29.3 The EPR/NMR Module</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>9.29.3.1 Hyperfine and Quadrupole Couplings</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>9.29.3.2 The g-Tensor</td>
<td>689</td>
</tr>
<tr>
<td></td>
<td>9.29.3.3 Zero-Field-Splitting</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>9.29.3.4 General Treatment</td>
<td>692</td>
</tr>
<tr>
<td></td>
<td>9.29.4 Local Energy Decomposition</td>
<td>697</td>
</tr>
<tr>
<td>9.30</td>
<td>Natural Bond Orbital (NBO) Analysis</td>
<td>699</td>
</tr>
<tr>
<td></td>
<td>9.30.1 NBO Deletions</td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>9.30.2 NBO for Post-HF Densities</td>
<td>710</td>
</tr>
<tr>
<td>9.31</td>
<td>Population Analyses and Control of Output</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>9.31.1 Controlling Output</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>9.31.2 Mulliken Population Analysis</td>
<td>715</td>
</tr>
<tr>
<td></td>
<td>9.31.3 Löwdin Population Analysis</td>
<td>717</td>
</tr>
<tr>
<td></td>
<td>9.31.4 Mayer Population Analysis</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>9.31.5 Natural Population Analysis</td>
<td>719</td>
</tr>
<tr>
<td></td>
<td>9.31.6 Density of the Effectively Unpaired Electrons</td>
<td>719</td>
</tr>
<tr>
<td></td>
<td>9.31.7 Local Spin Analysis</td>
<td>722</td>
</tr>
<tr>
<td></td>
<td>9.31.8 UNO Orbital Printing</td>
<td>729</td>
</tr>
</tbody>
</table>
9.32 Orbital and Density Plots ... 729
 9.32.1 Contour Plots ... 729
 9.32.2 Surface Plots ... 732
 9.32.2.1 General Points ... 732
 9.32.2.2 FOD plots ... 734
 9.32.2.3 Interface to gOpenMol ... 735
 9.32.2.4 Interface to Molekel .. 736
9.33 Utility Programs ... 737
 9.33.1 orca_mapspc ... 737
 9.33.2 orca_chelpg ... 740
 9.33.3 orca_pltvib ... 740
 9.33.4 orca_vib .. 741
 9.33.5 orca_loc ... 741
 9.33.6 orca_blockf ... 743
 9.33.7 orca_plot ... 743
 9.33.8 orca_2mkl: Old Molekel as well as Molden inputs 743
 9.33.9 orca_2aim ... 744
 9.33.10 orca_vpot ... 744
 9.33.11 orca_euler ... 745
 9.33.12 orca_exportbasis ... 746
 9.33.13 orca_eca ... 747

10 Some Tips and Tricks ... 749
 10.1 Input .. 749
 10.2 Cost versus Accuracy ... 749
 10.3 Converging SCF Calculations .. 752
 10.4 Choice of Theoretical Method .. 754

11 Publications Related to ORCA .. 756

Bibliography .. 783
List of Figures

8.1 A rigid scan along the twisting coordinate of C_2H_4. The inset shows the T$_1$ diagnostic for the CCSD calculation. ... 60

8.2 Comparison of the CCSD(T) and MRACPF total energies of the C_2H_4 along the twisting coordinate. The inset shows the difference E(MRACPF)-E(CCSD(T)). 62

8.3 Potential energy surface of the F_2 molecule calculated with some single-reference methods and compared to the MRACPF reference. 63

8.4 Error in mEh for various basis sets for highly correlated calculations relative to the ano-pVQZ basis set. ... 65

8.5 Scaling behaviour of RHF, canonical and DLPNO-CCSD(T) ... 76

8.6 Structure of the Crambin protein - the first protein to be treated with a CCSD(T) level ab initio method ... 77

8.7 Computational times of RIJCOSX-UHF and UHF-DLPNO-CCSD for the linear alkane chains (C_nH_{n+2}) in triplet state with def2-TZVPP basis and default frozen core settings. 4 CPU cores and 128 GB of memory were used on a single cluster node. 79

8.8 Ni-Fe active center in the [NiFe] Hydrogenase in its second-coordination sphere. The whole model system is composed of 180 atoms. ... 80

8.9 A model compound for the OEC in the S_2 state of photosystem II which is comprised of 238 atoms. In its high-spin state, the OEC possesses 13 SOMOs in total. 81

8.10 Potential Energy Surface of the H_2 molecule from RHF, UHF and CASSCF(2,2) calculations (SVP basis). ... 117

8.11 Potential Energy Surface of the N_2 molecule from CASSCF(6,6) calculations (SVP basis). ... 117

8.12 State averaged CASSCF(2,2) calculations on H_2 (two singlets, one triplet; SVP basis). 118

8.13 State averaged CASSCF(2,2) calculations on C_2H_4 (two singlets, one triplet; SV(P) basis). ... 119

8.14 Potential Energy Surface of the N_2 molecule from CASSCF(6,6) and NEVPT2 calculations (def2-SVP). ... 130

8.15 Relaxed surface scan for the H-atom abstraction from CH$_4$ by OH-radical (B3LYP/SV(P)). ... 147

8.16 Parameter scan for the quartet and sextet state of [FeO]$^+$ (B3LYP/SV(P)). 154

8.17 Potential energy surfaces for some low-lying states of CH using the MRCI+Q method 205

8.18 Frontier MOs of the Ozone Molecule. ... 207

8.19 2D potential energy surface for the O_3 molecule calculated with different methods. 208

8.20 Rotation of stilbene around the central double bond using a CASSCF(2,2) reference and correlating the reference with MR-MP2. ... 209

8.21 The π and π^* orbitals of the CO molecule obtained from the interface of ORCA to gOpenMol. ... 221

8.22 The π and π^*-MOs of CO as visualized by Molekel. ... 222

8.23 The predicted IR spectrum of the H_2CO molecule using the numerical frequency routine of ORCA and the tool orca_mapspc to create the spectrum. ... 231
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.24</td>
<td>Calculated Raman spectrum for H$_2$CO at the STO-3G level using the numerical frequency routine of ORCA and the tool orca_mapspc to create the spectrum.</td>
</tr>
<tr>
<td>8.25</td>
<td>Experimental, fitted and simulated NRVS spectrum of the Fe(III)-azide complex obtained at the BP86/TZVP level (T = 20 K).</td>
</tr>
<tr>
<td>8.26</td>
<td>Theoretical IR spectrum with the shapes of vibrations dominating the IR intensity and NRVS scattering.</td>
</tr>
<tr>
<td>8.27</td>
<td>Nuclear vibrations for H$_2$CO with the shape of each vibration and its frequency indicated.</td>
</tr>
<tr>
<td>8.28</td>
<td>The 1395 cm$^{-1}$ mode of the H$_2$CO molecule as obtained from the interface of ORCA to gOpenMol and the orca_pltvib tool to create the animation file.</td>
</tr>
<tr>
<td>8.29</td>
<td>An idealized Mössbauer spectrum showing both the isomer shift, δ, and the quadrupole splitting, ΔE_Q.</td>
</tr>
<tr>
<td>9.1</td>
<td>Graphical description of the Range-Separation ansatz.</td>
</tr>
<tr>
<td>9.2</td>
<td>Scaling of the DLPNO-MP2 method with default thresholds for linear alkane chains in def2-TZVP basis. Shown are also the times for the corresponding Hartree-Fock calculations with RIJCOSX and for RI-MP2.</td>
</tr>
<tr>
<td>9.3</td>
<td>Orbitals of the active space for the CASSCF(6,6) calculation of H$_2$CO.</td>
</tr>
<tr>
<td>9.4</td>
<td>Structure of the Fe${72}$N${2}$H$_{100}$.</td>
</tr>
<tr>
<td>9.5</td>
<td>NEVPT2 and QDNEVPT2 Li-F dissociation curves of the ground and first excited states for a CAS(2,2) reference.</td>
</tr>
<tr>
<td>9.6</td>
<td>Flowchart of the ICE-CI procedure.</td>
</tr>
<tr>
<td>9.7</td>
<td>An ICE-CI calculation on the water molecule in the cc-pVDZ basis (1s frozen).</td>
</tr>
<tr>
<td>9.8</td>
<td>Convergence of the ICE-CI procedure towards the full CI results for a test set of 21 full CI energy. Shown is the RMS error relative to the Full CI results. The corresponding errors for various coupled-cluster variants is shown by broken horizontal lines.</td>
</tr>
<tr>
<td>9.9</td>
<td>Polyene chains used for scaling calculations.</td>
</tr>
<tr>
<td>9.10</td>
<td>Scaling behavior of ICE-CI for linear polyene chains (Full π-electron active space) as a functions of system size for different generator thresholds.</td>
</tr>
<tr>
<td>9.11</td>
<td>Convergence of the ICE-CI natural orbital occupation numbers. The upper panel is showing the Full CI occupation numbers, the lower panel the deviation of the ICE-CI values from these exact values. For comparison, the CCSD natural orbital occupation numbers are also provided.</td>
</tr>
<tr>
<td>9.12</td>
<td>Potential energy surface of the N$_2$ molecule in the SV basis. For comparison higher level coupled-cluster results are also shown.</td>
</tr>
<tr>
<td>9.13</td>
<td>Non-parallelity error of ICE-CI for the H$_2$O molecule in the SV basis. Shown is the deviation from the full CI value as a function of O-H distance (both bonds stretched). For comparison, the CCSD(T) curve is also shown.</td>
</tr>
<tr>
<td>9.14</td>
<td>Analysis of the ICE-CI wavefunction along the O-H dissociation pathway.</td>
</tr>
<tr>
<td>9.15</td>
<td>Comparison of MP2 natural orbitals and improved virtual orbitals for the ICE-CI procedure (H2O molecule, cc-pVDZ basis, equilibrium geometry).</td>
</tr>
<tr>
<td>9.16</td>
<td>Automatic active space selection along the H$_2$O dissociation surface. The reference curve (blue triangles) is the ICE-CI method for the full orbital space with the default parameters.</td>
</tr>
<tr>
<td>9.17</td>
<td>Deviations of ICE-SCF from CASSCF energies for a selection of molecules (standard truncation parameters $T_{\text{gen}} = 10^{-4}$ and $T_{\text{var}} = 10^{-11}$).</td>
</tr>
<tr>
<td>9.18</td>
<td>CASSCF and ICE-SCF optimized geometries for methylene and ozone (cc-pVDZ basis set, default parameters).</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>9.19</td>
<td>Structure of the iron-porphyrin used for the prediction of its absorption spectrum.</td>
</tr>
<tr>
<td>9.20</td>
<td>The ZINDO/S predicted absorption spectrum of the model iron-porphyrin. The spectrum has been plotted using the orca_mapspc tool.</td>
</tr>
<tr>
<td>9.21</td>
<td>Natural transition orbitals for the pyridine molecule in the S1 and S3 states.</td>
</tr>
<tr>
<td>9.22</td>
<td>Result of a potential energy surface scan for the excited states of the CO molecule using the orca_cis module.</td>
</tr>
<tr>
<td>9.23</td>
<td>Result of a potential energy surface scan along C-C stretching normal coordinate (mode 13 in the present example) for the excited states of the ethene molecule using the orca_cis module.</td>
</tr>
<tr>
<td>9.24</td>
<td>Comparison of the experimentally observed and calculated ROCIS Fe L-edge of ([\text{FeCl}_4]^2-).</td>
</tr>
<tr>
<td>9.25</td>
<td>Comparison of the experimentally observed and calculated Ti L-edge of ([\text{Cp}_2\text{TiCl}_2]).</td>
</tr>
<tr>
<td>9.26</td>
<td>DFT/ROCIS calculated L3 XAS spectrum of ([\text{Fe(Cl)}_4]^2-) together with NDO analysis.</td>
</tr>
<tr>
<td>9.27</td>
<td>DFT/ROCIS calculated RIXS planes for ([\text{Cu(NH}_3)_4]^2-).</td>
</tr>
<tr>
<td>9.28</td>
<td>Calculated MCD and absorption spectra of ([\text{Fe(CN)}_6]^3-) compared to experimental spectra.</td>
</tr>
<tr>
<td>9.29</td>
<td>Absorption spectrum generated after orca_asa run on file example001.inp.</td>
</tr>
<tr>
<td>9.30</td>
<td>Absorption and fluorescence spectra generated after orca_asa run on the file example002.inp.</td>
</tr>
<tr>
<td>9.31</td>
<td>Absorption and fluorescence spectra generated after orca_asa run on the file example003.inp.</td>
</tr>
<tr>
<td>9.32</td>
<td>Absorption and fluorescence spectra for T=0 K and T=300 K generated after orca_asa run on the file example004.inp.</td>
</tr>
<tr>
<td>9.33</td>
<td>Absorption spectrum for T = 300 K generated after orca_asa run on the file example004.inp.</td>
</tr>
<tr>
<td>9.34</td>
<td>Absorption spectrum corresponding to 1−1 $A_g \rightarrow 1−1 B_u$ transition in trans-1,3,5-hexatriene generated after orca_asa run on the file example005.inp.</td>
</tr>
<tr>
<td>9.35</td>
<td>Resonance Raman spectra for 3 different excitation energies which fall in resonance with 1−1 $A_g \rightarrow 1−1 B_u$ transition in trans-1,3,5-hexatriene.</td>
</tr>
<tr>
<td>9.36</td>
<td>Absorption spectrum and resonance Raman profiles of fundamental bands corresponding to 1−1 $A_g \rightarrow 1−1 B_u$ transition in trans-1,3,5-hexatriene.</td>
</tr>
<tr>
<td>9.37</td>
<td>Experimental absorption spectrum.</td>
</tr>
<tr>
<td>9.38</td>
<td>Comparison of the experimental and fitted absorption spectra corresponding to the fit run of orca_asa on the file example007.inp.</td>
</tr>
<tr>
<td>9.39</td>
<td>Comparison of the experimental and fitted absorption spectra corresponding to the fit run of orca_asa on the file example007.001.inp.</td>
</tr>
<tr>
<td>9.40</td>
<td>Comparison of the experimental and fitted absorption spectra corresponding to the fit run of orca_asa on the file example007.002.inp in which equal broadening was assumed for all electronic bands.</td>
</tr>
<tr>
<td>9.41</td>
<td>Experimental Resonance Raman spectrum corresponding to 1−1$A_g \rightarrow 1−1B_u$ transition in trans-1,3,5-hexatriene.</td>
</tr>
<tr>
<td>9.42</td>
<td>Experimental and fitted absorption spectrum corresponding to 1−1$A_g \rightarrow 1−1B_u$ transition in trans-1,3,5-hexatriene.</td>
</tr>
<tr>
<td>9.43</td>
<td>Deconvoluted absorption and fluorescence spectra of tetracene in cyclohexane upon the assumption of a single vibronically active mode.</td>
</tr>
<tr>
<td>9.44</td>
<td>Experimental and calculated at the BHLYP/SV(P) and B3LYP/SV(P) levels of theory absorption and rR spectra corresponding to 1−1$A_g \rightarrow 1−1B_u$ transition in trans-1,3,5-hexatriene.</td>
</tr>
<tr>
<td>9.45</td>
<td>Experimental and theoretical absorption spectra for a single-mode model system.</td>
</tr>
</tbody>
</table>
9.46 Six NBOs of the H$_2$CO molecule. Shown are the occupied bonding π and σ orbitals for C and O, the two oxygen lone-pairs and the two π and σ antibonding orbitals. 707
9.47 Contour plot of the lowest unoccupied spin down orbital of the H$_2$CO$^+$ cation radical in the x, y plane. 731
9.48 The total electron density and the spin density of the H$_2$CO$^+$ cation radical as calculated by the RI-BP/VDZP method. 733
9.49 The π^* orbital of H$_2$CO as calculated by the RI-BP/VDZP method. 734
9.50 FOD plot at $\sigma = 0.005$ e/Bohr3 (TPSS/def2-TZVP (T = 5000 K) level) for the 1A_g ground state of p-benzyne (FOD depicted in yellow). 735
List of Tables

6.1 Main keywords that can be used in the simple input of ORCA. 12
6.2 Density functionals available in ORCA. .. 22
6.3 Basis sets available on ORCA. ... 23
6.4 Overview of auxiliary basis sets available in ORCA. 29
6.5 Overview of library keywords for ECPs and associated basis sets available in ORCA. 31

8.1 Computer times for solving the coupled-cluster/coupled-pair equations for Serine . 56
8.2 Computed spectroscopic constants of N\textsubscript{2} with coupled-cluster methods. 57
8.3 Comparison of various basis sets for highly correlated calculations 64
8.4 Comparison of various basis sets for correlated calculations. 65
8.6 Accuracy settings for DLPNO coupled cluster (current version). 83
8.7 Accuracy settings for DLPNO coupled cluster (deprecated 2013 version). 83
8.11 Comparison of the performance of the MRCI and MDCI modules for a single reference calculation with the bn-ANO-DZP basis set on the zwitter-ionic form of serine. 175

9.4 Overview of parametrized basis sets. ... 313
9.5 Composition of the MINIX basis set. ... 315
9.6 Composition of the def2-mSVP basis set. ... 318
9.7 Basis sets availability ... 324
9.8 Default values for number of frozen core electrons. ... 358
9.9 Accuracy settings for DLPNO-MP2. ... 374
9.10 Summary of the diagonal shifts used in various singles- and doubles methods. 381
9.11 Number of chemical core electrons in DLPNO calculation 390
9.12 Comparison of the properties of the fpFW and f\pi FW DKH Hamiltonians. 452
9.13 Keyword list for sTDA and sTD-DFT. ... 501
9.14 Integral handling in various implementations of the (D) correction. 506
9.15 The details of the various MR-EOM transformations that are considered in the ORCA implementation of MR-EOM. ... 592
9.16 Details of the three MR-EOM approaches implemented in ORCA 592
9.17 A test for size consistency in MR-EOM. ... 616
9.18 A test for size consistency in MR-EOM, using the MR-CEPA(0) shift. 617
1 Foreword 2017 (Version 4.0)

After more than three years of intense development, the ORCA developers are proud to present to you the fourth version of the program, ORCA 4.0. The present version is a major step forward from previous versions of the program. We very much hope that it will be a powerful companion to your research endeavors and that you enjoy using the program as much as we enjoy creating it.

ORCA has now a history of almost twenty years since its shy beginnings as a semi-empirical program package in the mid/late 1990’s. It is fair to say that ORCA has come of age and is now one of the most used quantum chemistry packages in existence. More than 10000 users are registered in the ORCA forum and actively participate in discussing the software, its features and how to solve computational chemistry problems using the powerful methods implemented in ORCA. With the many users at supercomputer centers it is prudent to speculate that the total number of users is significantly higher than that. A conservative estimate is that ORCA is definitely within the top five most used quantum chemistry programs and most certainly the one with the steepest growth rate to date.

Concomitant with the increasing popularity of the program there have been growing demands from industry to gain access to ORCA. For this reason, we have decided to initiate a company that will distribute ORCA to industry. These activities will be described fully elsewhere. Here we will only mention that ORCA will remain free for academic users and we have no plans to ever change this. In fact, the current plans will help to secure a long-term great future for the project and we are enthusiastically embracing our work on ORCA.

There has been a lot of work to make ORCA 4.0 happen as witnessed by several thousand checkins into our source code repository that have taken place since the last release. In addition to the new major features, there has been a lot of work “under the hood” to ensure that the program parts work smoothly together and to enhance efficiency and workflow. Examples for this work is the largely improved efficiency of the four center integral code and the implementation of the full TD-DFT method (including gradients) for hybrid functionals as well. Furthermore, we have undertaken a dedicated effort to improve the manual and provide other important practical information, for example, a relatively detailed tutorial that shows how to use the CASSCF module and the various multireference dynamic correlation methods.

Our method development efforts have ever more strongly concentrated on wavefunction based ab initio methods. Foremost, the domain based local pair natural orbital (DLPNO) methodology has been largely improved and extended in ORCA 4.0. In a key paper, we have outlined the concept of “Sparse Maps” that provide the infrastructure for the further development of local correlation theories. Using this infrastructure, we have been able to implement a fully linear scaling version of the DLPNO-CCSD(T) method for closed shells that is replacing the already highly successful 2013 version. In the process, we have been able to iron out some remaining glitches, e.g. the domain construction that is now relying on the key concept of differential overlap integrals and the treatment of core correlation effects in the DLPNO approximation. ORCA 4.0 also features a completely reformulated open-shell DLPNO-CCSD(T) method that remedies some of the shortcomings of the earlier open-shell LPNO-CCSD method. Furthermore, we have been able to implement
the DLPNO-CCSD lambda equations for closed shells, thus providing access to coupled cluster level molecular properties. Very noticeably, the DLPNO methodology has been extended to the multireference case and the DLPNO-NEVPT2 method is as efficient and accurate as its DLPNO-MP2 counterpart. Work on coupled cluster excited states in the framework of the equation of motion (EOM) and similarity transformed EOM (STEOM) has continued and first steps towards their DLPNO implementation have been taken.

Major efforts have been spent to streamline the development of complicated correlation theories using automated code generation. This will enable us to implement a wide variety of ab initio theories very efficiently and consistently. The first fruits of this important development are present in ORCA 4.0 via a new module that is called “autoci”. This module presently can perform a variety of standard single reference correlation calculations. However, importantly, it also features a new fully internally contracted MRCI module that, in many cases, outperforms the existing MRCI module by a large margin. Much more functionality along these lines is expected to be part of future releases.

Significant progress has also occurred in the ROCIS module, which enables the efficient calculation of many spectroscopic properties, perhaps most importantly advanced X-ray spectra such as L-edge absorption spectra and RIXS spectra.

While we always strive for calculating more accurate numbers more quickly, we also aim at the chemical interpretation of ab initio results by making use of the fact that wavefunctions are intelligible. In ORCA 4.0 two significant new features along these lines are included. These concern the ab initio ligand theory (AILFT). The AILFT analysis allows the user to extract ligand field parameters in a unique fashion from CASSCF/NEVPT2 calculations. It has been of major use in a variety of studies, perhaps most prominently in our work on molecular magnetism. Secondly, the DLPNO-CCSD(T) energy can be decomposed into chemically meaningful parts such as the dispersion energy. This new method, termed local energy decomposition (LED), is of major utility, for example, in studying weak intermolecular interactions.

Progress in DFT methods largely stems from the research efforts of the Grimme group in Bonn and we are indebted to their ingenious contributions to ORCA. Noticeably, there are a number of super-fast DFT variants in ORCA 4.0 for ground- and excited state calculations that enable the user for unprecedented throughput while maintaining essentially the full accuracy of the DFT methodology.

We have decided to now release ORCA 4.0 since there has been so much progress along many lines. However, there are a significant number of developments that are close to be finalized. Hence we plan to release an update (ORCA 4.1) in less than twelve months in order to let our users participate in the continuing progress of the program.

If you, as an academic user, make use of ORCA and appreciate it, then PLEASE "pay us back" by referencing the relevant original literature from our research group. This ensures that we can document the importance of our developments and raise the funds that we need to continue the development. We sincerely hope that with the release of ORCA 4.0 you will be able to push your research to the next level. We look very forward to read about your results in the literature and discuss your insights together with other users in our forum or to meet you at one of the next ORCA user meetings. If you are an ambitious method developer and feel that you want to join the team, we look forward to your application!

Frank Neese, on behalf of the ORCA development team, march 1st, 2017
A final word to the academic users of this program package:

You can count on the fact that ORCA will remain free of charge in the future. The best way to show your appreciation of our efforts is:

Cite our original research and development papers

in your own work!

This will provide us with the possibility of raising sufficient funding for continuing to do what we enjoy most – develop quantum chemistry to our mutual benefit!
2 ORCA 4.0 Changes

As mentioned in the foreword, from ORCA 3.0.3 to ORCA 4.0 a lot has changed. Below is a summary of the new features, which are thoroughly described in the respective sections of the manual. Furthermore, we list changes in the default settings as well as bugfixes that will affect the computed results compared to older version of ORCA.

2.1 New Features

New Methods

- Linear scaling DLPNO-CCSD(T) open shell. New restricted open-shell formulation
- Linear scaling DLPNO-MP2 (RHF and UHF)
- Linear scaling DLPNO-MP2-F12 (RHF)
- Linear scaling DLPNO-CCSD(T) (the 2013 implementation is still available)
- Linear scaling DLPNO-CCSD(T) local energy decomposition scheme
- Linear scaling DLPNO-CCSD closed shell density
- Linear scaling cluster in molecule (CIM): MP2, CCSD(T), DLPNO-CCSD(T)
- Linear scaling DLPNO-NEVPT2 (section 9.12)
- NEVPT2-F12 (section 9.12)
- Updated interface to BLOCK 1.0 (section 9.13)
- DMRG-NEVPT2 (section 9.12)
- Closed shell EOM-CCSD energies
- Closed shell STEOM-CCSD energies
- A partial PNO-EOM-CCSD method for excited states
- A partial PNO-STEOM-CCSD method for excited states
- Non linear scaling LPNO-CCSD-F12 (DLPNO-CCSD-F12 pending)
- Non-linear scaling Mukherjee Mk-LPNO-MRCCSD(T)
- Powerful iterative configuration expansion (ICE-CI) approximation to Full-CI (section 9.15)
- ICE-CI for large active space CASSCF calculations (page 415)
- MREOM-CCSD (also with SOC)
- Fully internally contracted MRCI (section 9.16.3)
- Full TD-DFT energies and gradient for hybrid functionals
- Super-fast approximate TD-DFT: sTDA/sTDDFT of Grimme and co-workers
- PBEh-3c method of Grimme and co-workers

SCF, DFT and Hessian

- Large performance improvements (up to factor of four) for calculations with four center integrals (energy and gradient)
• Improved performance with RI-J with conventionally stored integrals
• Gradient for range separated hybrids
• Gradient for range double hybrid functionals with meta GGAs
• Gradient for range double hybrid functionals with range separated functionals
• Gradient for RI-JK
• Frequencies for range separated functionals
• Stability analysis and automatic search for broken symmetry states
• Local spin analysis (defined via fragments in the coordinate block)
• Fractional occupation number analysis (FOD) for detection of MR character

MDCI module
• Automatic closed shell STEOM-CCSD active space selection
• EOM-CCSD(2) and STEOM-CCSD(2) approximations
• EOM-CCSD transition moments
• EOM/STEOM-CCSD core level excited states
• IP-EOM-CCSD and EA-EOM-CCSD
• COSX for EOM-CCSD and STEOM-CCSD

AUTOCl module
• RHF CISD
• RHF CCSD
• UHF CISD
• UHF CCSD
• ROHF CISD
• ROHF CCSD
• FIC-MRCI, CEPA/0 variant and DDCl3 (section 9.16.3)

CASSCF and NEVPT2
• Accelerated CI (ACCCI) a more efficient CI step for multi-root calculations (page 415)
• Automatic implementation of ab initio ligand-field theory (page 414)
• Simplified generation of double-shell orbitals e.g. second d-shell (page 414)
• Active space protection scheme and improved warnings (page 413)
• ICE-CI as CI solver for larger active spaces (page 415)
• New default converger (SuperCl PT) and convergence settings
• Partially Contracted NEVPT2 with and without RI (section 9.12)
• Updated interface to BLOCK 1.0 (section 9.13)
• DMRG-NEVPT2 for active spaces up to 20 orbitals(section 9.12)
• Magnetization and magnetic susceptibility (section 9.24.2.4)
• Printing of the wavefunction in terms of CSFs and spin-determinants (page 414)

TD-DFT and ROCIS
• Full TD-DFT for hybrid functionals
• Gradient for full TD-DFT with hybrid functionals
• TD-DFT/TDA gradient with range separated functionals
2.2 Changes of Default Settings & Parameters

- ROCIS MCD spectra
- ROCIS-RIXS spectra
- Natural transition orbitals in TD-DFT and ROCIS

Misc

- New correlation consistent basis sets added
- New SARC quadruple-zeta basis sets for the lanthanides
- ANO-RCC basis sets added
- New guess for ANO calculations (ehtano)
- Sapporo-2012 basis sets added
- Improved frozen core handling in correlation calculations (section 9.8)
- Corrections for low-frequency modes in thermochemistry
- New and improved NBO interface
- New GEPOI surface construction (SES & SAS)
- CPCM and improved SMD solvent models
- Intrinsic atomic orbital (IAO) and bond orbital implementation (section 9.33.5)
- Improved performance in Boys localization
- Updated and improved orca_mapspc program
- New utility program orca_exportbasis to print and store ORCA basis sets as files (section 9.33.12)
- Atomic Mean Field (AMFI) spin-orbit coupling operators
- EPRNMR works with range separated hybrid functionals
- New AutoAux construction scheme (section 9.3)

2.2 Changes of Default Settings & Parameters

- New handling of basis set names that is consistent with TurboMole def2-defaults using ECPs (section 3 and 9.3).
- New reading of basis sets and ECPs together
- New input handling for ANO basis sets
- New frozencore definition across the periodic table (section 9.8).
- Improved automatic frozen core handling
- NEVPT2 uses frozencore by default (page 424)
- Core-correlation in automatic basis set extrapolation
- MRCI with CASSCF reference wavefunction now considers [ISSA] type excitations by default. As a reminder excitation class are controlled by the keyword flags[ISSA] in the %mrci block.
- CASSCF new default weighting for state-averaging (equal weights for multiplicity blocks). The old default used equal weights for all states. Note that weights can still be set manually as described in the CASSCF section.

2.3 Important Bugfixes with respect to ORCA 3.0.3

- RIJCOSX SCF IR-Intensities (wrong numbers)
- MP2 and RI-MP2 IR-Intensities (wrong numbers)
• Batching in the RI-MP2 Hessian (wrong numbers)
• Batching RIJK conv in CASSCF (wrong numbers)
• Some inconsistencies in the aug-cc-PCVDZ
• Some inconsistencies in the ma-def2-QZVPP (Mn, Fe, Co, Ni, Cu, Zn)
• Some inconsistencies in the def2-QZVPP (Mn, Fe, Co, Ni, Cu, Zn)
• Added missing ECP contribution to the SCF Hessian (wrong numbers)
• !UseSymmetry for D2 point group symmetry (B2/B3 mixed up)
• MP2 and RI-MP2 Gradients with frozencore (slightly wrong numbers)
• Reading of orbitals with different charge in SCF calculations (wrong number of electrons)
• RI-CCSD energies (wrong numbers due to missing term). RI-CCSD(T) was not affected (OK).
• Generating QROs in combination with !NoIter
• Finite Field calculations with electric field as perturbation (sign convention)
• SMD free energies for oxygen containing molecules in non-aqueous solutions (wrong numbers)
3 FAQ – frequently asked questions

Noticeable changes between ORCA 2.x, 3.x and ORCA 4.0

ORCA 4.0 exhibits a new basis sets convention.

- From ORCA 4.0 onwards, the standard basis-sets contain ECPs
- ECPs are specified using simple names, e.g. ! DEF2-ECP, the old ECP{...} is deprecated.
- When using relativistic options, recontracted basis sets have to be given explicitly, e.g. ! ZORA ZORA-DEF2-TZVP
- Basis set names in the basis and coordinates block have to be specified in quotation marks.

Especially the conversion of old input files to the new ORCA 4.0 format has to be mentioned. To get the same results with ORCA 4.0 as with previous ORCA versions the following rules apply.

<table>
<thead>
<tr>
<th>Old (pre 4.0)</th>
<th>New (> ORCA 4.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>! RKS BP RI ZORA DEF2-SVP DEF2-SVP/J</td>
<td>! RKS BP RI ZORA ZORA-DEF2-SVP DEF2/J</td>
</tr>
<tr>
<td>%basis basis CC_PVDZ</td>
<td>%basis basis "CC-PVDZ"</td>
</tr>
<tr>
<td>aux CC_PVDZ.C</td>
<td>aux "CC-PVDZ/C"</td>
</tr>
<tr>
<td>end</td>
<td>end</td>
</tr>
<tr>
<td>*xyz @ 1</td>
<td>*xyz @ 1</td>
</tr>
</tbody>
</table>
| ... | ...
| * | *

ORCA 4.0 exhibits new frozencore definitions across the periodic table, see section 9.8.

The "standard" computational levels (section 9.2.2.9) are deprecated and may no longer work as expected (in particular, they will not assign a basis set).

Why is ORCA called ORCA?

Frank Neese made the decision to write a quantum chemistry program in the summer of 1999 while finishing a postdoc at Stanford University. While thinking about a name for the program he wanted to write he decided against having yet another “whatever-Mol-something”. The name needed to be short and signify something strong yet elegant.
During this time in the US Frank went on a whale watching cruise at the California coast—the name “ORCA” stuck. It is often get asked whether ORCA is an acronym and over the years, various people made suggestions what acronym this could possibly be. At the end of the day it just isn’t an acronym which stands for anything. It stands for itself and the association which comes with it.

How do I install ORCA on Linux / MacOS / Windows?

ORCA is available for Windows, Linux and Mac OS X platforms. A good place to start looking for detailed installation instructions aside from the manual is the ORCA input library. Windows users furthermore have the option of following this video description.

I’ve installed ORCA, how do I start it?

First and most importantly, ORCA is invoked from the command line on all platforms. A simple click on a binary or an input file won’t start a calculation. Under Linux and MacOS you need to open a terminal instance and navigate to the folder containing an example.inp file. You can run an ORCA calculation with the command:

<full orca binary folder path>/orca example.inp > example.out

Similarly, under Windows you need to open a command prompt (Win7, Win8) or a power shell (Win10), navigate to said directory and execute the following command:

<full orca binary folder path>/orca example.inp > example.out

How do I cite ORCA?

Please do **NOT** just cite the generic ORCA reference given below but also cite in addition our original papers! We give this program away for free to the community and it is our pleasure and honour to do so. Our payment are your citations! This will create the visibility and impact that we need to attract funding which in turn allows us to continue the development. So, **PLEASE**, go the extra mile to look up and properly cite the papers that report the development and ORCA implementation of the methods that you have used in your studies!

The generic reference for ORCA is:

Are there recommended programmes to use alongside ORCA?

As a matter of fact there are: We make extensive use of Chemcraft. It is interesting to note that it works well in MacOS or Linux (using Wine). Another popular visualization programme is Chimera.

OpenBabel is very useful for file conversion to various chemical formats.

Finally, Avogadro is an excellent tool to edit molecular geometries. It is also able to generate ORCA input files. The Avogadro version with the latest ORCA modifications is available on the ORCA download site.

For other valuable suggestions please refer to the corresponding ORCA site.

My old inputs don’t work with the new ORCA version! Why?

Please be aware that ORCA has changed considerably from 3-0 to 4-0. The basis set naming convention has changed as well as a couple of defaults (frozen core e.g.). (For detailed information please refer to the Release Notes.) It therefore is not unexpected that the same inputs will now either give slightly different results, or will totally crash, because the keywords have been changed or totally removed.

If you are unsure about an input, please consult the manual. It is provided by the ORCA developers and should contain all information implemented in the published version of ORCA.

When dealing with array structures, when does ORCA count starting from zero and in which cases does counting start from one?

Since ORCA is a C++ based program its internal counting starts from zero. Therefore all electrons, atoms, frequencies, orbitals, excitation energies etc. are counted from zero. User based counting such as the numeration of fragments is counted from one.

How can I check that my SCF calculation converges to a correct electronic structure?

The expectation value $\langle S^2 \rangle$ is an estimation of the spin contamination in the system. It is highly recommended for open-shell systems, especially with transition metal complexes, to check the UCO (unrestricted corresponding orbitals) overlaps and visualise the corresponding orbitals. Additionally, spin-population on atoms that contribute to the singly occupied orbitals is also an identifier of the electronic structure.

I can’t locate the transition state (TS) for a reaction expected to feature a low/very low barrier, what should I do?

For such critical case of locating the TS, running a very fine (e.g. 0.01 Å increment of the bond length) relaxed scan of the key reaction coordinate is recommended. In this way the highest energy point on a very shallow surface can be identified and used for the final TS optimisation.
During the geometry optimisation some atoms merge into each other and the optimisation fails. How can this problem be solved?

This usually occurs due to the wrong or poor construction of initial molecular orbital involving some atoms. Check the basis set definition on problematic atoms and then the corresponding MOs!

While using MOREAD feature in ORCA, why am I getting an error saying, “no orbitals found in the .gbw file”?

ORCA produces the .gbw file immediately after it reads the coordinates and basis set information. If you put a .gbw file from a previous calculation with same base name as your current input into the working directory, it will be overwritten and the previous orbital data will be lost. Therefore, it is recommended to change the file name or .gbw extension to something else (.gbw.old, for example).

The localisation input file (.loc.fil) I used to use for older ORCA versions is not working with orca_loc of ORCA 4.0.

The content of the localization input file has been modified in the current **ORCA** version. Now some additional input data is required for localisation. Type **orca_loc** in a shell and you will get the list of required input information.

With all the GRID and RI and associated basis set settings I’m getting slightly confused. Can you provide a brief overview?

Hartree–Fock (HF) and DFT require the calculation of Coulomb and exchange integrals. While the Coulomb integrals are usually done analytically, the exchange integrals can be evaluated semi-numerically on a grid. Here, the pure DFT exchange is calculated on one type of grid (controlled through the GRID keyword) while the HF exchange can be evaluated on an different, often smaller grid (GRIDX). For both parts, further approximations can be made (RI-J and RI-K\(^1\) or COSX, respectively). When RI is used, auxiliary basis sets are required (<basis>/J for RI-J and <basis>/JK for RI-JK). The following possible combinations arise:

- **HF calculation**
 - Exact J + exact K: no auxiliary functions and no grids needed.
 - RIJ + exact K (RIJONX, RIJDX): <basis>/J auxiliaries, no grids.
 - RIJ + RIK = RIJK: <basis>/JK auxiliaries, no grids.
 - RIJ + COSX: <basis>/J auxiliaries, COSX grid controlled by the GRIDX keyword.

- **GGA DFT functional**
 - Exact J + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.
 - RIJ + GGA-XC: <basis>/J auxiliaries, DFT grid controlled by the GRID keyword.

- **Hybrid DFT functional**
 - Exact J + exact K + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

\(^1\)Note that **ORCA** can only use RI-K in conjunction with RI-J; hence the combination RI-JK.
- RIJ + exact K (RIJ0XX, RIJDX) + GGA-XC: <basis>/J auxiliaries, DFT grid controlled by the GRID keyword.
- RIJ + RIK (RIJK) + GGA-XC: <basis>/JK auxiliaries, DFT grid controlled by the GRID keyword.
- RIJ + COSX + GGA-XC: <basis>/J auxiliaries, COSX grid controlled by the GRIDx keyword, DFT grid controlled by the GRID keyword.

There are a lot of basis sets! Which basis should I use when?

ORCA offers a variety of methods and a large choice of basis sets to go with them. Here is an incomplete overview:

<table>
<thead>
<tr>
<th>Method</th>
<th>Approximation</th>
<th>basis set (and auxiliaries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASSCF/NEVPT2</td>
<td></td>
<td><basis></td>
</tr>
<tr>
<td>CASSCF/NEVPT2</td>
<td>RIJCOSX or RI-JK</td>
<td><basis>+<basis>/JK</td>
</tr>
<tr>
<td>CASSCF/NEVPT2</td>
<td>TrafoStep RI</td>
<td><basis>+</<basis>/JK or <basis>/C</td>
</tr>
<tr>
<td>NEVPT2-F12</td>
<td>TrafoStep RI</td>
<td><basis>-F12+<basis>-F12/CABS+<basis>/JK or <basis>/C</td>
</tr>
<tr>
<td>TDDFT</td>
<td></td>
<td><basis></td>
</tr>
<tr>
<td>TDDFT</td>
<td>Mode RIInts</td>
<td><basis>+</<basis>/C</td>
</tr>
<tr>
<td>MP2</td>
<td></td>
<td><basis></td>
</tr>
<tr>
<td>F12-MP2</td>
<td></td>
<td><basis>-F12+<basis>-F12/CABS</td>
</tr>
<tr>
<td>RI-MP2</td>
<td></td>
<td><basis>+</<basis>/C</td>
</tr>
<tr>
<td>HF+RI-MP2</td>
<td>RIJCOSX</td>
<td><basis>+</<basis>/C + <basis>/J</td>
</tr>
<tr>
<td>F12-RI-MP2</td>
<td></td>
<td><basis>-F12+<basis>-F12/CABS+<basis>/C</td>
</tr>
<tr>
<td>DLPNO-MP2</td>
<td></td>
<td><basis>+</<basis>/C</td>
</tr>
<tr>
<td>HF+DLPNO-MP2</td>
<td>RI-JK</td>
<td><basis>+</<basis>/C + <basis>/JK</td>
</tr>
<tr>
<td>F12-DLPNO-MP2</td>
<td></td>
<td><basis>-F12+<basis>-F12/CABS+<basis>/C</td>
</tr>
<tr>
<td>CCSD</td>
<td></td>
<td><basis></td>
</tr>
<tr>
<td>RI-CCSD</td>
<td></td>
<td><basis>+</<basis>/C</td>
</tr>
<tr>
<td>(D)LPNO-CCSD</td>
<td></td>
<td><basis>+</<basis>/C</td>
</tr>
<tr>
<td>HF+(D)LPNO-CCSD</td>
<td>RIJCOSX</td>
<td><basis>+</<basis>/C + <basis>/J</td>
</tr>
<tr>
<td>F12-CCSD</td>
<td></td>
<td><basis>-F12+<basis>-F12/CABS</td>
</tr>
<tr>
<td>F12-RI-CCSD</td>
<td></td>
<td><basis>-F12+<basis>-F12/CABS+<basis>/C</td>
</tr>
<tr>
<td>HF+F12-RI-CCSD</td>
<td>RI-JK</td>
<td><basis>-F12+<basis>-F12/CABS+<basis>/C+<basis>/JK</td>
</tr>
</tbody>
</table>
4 General Information

4.1 Program Components

The program system ORCA consists of several separate programs that call each other during a run. The following basic modules are included in this release:

orca : Main input+driver program
orca_anoint : Integral generation over ANOs
orca_autoci : CI type program using the automated generation environment (ORCA-AGE)
orca_ciprep : Preparation of data for MRCI calculations (frozen core matrices and the like)
orca_cis : Excited states via CIS and TD-DFT
orca_cipsi : Iterative Configuration Expansion Configuration Interaction (ICE-CI)
orca_cpscfc : Solution of the coupled-perturbed SCF equations
orca_casscf : Main program for CASSCF driver
orca_eprnmr : SCF approximation to EPR and NMR parameters
orca_fci : Full-CI program
orca_gtoint : Calculation of gaussian integrals
orca_gstep : Relaxation of the geometry based on energies and gradients
orca_loc : Calculation of localized molecular orbitals
orca_md : Molecular dynamics program
orca_mdcfc : Matrix driven correlation program: CI, CEPA, CPF, QCISD, CCSD(T)
orca_mp2 : MP2 program (conventional, direct and RI)
orca_mrci : MRCI and MRPT calculations (individually selecting)
orca_numint : Calculates semiempirical integrals and gradients
orca_numfreq : Numerical hessian computation
orca_pc : Addition of point charge terms to the one-electron matrix
orca_plot : Generation of orbital and density plots
orca_pop : External program for population analysis on a given density
orca_rel : (Quasi) Relativistic corrections
orca_rocis : Excited states via the ROCIS method
orca_scf : Self-consistent field program (conventional and direct)
orca_scfgrad : Analytic derivatives of SCF energies (HF and DFT)
orca_scfless : Analytical hessian calculation for SCF
orca_soc : Calculation of spin-orbit coupling matrices
orca_vpot : Calculation of the electrostatic potential on a given molecular surface

Utility programs:
General Information

orca

- **orca_asa**: Calculation of absorption, fluorescence and resonance Raman spectra
- **orca_vib**: Calculation of vibrational frequencies from a completed frequency run (also used for isotope shift calculations)
- **orca_pltvib**: Produces files for the animation of vibrations
- **orca_2mkl**: Produces an ASCII file to be read by molekel, molden or other visualization programs
- **orca_2aim**: Produces WFN files suitable for AIM analysis
- **orca_fitpes**: Simple program to fit potential energy curves of diatomics
- **orca_mapspc**: Produces files for transfer into plotting programs
- **orca_euler**: Calculate Euler angles from .prop file
- **orca_chelpg**: Electrostatic potential derived charges
- **otool_gcp**: Geometrical Counterpose Correction

Friends of ORCA:

- **gennbo**: The NBO analysis package of Weinhold (must be purchased separately from the university of Wisconsin; older versions available for free on the internet may also work)
- **Molekel**: Molecular visualization program (see 7.20.2.3)
- **gOpenMol**: Molecular visualization program (see 7.20.2.2)

In principle every individual module can also be called “standalone”. However, it is most convenient to do everything via the main module.

There is no real installation procedure. Just copy the executables wherever you want them to be and make sure that your path variable contains a reference to the directory where you copied the files. This is important to make sure that the programs can call each other (but you can also tell the main program the explicit position of the other programs in the input file as described below).

4.2 Units and Conversion Factors

Internally the program uses atomic units. This means that the unit of energy is the Hartree (Eh) and the unit of length is the Bohr radius (a_0). The following conversion factors to other units are used:

- $1 \text{ Eh} = 27.2113834 \text{ eV}$
- $1 \text{ eV} = 8065.54477 \text{ cm}^{-1} = 23.0605 \text{ kcal mol}^{-1}$
- $1 \text{ cm}^{-1} = 29979.2458 \text{ MHz}$
- $1 \ a_0 = 0.5291772083 \ \text{Å}$
- $1 \ \text{a.t.u.} = 2.4188843 \times 10^{-17} \text{ s}$
5 Calling the Program (Serial and Parallel)

5.1 Calling the Program

Under Windows the program is called from the command prompt! (Make sure that the PATH variable is set such that the orca executables are visible)

```
orca MyMol.inp > MyMol.out
```

Under UNIX based operating systems the following call is convenient¹ (here also: make sure that the PATH variable is set to the directory where the orca executables reside):

```
nohup orca MyMol.inp >& MyMol.out &
```

The `nohup` command lets the program run even if the user is logged out. The program writes to `stdout` and `stderr`. Therefore the output must be redirected to the file `MyMol.out` in this example. `MyMol.inp` is a free format ASCII file that contains the input description. The program will produce a number of files `MyMol.x.tmp` and the file `MyMol.gbw`. The “*.gbw” file contains a binary summary of the calculation. GBW stands for “Geometry-Basis-Wavefunction”. Basically this together with the calculation flags is what is stored in this file. You need this file for restarting SCF calculations or starting other calculations with the orbitals from this calculation as input. The “*.tmp” files are temporary files that contain integrals, density matrices, Fock matrices etc. that are used as intermediates in the calculation. If the program exits normally all of these files are deleted. If it happens to crash you have to remove the files manually (`rm MyMol*.tmp` under Unix or `del MyMol*.tmp` under Windows). In case you want to monitor the output file while it is written, you can use the command (under Unix):

```
tail -f MyMol.out
```

to follow (option `-f`) the progress of the calculation. Under Windows you have to either open another command shell and use:

```
type MyMol.out
type MyMol.out |more
```

¹Many people (including myself) will prefer to write a small shellscript that, for example, creates a run directory, copies the input there, runs the program, deletes possibly left over temporary files and then copies the output back to the original directory.
or you have to copy the output file to another file and then use any text editor to look at it.

```
copy  MyMol.out  temp.out
edit  temp.out
```

you cannot use `edit MyMol.out` because this would result in a sharing violation.

There are parallel versions for Linux, MAC and Windows computers (thanks to the work of Ms Ute Becker) which make use of OpenMPI (open-source MPI-2 implementation). Assuming that OpenMPI libraries are installed properly on your computer, it is fairly easy to run the parallel version of ORCA. You simply have to specify the number of parallel processes, like:

```
! PAL4
    # everything from PAL2 to PAL8 is recognized
    or
    %pal nprocs 4 # any number (positive integer)
    end
```

The following modules are presently parallelized:

- ANOINT
- CASSCF / NEVPT2
- CIPSI
- CIS/TDDFT
- CPSCF
- EPRNMR
- GTOINT
- MDCI (Canonical-, PNO-, DLPNO-Methods)
- MP2 and RI-MP2 (including Gradient and Hessian)
- MRCI
- PC
- ROCIS
- SCF
- SCFGRAD
- SCFHESS
5.2 Hints on the Use of Parallel ORCA

- SOC
- Numerical Gradients and Frequencies

Thus, all major modules are parallelized in the present version. The efficiency is such that for RI-DFT perhaps up to 16 processors are a good idea while for hybrid DFT and Hartree-Fock a few more processors are appropriate. Above this, the overhead becomes significant and the parallelization loses efficiency. Coupled-cluster calculations usually scale well up to at least 8 processors but probably it is also worthwhile to try 16. For Numerical Frequencies or Gradient runs it makes sense to use as many processors as 3*Number of Atoms. If you run a queuing system you have to make sure that it works together with ORCA in a reasonable way.

NOTE:

- Parallelization is a difficult undertaking and there are many different protocols that work differently for different machines. Please understand that we can not provide a 1:1 support for each platform. We are trying our best to make the parallelization transparent and provide executables for various platforms but we can not possibly guarantee that they always work on every system. Please see the download information for details of the version.

5.2 Hints on the Use of Parallel ORCA

Many questions that are asked in the discussion forum deal with the parallel version of ORCA. Please understand that we cannot possibly provide one-on-one support for every parallel computer in the world. So please, make every effort to solve the problems locally together with your system administrator. Here are some of the most common problems and how to deal with them.

1. Parallel ORCA can be used with OpenMPI only. Please see the download information for details of the relevant OpenMPI-version for your platform.

2. The OpenMPI version is configurable in a large variety of ways, which cannot be covered here. For a more detailed explanation of all available options, cf. http://www.open-mpi.org

Otherwise, the usage of the OpenMPI version is like the older MPICH version, especially with regard to the provision of a nodefile (<inputfile>.nodes). If you run the OpenMPI version on only one computer, you do not need to provide a machinefile, and neither have to enable an rsh/ssh access, as in this case the processes will simply be forked!

Please note that the OpenMPI version is dynamically linked, that is, it needs at runtime the OpenMPI libraries (and several other standard libraries)!

(Remember to set the LD_LIBRARY_PATH)

3. Many problems arise, because parallel ORCA does not find its executables. To avoid this, it is crucial to provide ORCA with its complete pathname. The easiest and safest way to do so is to include the directory with the orca-executables in your $PATH. Then start the calculation:
 - interactively: start orca with full path: /mypath_orca_executables/orca MyMol.inp
 - batch : export your path: export PATH=$PATH:/mypath orca_executables (for bash) then start orca with full path: $PATH/orca $jobname.inp
This seems redundant, but it really is important if you want to start a parallel calculation to run ORCA with full path! Otherwise it will not be able to find the parallel executables.

4. It is recommended to run orca in local (not nfs-mounted) scratch-directories, (for example /tmp1, /usr/local, ...) and to renew these directories for each run to avoid confusion with left-overs of a previous run.

5. It has proven convenient to use “wrapper” scripts. These scripts should

- set the path
- create local scratch directories
- copy input files to the scratch directory
- start orca
- save your results
- remove the scratch directory

A basic example of such a submission script for the parallel ORCA version is shown below (this is for the Torque/PBS queuing system, running on Apple Mac OS X):

```bash
#!/bin/zsh

setopt EXTENDED_GLOB
setopt NULL_GLOB

#export MKL_NUM_THREADS=1

b=${1:r}

#get number of procs.... close your eyes... (it really works!)
if [[ $(grep -e 'ˆ!' $1):u == !*($b)PAL<9-9>]* ]]; then
    nprocs=$match
    let "nodes=nprocs"
elif [[ $(grep -v 'ˆ#' $1):u == *%(#b)PAL*NPROCS' '9-9>]* ]]; then
    nprocs=$match
    let "nodes=nprocs"
fi

cat > ${b}.job <<EOF
#!/bin/zsh
#PBS -l nodes=1:ppn=${nodes:=1}
#PBS -S /bin/zsh
#PBS -l walltime=8760:00:00

setopt EXTENDED_GLOB
setopt NULL_GLOB

export PATH=${PBS_O_PATH}

logfile=${PBS_O_WORKDIR}/${b}.log
```
6. Parallel ORCA distinguishes 3 cases of disk availability:

- each process works on its own (private) scratch directory (the data on this directory cannot be seen from any other process)
- all processes work in a common scratch directory (all processes can see all file-data)
- there are at least 2 groups of processes on different scratch directories, one of the groups consisting of more than 1 process

Parallel ORCA will find out, which case exists and handle its I/O respectively. If ORCA states disk availability differently from what you would expect, check the number of available nodes and/or the distribution pattern (fill up/round robin)

7. If Parallel ORCA finds a file named “MyMol.nodes” in the directory where it’s running, it will use the nodes listed in this file to start the processes on, provided your input file was “MyMol.inp”. You can use this file as your machinefile specifying your nodes, using the usual OpenMPI machinefile notation.

8. It is possible to pass additional MPI-parameters to the mpirun by adding these arguments to the ORCA call:

- /mypath_orca_executables/orca MyMol.inp --bind-to core
- or - for multiple arguments
 - /mypath_orca_executables/orca MyMol.inp "--bind-to core --verbose"
9. An additional remark on multi-process numerical calculations (frequencies, gradient, hybrid hessian):
The processes that execute these calculations do not work in parallel, but independently, often in a totally
asynchronous manner. The numerical calculations will start as many processes, as you dedicated for the
parallel parts before and they will run on the same nodes. If your calculation runs on multiple nodes, you have
to set the environment variable RSH_COMMAND to either "rsh" or "ssh". You may specify special flags, like
"ssh -x". If RSH_COMMAND is not set, ORCA will start all processes of a multi-process run on localhost.
(Take care not to exceed your localhost's resources!) There is no gain in taking more processes than 3-times
the number of atoms to be displaced. For restart (available for numerical frequencies, hybrid hessian and
partial hessian calculations) make sure you have all local Hessian files (input.proc%d.hess). ORCA will check
these files to determine which displacements are left to be done.
6 General Structure of the Input File

In general, the input file is a free format ASCII file and can contain one or more keyword lines that start with a “!” sign, one or more input blocks enclosed between an “%” sign and “end” that provide finer control over specific aspects of the calculation, and finally the specification of the coordinates for the system along with the charge and multiplicity provided either with a %coords block, or more usually enclosed within two “*” symbols. Here is an example of a simple input file that contains all three input elements:

```plaintext
! HF def2-TZVP

%scf
   convergence tight
end

  * xyz 0 1
  C 0.0 0.0 0.0
  O 0.0 0.0 1.13
  *
```

Comments in the file start by a “#”. For example:

```plaintext
# This is a comment. Continues until the end of the line
```

Comments can also be closed by a second “#”, as the example below where TolE and TolMaxP are two variables that can be user specified:

```plaintext
TolE=1e-5; #Energy conv.
TolMaxP=1e-6; #Density conv.
```

The input may contain several blocks, which consist of logically related data that can be user controlled. The program tries to choose sensible default values for all of these variables. However, it is impossible to give defaults that are equally sensible for all systems. In general the defaults are slightly on the conservative side and more aggressive cutoffs etc. can be chosen by the user and may help to speed things up for actual systems or give higher accuracy if desired.
6.1 Input Blocks

The following blocks exist:

- **AUTOCI**: Controls autogenerated correlation calculations
- **BASIS**: Basis sets are specified
- **CASSCF**: Control of CASSCF/NEVPT2 and DMRG calculations
- **CIPS**: Control of Iterative-Configuration Expansion Configuration Interaction calculation
- **CIS**: Control of CIS and TD-DFT calculations (synonym is TDDFT)
- **CIM**: Control of Cluster In Molecules calculations
- **COORDS**: Input of atomic coordinates
- **CPCM**: Control of the Conductor-like Polarizable Continuum Model
- **ELPROP**: Control of electric property calculations
- **EPRNMR**: Control of SCF level EPR and NMR calculations
- **FREQ**: Control of frequency calculations
- **GEOM**: Control of geometry optimization
- **LOC**: Localization of orbitals
- **MD**: Control of molecular dynamics simulation
- **MDCI**: Controls single reference correlation methods
- **METHOD**: Here a computation method is specified
- **MP2**: Controls the details of the MP2 calculation
- **MRCI**: Control of MRCI calculations
- **MRCC**: Control of multi-reference CC calculations
- **NUMGRAD**: Control of numerical gradients
- **NBO**: Controls NBO analysis with GENNBO
- **OUTPUT**: Control of output
- **PAL**: Control of parallel jobs
- **PARAS**: Input of semi-empirical parameters
- **REL**: Control of relativistic options
- **PLOTS**: Control of plot generation
- **ROCIS**: Control of restricted-open-shell CIS
- **RR**: Control of resonance Raman and absorption/fluorescence band-shape calculations
- **SCF**: Control of the SCF procedure
- **VPT2**: Control of the anharmonic frequency calculations

Blocks start with “%” and end with “end”. Note that input is **not** case sensitive. For example:

```
%method method HF
end
```

No blocks need to be present in an input file but they can be present if detailed control over the behavior of the program is desired. Otherwise all normal jobs can be defined via the keywords described in the next section. Variable assignments have the following general structure:
Some variables are actually arrays. In this case several possible assignments are useful:

<table>
<thead>
<tr>
<th>Array[1]</th>
<th>Value1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array[1]</td>
<td>Value1, Value2, Value3</td>
</tr>
<tr>
<td>Array</td>
<td>Value1, Value2</td>
</tr>
</tbody>
</table>

Note: Arrays always start with index 0 in ORCA (this is because ORCA is a C++ program). The first line in the example gives the value “Value1” to Array[1], which is the second member of this array. The second line assigns Value1 to Array[1], Value2 to Array[2] and Value3 to Array[3]. The third line assigns Value1 to Array[0] and Value2 to Array[1]. Strings (for examples filenames) must be enclosed in quotes. For example:

`MOInp "Myfile.gbw"`

In general the input is not case sensitive. However, inside strings the input is case sensitive. This is because on unix systems `MYFILE.GBW` and `MyFile.gbw` are different files. Under Windows the file names are not case sensitive.

6.2 Keyword Lines

It is possible to give a line of keywords that assign certain variables that normally belong to different input blocks. The syntax for this “simple input” is line-oriented. A keyword line starts with the “!” sign.

6.2.1 Main Methods and Options

Table 6.1 provides a list of keywords that can be used within the “simple input” keyword line to request specific methods and/or algorithmic options. Most of them are self-explanatory. The others are explained in detail in the section of the manual that deals with the indicated input block.
Table 6.1: Main keywords that can be used in the simple input of ORCA.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Input block</th>
<th>Variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>METHOD</td>
<td>METHOD</td>
<td>Selects the Hartree–Fock method</td>
</tr>
<tr>
<td>DFT</td>
<td></td>
<td>METHOD</td>
<td>Selects the DFT method (see table 6.2 on page 22 for a list of functionals)</td>
</tr>
<tr>
<td>FOD</td>
<td></td>
<td></td>
<td>FOD analysis (see 9.5.8.2) employing default settings (TPSS/def2-TZVP, TightSCF, SmearTemp = 5000 K)</td>
</tr>
</tbody>
</table>

Runotypes

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Input block</th>
<th>Variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY or SP OPT</td>
<td>METHOD</td>
<td>RUNTYP</td>
<td>Selects a single point calculation</td>
</tr>
<tr>
<td>COPT</td>
<td></td>
<td></td>
<td>Selects a geometry optimization calculation (using internal redundant coordinates)</td>
</tr>
<tr>
<td>ZOPT</td>
<td></td>
<td></td>
<td>Optimization in Cartesian coordinates (if you are desperate)</td>
</tr>
<tr>
<td>GDIIS-COPT</td>
<td></td>
<td></td>
<td>Optimization in Z-matrix coordinates (dangerous)</td>
</tr>
<tr>
<td>GDIIS-ZOPT</td>
<td></td>
<td></td>
<td>COPT using GDIIS</td>
</tr>
<tr>
<td>GDIIS-OPT</td>
<td></td>
<td></td>
<td>ZOPT using GDIIS</td>
</tr>
<tr>
<td>ENGRAD</td>
<td></td>
<td></td>
<td>Normal optimization using GDIIS</td>
</tr>
<tr>
<td>NUMGRAD</td>
<td></td>
<td></td>
<td>Selects an energy and gradient calculation</td>
</tr>
<tr>
<td>NUMFREQ</td>
<td></td>
<td></td>
<td>Numerical gradient (has explicitly to be asked for, if analytic gradient is not available)</td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
<td>Numerical frequencies</td>
</tr>
<tr>
<td>CIM</td>
<td></td>
<td></td>
<td>Molecular dynamic simulation</td>
</tr>
</tbody>
</table>

Atomic mass/weight handling

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Input block</th>
<th>Variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass2016</td>
<td>METHOD</td>
<td>AMASS</td>
<td>Use the latest (2016) atomic masses of the most abundant or most stable isotopes instead of atomic weights (default).</td>
</tr>
</tbody>
</table>

Symmetry handling

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Input block</th>
<th>Variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseSym</td>
<td></td>
<td></td>
<td>Turns on the use of molecular symmetry (see section 6.4). THIS IS VERY RUDIMENTARY!</td>
</tr>
<tr>
<td>NoUseSym</td>
<td></td>
<td></td>
<td>Turns symmetry off</td>
</tr>
</tbody>
</table>

Second order many body perturbation theory

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Input block</th>
<th>Variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2</td>
<td></td>
<td></td>
<td>Selects Method=HF and DoMP2=true</td>
</tr>
<tr>
<td>MP2RI or RI-MP2</td>
<td></td>
<td></td>
<td>Select the MP2-RI method</td>
</tr>
<tr>
<td>SCS-MP2</td>
<td></td>
<td></td>
<td>Spin-component scaled MP2</td>
</tr>
<tr>
<td>RI-SCS-MP2</td>
<td></td>
<td></td>
<td>Spin-component scaled RI-MP2 (synonym is SCS-RI-MP2)</td>
</tr>
<tr>
<td>OO-RI-MP2</td>
<td></td>
<td></td>
<td>Orbital optimized RI-MP2</td>
</tr>
</tbody>
</table>
6.2 Keyword Lines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OO-RI-SCS-MP2</td>
<td>Orbital optimized and spin-component scaled RI-MP2 (synonym is F12-MP2)</td>
</tr>
<tr>
<td>MP2-F12</td>
<td>MP2 with F12 correction (synonym is F12-MP2)</td>
</tr>
<tr>
<td>MP2-F12-RI</td>
<td>MP2-RI with RI-F12 correction (synonyms are F12-RI-MP2, RI-MP2-F12)</td>
</tr>
</tbody>
</table>

High-level single reference methods. These are implemented in the MDCI module. They can be run in a number of technical variants.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD</td>
<td>Same with perturbative triples correction</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>CCSD with F12 correction</td>
</tr>
<tr>
<td>CCSD-F12</td>
<td>CCSD with RI-F12 correction</td>
</tr>
<tr>
<td>CCSD-(T)-F12</td>
<td>CCSD(T) with RI-F12 correction</td>
</tr>
<tr>
<td>CCSD-(T)-F12/RI</td>
<td>Quadratic Configuration interaction</td>
</tr>
<tr>
<td>QCISD</td>
<td>Same with perturbative triples correction</td>
</tr>
<tr>
<td>QCISD(T)</td>
<td>QCISD with F12 correction</td>
</tr>
<tr>
<td>QCISD-F12</td>
<td>QCISD with RI-F12 correction</td>
</tr>
<tr>
<td>QCISD-(T)-F12/RI</td>
<td>QCISD(T) with RI-F12 correction</td>
</tr>
<tr>
<td>CPF/1</td>
<td>Coupled-pair functional</td>
</tr>
<tr>
<td>NCPF/1</td>
<td>A “new” modified coupled-pair functional</td>
</tr>
<tr>
<td>CEPA/1</td>
<td>Coupled-electron-pair approximation</td>
</tr>
<tr>
<td>NCEPA/1</td>
<td>The CEPA analogue of NCPF/1</td>
</tr>
<tr>
<td>RI-CEPA/1-F12</td>
<td>RI-CEPA with F12 correction</td>
</tr>
<tr>
<td>MP3</td>
<td>MP3 energies</td>
</tr>
<tr>
<td>SCS-MP3</td>
<td>Grimme’s refined version of MP3</td>
</tr>
</tbody>
</table>

Other coupled-pair methods are available and are documented later in the manual in detail (section 7.8). In general you can augment the method with RI-METHOD in order to make the density fitting approximation operative; RI34-METHOD does the same but only for the 3- and 4-external integrals. MO-METHOD performs a full four index transformation and AO-METHOD computes the 3- and 4-external contributions on the fly. With AOX-METHOD this is is done from stored AO integrals.

Local correlation methods. These are local, pair natural orbital based correlation methods. They must be used together with auxiliary correlation fitting basis sets. Open-shell variants are available for some of the methods, for full list please see section 6.1.3. We recommend $n = 1$ for the CEPA methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPNO-CEPA/n</td>
<td>Local pair natural orbital CEPA methods</td>
</tr>
<tr>
<td>LPNO-CPF/n</td>
<td>Same for coupled-pair functionals</td>
</tr>
<tr>
<td>LPNO-NCEPA/n</td>
<td>Same for modified versions</td>
</tr>
<tr>
<td>LPNO-NCPF/n</td>
<td>Same for modified versions</td>
</tr>
<tr>
<td>Method</td>
<td>Basis</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>LPNO-QCISD</td>
<td></td>
</tr>
<tr>
<td>LPNO-CCSD</td>
<td></td>
</tr>
<tr>
<td>DLPNO-CCSD</td>
<td></td>
</tr>
<tr>
<td>DLPNO-CCSD(T)</td>
<td></td>
</tr>
<tr>
<td>DLPNO-MP2</td>
<td>MP2</td>
</tr>
<tr>
<td>DLPNO-SCS-MP2</td>
<td></td>
</tr>
<tr>
<td>DLPNO-MP2-F12</td>
<td></td>
</tr>
<tr>
<td>DLPNO-MP2-F12/D</td>
<td></td>
</tr>
<tr>
<td>DLPNO-NEVPT2</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy control for local correlation methods. These keywords select predefined sensible sets of thresholds to control the accuracy of DLPNO calculations. See the corresponding sections on local correlation methods for more details.

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoosePNO</td>
<td>MDCI, MP2</td>
<td>Selects loose DLPNO thresholds</td>
</tr>
<tr>
<td>NormalPNO</td>
<td></td>
<td>Selects default DLPNO thresholds</td>
</tr>
<tr>
<td>TightPNO</td>
<td></td>
<td>Selects tight DLPNO thresholds</td>
</tr>
</tbody>
</table>

Automatic basis set extrapolation

<table>
<thead>
<tr>
<th>Extrapolate (n/m, bas)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extrapolation of the basis set family “bas” (bas=cc,aug-cc, cc-core, ano, saug-ano, aug-ano, def2; if omitted “cc-pV(n)Z” is used) for cardinal numbers n,m (n<(m)=2,3,4,5), e.g. Extrapolate(2/3,cc) extrapolates the SCF, MP2 and MDCI energies to the basis set limit. “core” refers to basis sets with core correlation function. In this case the frozen core approximation is - by default - turned off. This setting can be overridden in the “methods” block if one just wants to use the basis set with core correlation functions (steep primitives) but without unfreezing the core electrons.</td>
</tr>
<tr>
<td>Extrapolate (n, bas)</td>
<td>Calculate the first n-energies for member of the basis set family basis, e.g. Extrapolate(3) is doing calculations with cc-pVDZ, cc-pVTZ and cc-pVQZ.</td>
</tr>
</tbody>
</table>
ExtrapolateEP2
(n/m,
bas,[method,method-
details])

Similar: performs SCF, MP2 and MDCI calculations. The higher basis set can only be done with DLPNO-CCSD(T) or MP2 methods and then used to extrapolate the MDCI calculation to the basis set limit. Similar to EP2: for the high basis set method we go one cardinal number higher.

ExtrapolateEP3
(bas,[method,method-
details])

CASSCF related options. All of them require the CASSCF block as minimal input

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMRG</td>
<td>Sets DMRG as “CIStep” in CASSCF</td>
</tr>
<tr>
<td>NEVPT2</td>
<td>SC-NEVPT2 same as NEVPT2</td>
</tr>
<tr>
<td>SC-NEVPT2</td>
<td>SC-NEVPT2 with the RI approximation</td>
</tr>
<tr>
<td>RI-NEVPT2</td>
<td>FIC-NEVPT2 aka PC-NEVPT2</td>
</tr>
<tr>
<td>FIC-NEVPT2</td>
<td>FIC-NEVPT2 in the framework of DLPNO</td>
</tr>
<tr>
<td>DLPNO-NEVPT2</td>
<td>(internally contracted) Multireference methods beyond NEVPT2: If specified in a single keyword all information about reference spaces, number of roots etc. is taken from the CASSCF module that is assumed to be run in advance. These methods reside in the autoci module. More refined settings require the autoci block in the input.</td>
</tr>
<tr>
<td>FIC-MRCI</td>
<td>Invokes the fully internally contracted MRCI</td>
</tr>
<tr>
<td>FIC-CEPA0</td>
<td>Fully internally contracted CEPA0</td>
</tr>
</tbody>
</table>

(uncontracted) Multireference methods: If specified in a single keyword all information about reference spaces, number of roots etc. is taken from the CASSCF module that is assumed to be run in advance. These methods reside in the autoci module. More refined settings require the autoci block in the input.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRCI</td>
<td>Initiates a multireference configuration interaction calculation with single and double excitations</td>
</tr>
<tr>
<td>MRCI+Q</td>
<td>Same with multireference Davidson correction for unlinked quadruplets</td>
</tr>
<tr>
<td>MRACPF</td>
<td>Average coupled-pair functional</td>
</tr>
<tr>
<td>MRAQCC</td>
<td>Average quadratic coupled-cluster</td>
</tr>
<tr>
<td>MRDDCI1</td>
<td>Difference dedicated CI with one degree of freedom</td>
</tr>
<tr>
<td>MRDDCI2</td>
<td>Same with two degrees of freedom</td>
</tr>
<tr>
<td>MRDDCI3</td>
<td>Same with three degrees of freedom</td>
</tr>
<tr>
<td>MRDDCIn+Q</td>
<td>MRDDCI with Davidson correction</td>
</tr>
</tbody>
</table>
Frozen core features. NOTE: this deviates from previous versions of ORCA! We are now counting core electrons rather than using an energy window. If you do want to use an orbital energy window use `%method FrozenCore FC_EWIN end`. Otherwise the EWin commands will be ignored! (alternatives are FC_ELECTRONS (default) and FC_NONE).

<table>
<thead>
<tr>
<th>METHOD</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROZENCORE</td>
<td>FrozenCore</td>
</tr>
<tr>
<td>NOFROZENCORE</td>
<td></td>
</tr>
</tbody>
</table>

Semiempirical methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZINDO/S</td>
<td>Selects the ZINDO/S method</td>
</tr>
<tr>
<td>ZINDO/1</td>
<td>Selects the ZINDO/1 method</td>
</tr>
<tr>
<td>ZINDO/2</td>
<td>Selects the ZINDO/2 method</td>
</tr>
<tr>
<td>NDDO/1</td>
<td>Selects the NDDO/1 method</td>
</tr>
<tr>
<td>NDDO/2</td>
<td>Selects the NDDO/2 method</td>
</tr>
<tr>
<td>MNDO</td>
<td>Selects the MNDO method</td>
</tr>
<tr>
<td>AM1</td>
<td>Selects the AM1 method</td>
</tr>
<tr>
<td>PM3</td>
<td>Selects the PM3 method</td>
</tr>
</tbody>
</table>

Algorithmic variations, options, add-ons, modifiers,...

<table>
<thead>
<tr>
<th>Method</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHF or RKS</td>
<td>Selects closed-shell SCF</td>
</tr>
<tr>
<td>UHF or UKS</td>
<td>Selects spin unrestricted SCF</td>
</tr>
<tr>
<td>ROHF or ROKS</td>
<td>Selects open-shell spin restricted SCF</td>
</tr>
<tr>
<td>AllowRHF</td>
<td>Allow a RHF calculation even if the system is open-shell (Mult>1). Default is to switch to UHF then</td>
</tr>
<tr>
<td>RI</td>
<td>Sets RI=true to use the RI approximation in DFT calculations. Default to Split-RI-J
Sets RI=false</td>
</tr>
<tr>
<td>NORI</td>
<td></td>
</tr>
<tr>
<td>RI-JCOSX</td>
<td>Sets the flag for the efficient RIJCOSX algorithm (treat the Coulomb term via RI and the Exchange term via seminumerical integration)</td>
</tr>
<tr>
<td>RI-JK</td>
<td>Sets the flag for the efficient RI algorithm for Coulomb and Exchange. Works for SCF (HF/DFT) energies and gradients. Works direct or conventional.</td>
</tr>
<tr>
<td>SPLITJ</td>
<td>Select the efficient Split-J procedure for the calculation of the Coulomb matrix in non-hybrid DFT (rarely used)</td>
</tr>
<tr>
<td>SPLIT-RI-J</td>
<td>Select the efficient Split-RI-J procedure for the improved evaluation of the RI-approximation to the Coulomb-matrix</td>
</tr>
<tr>
<td>NoSplit-RI-J</td>
<td>Turns the Split-RI-J feature off (but does not set the RI flag to false!)</td>
</tr>
</tbody>
</table>
6.2 Keyword Lines

<table>
<thead>
<tr>
<th>Keyword</th>
<th>SCF</th>
<th>Method/Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI-J-XC</td>
<td>SCF</td>
<td>JMATRIX, KMATRIX.RI</td>
<td>Turn on RI for the Coulomb term and the XC terms. This saves time when the XC integration is significant but introduces another basis set incompleteness error. (rarely used)</td>
</tr>
<tr>
<td>DIRECT</td>
<td>SCF</td>
<td>SCFMODE</td>
<td>Selects an integral direct calculation</td>
</tr>
<tr>
<td>SEMIDIRECT</td>
<td>SCF</td>
<td>SCFMODE</td>
<td>Selects an integral semidirect calculation (rarely used nowadays)</td>
</tr>
<tr>
<td>CONV</td>
<td>SCF</td>
<td>MAXITER</td>
<td>Selects an integral conventional calculation</td>
</tr>
<tr>
<td>NOITER</td>
<td>SCF</td>
<td>MAXITER</td>
<td>Sets the number of SCF iterations to 0. This works together with MOREAD and means that the program will work with the provided starting orbitals.</td>
</tr>
</tbody>
</table>

Initial guess options: In most cases the default PMODEL guess will be adequate. In some special situations you may want to switch to a different choice

<table>
<thead>
<tr>
<th>Keyword</th>
<th>SCF</th>
<th>Method/Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATOM</td>
<td>SCF</td>
<td>GUESS</td>
<td>Selects the polarized atoms guess</td>
</tr>
<tr>
<td>PMODEL</td>
<td>SCF</td>
<td>GUESS</td>
<td>Selects the model potential guess</td>
</tr>
<tr>
<td>HUECKEL</td>
<td>SCF</td>
<td>GUESS</td>
<td>Selects the extended Hückel guess</td>
</tr>
<tr>
<td>HCORE</td>
<td>SCF</td>
<td>GUESS</td>
<td>Selects the one-electron matrix guess</td>
</tr>
<tr>
<td>MOREAD</td>
<td>SCF</td>
<td>GUESS</td>
<td>Read MOs from a previous calculation (use %moinp "myorbitals.gbw" in a separate line to specify the GBW file that contains these MOs to be read)</td>
</tr>
<tr>
<td>AUTOSTART</td>
<td>SCF</td>
<td>AUTOSTART</td>
<td>Try to start from the existing GBW file of the same name as the present one</td>
</tr>
<tr>
<td>NOAUTOSTART</td>
<td>SCF</td>
<td>AUTOSTART</td>
<td>Don’t try to do that</td>
</tr>
</tbody>
</table>

Basis-set related keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>SCF</th>
<th>Method/Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decontract</td>
<td>BASIS</td>
<td></td>
<td>Decontract the basis set. If the basis set arises from general contraction, duplicate primitives will be removed.</td>
</tr>
<tr>
<td>NoDecontract</td>
<td>BASIS</td>
<td></td>
<td>Prevent decontraction</td>
</tr>
<tr>
<td>DecontractAux</td>
<td>BASIS</td>
<td></td>
<td>Decontract the auxiliary basis set</td>
</tr>
<tr>
<td>NoDecontractAux</td>
<td>BASIS</td>
<td></td>
<td>Prevent decontraction of the auxiliary basis</td>
</tr>
</tbody>
</table>

Relativistic options: There are several variants of scalar relativistic Hamiltonians to use in all electron calculations

<table>
<thead>
<tr>
<th>Keyword</th>
<th>SCF</th>
<th>Method/Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKH or DKH2</td>
<td>REL</td>
<td>METHOD/ORDER</td>
<td>Selects the scalar relativistic Douglas–Kroll–Hess Hamiltonian of 2nd order</td>
</tr>
<tr>
<td>ZORA</td>
<td>REL</td>
<td>METHOD</td>
<td>Selects the scalar relativistic ZORA Hamiltonian</td>
</tr>
<tr>
<td>ZORA/RI</td>
<td>REL</td>
<td>METHOD</td>
<td>Selects the scalar relativistic ZORA Hamiltonian in RI approximation</td>
</tr>
<tr>
<td>IORA/RI</td>
<td>REL</td>
<td>METHOD</td>
<td>Selects the scalar relativistic IORA Hamiltonian in RI approximation</td>
</tr>
<tr>
<td>IORAmm/RI</td>
<td>REL</td>
<td>METHOD</td>
<td>Selects the scalar relativistic IORA mm (modified metric) Hamiltonian in RI approximation</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
</tr>
</tbody>
</table>

Grid options

<table>
<thead>
<tr>
<th>GRIDn ((n = 0–7))</th>
<th>METHOD</th>
<th>GRID</th>
<th>Selects the DFT integration grid no (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINALGRIDn</td>
<td>METHOD</td>
<td></td>
<td>Selects the DFT final integration grid no (n)</td>
</tr>
<tr>
<td>NOFINALGRID</td>
<td></td>
<td></td>
<td>Turns the final grid feature off</td>
</tr>
<tr>
<td>GRIDXn ((n = 1–9))</td>
<td>METHOD</td>
<td>GRIDX</td>
<td>Grids for the COSX approximation. A sequence of three grids is used. Higher accuracy at higher cost is offered by the higher grids. Turn off the final grid in COSX (not recommended)</td>
</tr>
<tr>
<td>NOFINALGRIDX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Convergence thresholds: These keywords control how tightly the SCF and geometry optimizations will be converged. The program makes an effort to set the convergence thresholds for correlation modules consistently with that of the SCF.

<table>
<thead>
<tr>
<th>NORMALSCF</th>
<th>SCF</th>
<th>CONVERGENCE</th>
<th>Selects normal SCF convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOOSECSCF</td>
<td></td>
<td></td>
<td>Selects loose SCF convergence</td>
</tr>
<tr>
<td>SLOPPYSCF</td>
<td></td>
<td></td>
<td>Selects sloppy SCF convergence</td>
</tr>
<tr>
<td>STRONGSCF</td>
<td></td>
<td></td>
<td>Selects strong SCF convergence</td>
</tr>
<tr>
<td>TIGHTSCF</td>
<td></td>
<td></td>
<td>Selects tight SCF convergence</td>
</tr>
<tr>
<td>VERYTIGHTSCF</td>
<td></td>
<td></td>
<td>Selects very tight SCF convergence</td>
</tr>
<tr>
<td>EXTREMESEC</td>
<td></td>
<td></td>
<td>Selects “extreme” convergence. All thresholds are practically reduced to numerical precision of the computer. Only for benchmarking (very expensive). Selects energy convergence check and sets (ETol) to (10^{-n}) ((n = 6–10)). Also selects appropriate (thresh), (tcut), and (hfcut) values.</td>
</tr>
</tbody>
</table>

| SCFCONVn | | | |

<table>
<thead>
<tr>
<th>TIGHTOPT</th>
<th>GEOM</th>
<th>TolE,TolRMSG</th>
<th>Selects tight optimization convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMALOPT</td>
<td></td>
<td>TolMaxG</td>
<td>Selects default optimization convergence</td>
</tr>
<tr>
<td>LOOSEOPT</td>
<td></td>
<td>TolRMSD,TolMaxD</td>
<td>Selects loose optimization convergence</td>
</tr>
</tbody>
</table>

Convergence acceleration: the default is DIIS which is robust. For most closed-shell organic molecules SOSCF converges somewhat better and might be a good idea to use. For “trailing convergence”, KDIIS or the true second-order procedures NRSCF and AHSCF might be good choices.

<table>
<thead>
<tr>
<th>DIIS</th>
<th>SCF</th>
<th>DIIS</th>
<th>Turns DIIS on</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODIIS</td>
<td></td>
<td></td>
<td>Turns DIIS off</td>
</tr>
<tr>
<td>KDIIS</td>
<td>SCF</td>
<td>KDIIS</td>
<td>Turns Kollmar’s DIIS on</td>
</tr>
<tr>
<td>NRSCF</td>
<td>SCF</td>
<td>NR</td>
<td>Turns Newton-Raphson SCF on</td>
</tr>
<tr>
<td>AHSCF</td>
<td></td>
<td></td>
<td>Same but with augmented Hessian step</td>
</tr>
<tr>
<td>NONRSCF</td>
<td></td>
<td></td>
<td>Turns Newton-Raphson SCF off</td>
</tr>
<tr>
<td>SOSCF</td>
<td>SCF</td>
<td>SOSCF</td>
<td>Turns SOSCF on</td>
</tr>
<tr>
<td>NOSOSCF</td>
<td></td>
<td></td>
<td>Turns SOSCF off</td>
</tr>
</tbody>
</table>
6.2 Keyword Lines

<table>
<thead>
<tr>
<th>Keyword</th>
<th>SCF</th>
<th>CNV</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMP</td>
<td></td>
<td></td>
<td>Turns damping on</td>
</tr>
<tr>
<td>NODAMP</td>
<td></td>
<td></td>
<td>Turns damping off</td>
</tr>
<tr>
<td>LSHIFT</td>
<td>SCF</td>
<td>CNVSHIFT</td>
<td>Turns level shifting on</td>
</tr>
<tr>
<td>NOLSHIFT</td>
<td></td>
<td></td>
<td>Turns level shifting off</td>
</tr>
</tbody>
</table>

Convergence strategies (does not modify the convergence criteria)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EasyConv</td>
<td>Assumes no convergence problems. Normal convergence criteria.</td>
</tr>
<tr>
<td>NormalConv</td>
<td>Selects appropriate SCF converger criteria.</td>
</tr>
<tr>
<td>SlowConv</td>
<td>Selects appropriate SCF converger criteria for difficult cases.</td>
</tr>
<tr>
<td>VerySlowConv</td>
<td>Selects appropriate SCF converger criteria for very difficult cases.</td>
</tr>
<tr>
<td>SCFConvForced</td>
<td>Force convergence: do not continue with the calculation, if the SCF did not converge.</td>
</tr>
</tbody>
</table>

Spin-orbit coupling

<table>
<thead>
<tr>
<th>SOMF(1X)</th>
<th>REL</th>
<th>SOCType, SOCFlags</th>
<th>Invokes the RI-SOMF(1X) treatment of the spin-orbit coupling operator</th>
</tr>
</thead>
</table>

Miscellaneous options

<table>
<thead>
<tr>
<th>Option</th>
<th>SCF</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGS</td>
<td></td>
<td>COORDS, UNITS</td>
<td>Select angstrom units, Select input coordinates in atomic units</td>
</tr>
<tr>
<td>BOHRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRACOCC</td>
<td>SCF</td>
<td>FRACOCC</td>
<td>Turns the fractional occupation option on (FOD is always calculated in this case)</td>
</tr>
<tr>
<td>SMEAR</td>
<td>SCF</td>
<td>SMEARTEMP</td>
<td>Temperature for occupation number smearing on (default is 5000 K; FOD (see 9.5.8.2) is always calculated in this case)</td>
</tr>
<tr>
<td>NOSMEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEEPINTS</td>
<td>SCF</td>
<td>KEEPINTS</td>
<td>Keep two electron integrals on disk</td>
</tr>
<tr>
<td>NOKEEPINTS</td>
<td></td>
<td></td>
<td>Do not keep two electron integrals</td>
</tr>
<tr>
<td>KEEPDENS</td>
<td>SCF</td>
<td>KEEPDENS</td>
<td>Keep the density matrix on disk</td>
</tr>
<tr>
<td>NOKEEPDENS</td>
<td></td>
<td></td>
<td>Do not keep the density matrix</td>
</tr>
<tr>
<td>READINTS</td>
<td>SCF</td>
<td>READINTS</td>
<td>Reading of two electron integrals on</td>
</tr>
<tr>
<td>NOREADINTS</td>
<td></td>
<td></td>
<td>Reading of two electron integrals off</td>
</tr>
<tr>
<td>CHEAPINTS</td>
<td>SCF</td>
<td>USECHEAPINTS</td>
<td>Use the cheap integral feature in direct SCF calculations</td>
</tr>
<tr>
<td>NOCHEAPINTS</td>
<td></td>
<td></td>
<td>Turn that feature off</td>
</tr>
<tr>
<td>FLOAT</td>
<td>SCF</td>
<td>VALFORMAT</td>
<td>Set storage format for numbers to single precision (SCF, RI-MP2, CIS, CIS(D), MDCI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPCM(solvent)</th>
<th>CPCM</th>
<th></th>
<th>Invoke the conductor-like polarizable continuum model with a standard solvent (see section 9.28 for a list of solvents). If no solvent is given, infinity (a conductor) is assumed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PCM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table entries are extracted from the text and represent the keywords and their descriptions accurately. The table structure is maintained to ensure readability and clarity.
Compression and storage

The data compression and storage options deserve some comment: in a number of modules including RI-MP2, MDCI, CIS, (D) correction to CIS, etc. the program uses so called “Matrix...
Containers”. This means that the data to be processed is stored in terms of matrices in files and is accessed by a double label. A typical example is the exchange operator \(K_{ij} \) with matrix elements \(K_{ij}(a,b) = (ia|jb) \).

Here the indices \(i \) and \(j \) refer to occupied orbitals of the reference state and \(a \) and \(b \) are empty orbitals of the reference state. Data of this kind may become quite large (formally \(N^4 \) scaling). To store the numbers in single precision cuts down the memory requirements by a factor of two with (usually very) slight loss in precision. For larger systems one may also gain advantages by also compressing the data (e.g. use a “packed” storage format on disk). This option leads to additional packing/unpacking work and adds some overhead. For small molecules UCDOUBLE is probably the best option, while for larger molecules UCFLOAT or particularly CFLOAT may be the best choice. Compression does not necessarily slow the calculation down for larger systems since the total I/O load may be substantially reduced and thus (since CPU is much faster than disk) the work of packing and unpacking takes less time than to read much larger files (the packing may reduce disk requirements for larger systems by approximately a factor of 4 but it has not been extensively tested so far). There are many factors contributing to the overall wall clock time in such cases including the total system load. It may thus require some experimentation to find out with which set of options the program runs fastest with.

\[
\text{! CAUTION !}
\]

- It is possible that FLOAT may lead to unacceptable errors. Thus it is not the recommended option when MP2 or RI-MP2 gradients or relaxed densities are computed. For this reason the default is DOUBLE.
- If you have convinced yourself that FLOAT is OK, it may save you a factor of two in both storage and CPU.

Global memory use. Some ORCA modules (in particular those that perform some kind of wavefunction based correlation calculations) require large scratch arrays. Each module has an independent variable to control the size of these dominant scratch arrays. However, since these modules are never running simultaneously, we provide a global variable \texttt{MaxCore} that assigns a certain amount of scratch memory to all of these modules. Thus:

\[
\%\texttt{MaxCore 4000}
\]

sets 4000 MB (= 4 GB) as the limit for these scratch arrays. This limit applies per processing core. Do not be surprised if the program takes more than that – this size only refers to the dominant work areas. Thus, you are well advised to provide a number that is significantly less than your physical memory. Note also that the memory use of the SCF program cannot be controlled: it dynamically allocates all memory that it needs and if it runs out of physical memory you are out of luck. This, however, rarely happens unless you run on a really small memory computer or you are running a gigantic job.

6.2.2 Density Functional Methods

For density functional calculations a number of standard functionals can be selected via the “simple input” feature. Since any of these keywords will select a DFT method, the keyword “DFT” is not needed in the
Further functionals are available via the **method** block. References are given in section 9.2.2.1.

Table 6.2: Density functionals available in ORCA.

<table>
<thead>
<tr>
<th>Local and gradient corrected functionals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HFS</td>
<td>Hartree–Fock–Slater Exchange only functional</td>
</tr>
<tr>
<td>LDA or LSD</td>
<td>Local density approximation (defaults to VWN5)</td>
</tr>
<tr>
<td>VWN or VWN5</td>
<td>Vosko–Wilk–Nusair local density approx. parameter set “V”</td>
</tr>
<tr>
<td>VWN3</td>
<td>Vosko–Wilk–Nusair local density approx. parameter set “III”</td>
</tr>
<tr>
<td>PWLDA</td>
<td>Perdew-Wang parameterization of LDA</td>
</tr>
<tr>
<td>BP86 or BP</td>
<td>Becke ’88 exchange and Perdew ’86 correlation</td>
</tr>
<tr>
<td>BLYP</td>
<td>Becke ’88 exchange and Lee-Yang-Parr correlation</td>
</tr>
<tr>
<td>OLYP</td>
<td>Handy’s “optimal” exchange and Lee-Yang-Parr correlation</td>
</tr>
<tr>
<td>GLYP</td>
<td>Gill’s ’96 exchange and Lee-Yang-Parr correlation</td>
</tr>
<tr>
<td>XLYP</td>
<td>The Xu and Goddard exchange and Lee-Yang-Parr correlation</td>
</tr>
<tr>
<td>PW91</td>
<td>Perdew-Wang ’91 GGA functional</td>
</tr>
<tr>
<td>mPW9PW</td>
<td>Modified PW exchange and PW correlation</td>
</tr>
<tr>
<td>mPW1LYP</td>
<td>Modified PW exchange and LYP correlation</td>
</tr>
<tr>
<td>PBE</td>
<td>Perdew-Burke-Erzerhoff GGA functional</td>
</tr>
<tr>
<td>RPBE</td>
<td>“Modified” PBE</td>
</tr>
<tr>
<td>REVPBE</td>
<td>“Revised” PBE</td>
</tr>
<tr>
<td>PWP</td>
<td>Perdew-Wang ’91 exchange and Perdew ’86 correlation</td>
</tr>
</tbody>
</table>

Hybrid functionals

<table>
<thead>
<tr>
<th>B1LYP</th>
<th>The one-parameter hybrid functional with Becke ’88 exchange and Lee-Yang-Parr correlation (25% HF exchange)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP and B3LYP/G</td>
<td>The popular B3LYP functional (20% HF exchange) as defined in the TurboMole program system and the Gaussian program system, respectively</td>
</tr>
<tr>
<td>O3LYP</td>
<td>The Handy hybrid functional</td>
</tr>
<tr>
<td>X3LYP</td>
<td>The Xu and Goddard hybrid functional</td>
</tr>
<tr>
<td>B1P</td>
<td>The one-parameter hybrid version of BP86</td>
</tr>
<tr>
<td>B3P</td>
<td>The three-parameter hybrid version of BP86</td>
</tr>
<tr>
<td>B3PW</td>
<td>The three-parameter hybrid version of PW91</td>
</tr>
<tr>
<td>PW1PW</td>
<td>One-parameter hybrid version of PW91</td>
</tr>
<tr>
<td>mPW1PW</td>
<td>One-parameter hybrid version of mPW9PW</td>
</tr>
<tr>
<td>mPW1LYP</td>
<td>One-parameter hybrid version of mPW1LYP</td>
</tr>
<tr>
<td>PBE0</td>
<td>One-parameter hybrid version of PBE</td>
</tr>
<tr>
<td>PW6b95</td>
<td>Hybrid functional by Truhlar</td>
</tr>
<tr>
<td>BHANDHLYP</td>
<td>Half-and-half hybrid functional by Becke</td>
</tr>
</tbody>
</table>

Meta-GGA and hybrid meta-GGA functionals

TPSS	The TPSS meta-GGA functional
TPSSh	The hybrid version of TPSS (10% HF exchange)
TPSS0	A 25% exchange version of TPSSh that yields improved energetics compared to TPSSh but is otherwise not well tested
M06L	The Minnesota M06-L meta-GGA functional
M06	The M06 hybrid meta-GGA (27% HF exchange)
6.3 Basis Sets

6.3.1 Standard basis set library

There are standard basis sets that can be specified via the “simple input” feature in the keyword line. However, any basis set that is not already included in the ORCA library can be provided either directly in the input or through an external file. See the BASIS input block for a full list of internal basis sets and various advanced aspects (section 9.3). Effective core potentials and their use are described in section 6.3.3.

Table 6.3: Basis sets available on ORCA.

<table>
<thead>
<tr>
<th>Pople-style basis sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>M062X</td>
</tr>
<tr>
<td>Range-separated hybrid functionals</td>
</tr>
<tr>
<td>wb97</td>
</tr>
<tr>
<td>wb97x</td>
</tr>
<tr>
<td>wb97x-D3</td>
</tr>
<tr>
<td>CAM-B3LYP</td>
</tr>
<tr>
<td>LC-BLYP</td>
</tr>
<tr>
<td>Perturbatively corrected double-hybrid functionals</td>
</tr>
<tr>
<td>B2PLYP</td>
</tr>
<tr>
<td>RI-B2PLYP</td>
</tr>
<tr>
<td>B2PLYP-D</td>
</tr>
<tr>
<td>RI-B2PLYP RIJONX</td>
</tr>
<tr>
<td>mPW2PLYP</td>
</tr>
<tr>
<td>mPW2PLYP-D</td>
</tr>
<tr>
<td>B2GP-PLYP</td>
</tr>
<tr>
<td>B2K-PLYP</td>
</tr>
<tr>
<td>B2T-PLYP</td>
</tr>
<tr>
<td>PWPB95</td>
</tr>
<tr>
<td>RI-PWPB95</td>
</tr>
<tr>
<td>Dispersion corrections (see 8.1.4.6 and 9.2.2.10 for details)</td>
</tr>
<tr>
<td>D3BJ</td>
</tr>
<tr>
<td>D3ZERO</td>
</tr>
<tr>
<td>D2</td>
</tr>
</tbody>
</table>
General Structure of the Input File

<table>
<thead>
<tr>
<th>Basis Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-21G</td>
<td>Pople 3-21G (H–Cs)</td>
</tr>
<tr>
<td>STO-3G</td>
<td>Minimal basis set (H–I)</td>
</tr>
<tr>
<td>3-21GSP</td>
<td>Buenker 3-21GSP (H–Ar)</td>
</tr>
<tr>
<td>4-22GSP</td>
<td>Buenker 4-22GSP (H–Ar)</td>
</tr>
<tr>
<td>6-31G</td>
<td>Pople 6-31G and its modifications (H–Zn)</td>
</tr>
<tr>
<td>m6-31G</td>
<td>Modified 6-31G for 3d transition metals (Sc–Cu)</td>
</tr>
<tr>
<td>6-311G</td>
<td>Pople 6-311G and its modifications (H–Br)</td>
</tr>
</tbody>
</table>

Polarization functions for the 6-31G basis set:

- * or (d): One set of first polarization functions on all atoms except H
- ** or (d,p): One set of first polarization functions on all atoms

Further combinations: (2d), (2df), (2d,2p), (2df,2p), (2df,2pd)

Polarization functions for the 6-311G basis set:

All of the above plus (3df) and (3df,3pd)

Diffuse functions for the 6-31G and 6-311G basis sets:

- + before “G”: Include diffuse functions on all atoms except H (e.g. 6-31+G)
- ++ before “G”: Include diffuse functions on all atoms. Works only when H polarization is already included, e.g. 6-31++G(d,p)

The def2 basis sets of the Karlsruhe group

These basis sets are all-electron for elements H–Kr, and automatically load Stuttgart-Dresden effective core potentials for elements Rb–Rn.

- def2-SVP: Valence double-zeta basis set with “new” polarization functions.
- def2-SV(P): The above with slightly reduced polarization.
- def2-TZVP: Valence triple-zeta basis set with “new” polarization functions. Note that this is quite similar to the older (“def”) TZVPP for the main group elements and TZVP for hydrogen.
- def2-TZVPP(-f): TZVP with f polarization removed from main group elements.
- def2-QZVPP: Accurate polarized quadruple-zeta basis set.

Older (“def”) Ahlrichs basis sets

All-electron basis sets for elements H–Kr.

- SV: Valence double-zeta basis set.
- SV(P): Valence double-zeta with polarization only on heavy elements.
- SVP: Polarized valence double-zeta basis set.
- TZV: Valence triple-zeta basis set.
- TZV(P): Valence triple-zeta with polarization on heavy elements.
- TZVP: Polarized valence triple-zeta basis set.
- TZVPP: Doubly polarized triple-zeta basis set.
- QZVP: Polarized valence quadruple-zeta basis set.
- QZVPP: Doubly polarized quadruple-zeta basis set.
Note:
Past versions of ORCA used to load all-electron basis sets also for elements Rb–I with the above keywords for double- and triple-zeta basis sets. The Rb–I basis sets originated from non-relativistic all-electron basis sets of the Turbomole library (such as “TZVPA1s”). This automatic substitution is now deprecated. However, we offer temporarily the ability to reproduce that behavior by adding the prefix “old-” to the above keywords, e.g. “old-TZVP”.

Diffuse def2 basis sets

<table>
<thead>
<tr>
<th>Minimally augmented def2 basis sets</th>
<th>Augmented def2 basis sets by diffuse s and p functions according to Truhlar [3]. Recommended for general use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma-def2-SVP</td>
<td>Minimally augmented def2-SVP basis set.</td>
</tr>
<tr>
<td>ma-def2-SV(P)</td>
<td>Minimally augmented def2-SV(P) basis set.</td>
</tr>
<tr>
<td>ma-def2-TZVP</td>
<td>Minimally augmented def2-TZVP basis set.</td>
</tr>
<tr>
<td>ma-def2-TZVP(-f)</td>
<td>Minimally augmented def2-TZVP(-f) basis set.</td>
</tr>
<tr>
<td>ma-def2-TZVPP</td>
<td>Minimally augmented def2-TZVPP basis set.</td>
</tr>
<tr>
<td>ma-def2-QZVPP</td>
<td>Minimally augmented def2-QZVPP basis set.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rappoport property-optimized diffuse def2 basis sets</th>
<th>Augmented def2 basis sets by diffuse functions according to Rappoport et al. [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>def2-SVPD</td>
<td>Diffuse def2-SVP basis set for property calculations</td>
</tr>
<tr>
<td>def2-TZVPD</td>
<td>Diffuse def2-TZVP basis set for property calculations</td>
</tr>
<tr>
<td>def2-TZVPPD</td>
<td>Diffuse def2-TZVPP basis set for property calculations</td>
</tr>
<tr>
<td>def2-QZVPD</td>
<td>Diffuse def2-QZVP basis set for property calculations</td>
</tr>
<tr>
<td>def2-QZVPPD</td>
<td>Diffuse def2-QZVPP basis set for property calculations</td>
</tr>
</tbody>
</table>

Relativistically recontracted Karlsruhe basis sets

For use in DKH or ZORA calculations we provide adapted versions of the def2 basis sets for the elements H–Kr (i.e., for the all-electron def2 basis sets). These basis sets retain the original def2 exponents but have only one contracted function per angular momentum (and hence are somewhat larger), with contraction coefficients suitable for the respective scalar relativistic Hamiltonian. These basis sets can be called with the prefix DKH- or ZORA-, and can be combined with the SARC basis sets for the heavier elements.

DKH-def2-SVP and ZORA-def2-SVP
DKH-def2-SV(P) and ZORA-def2-SV(P)
DKH-def2-TZVP and ZORA-def2-TZVP
DKH-def2-TZVP(-f) and ZORA-def2-TZVP(-f)
DKH-def2-TZVPP and ZORA-def2-TZVPP
DKH-def2-QZVPP and ZORA-def2-QZVPP

Minimally augmented versions:
ma-DKH-def2-SVP and ma-ZORA-def2-SVP
ma-DKH-def2-SV(P) and ma-ZORA-def2-SV(P)
ma-DKH-def2-TZVP and ma-ZORA-def2-TZVP
ma-DKH-def2-TZVP(-f) and ma-ZORA-def2-TZVP(-f)
ma-DKH-def2-TZVPP and ma-ZORA-def2-TZVPP
ma-DKH-def2-QZVPP and ma-ZORA-def2-QZVPP
The same functionality is offered for the “def” basis sets, e.g. “ZORA-TZVP”. In this case too, the relativistically recontracted versions refer to the elements $H–Kr$. To replicate the behavior of past ORCA versions for elements $Rb–I$, the prefix “old-” can be used with these keywords as in the non-relativistic case.

WARNING: Previous verions of ORCA made extensive use of automatic basis set substitution and aliasing when the use of the DKH or ZORA Hamiltonians was detected. This is no longer the case! Relativistic versions of Karlsruhe basis sets now have to be requested explicitly with the appropriate prefix. SARC basis sets also have to be requested explicitly.

<table>
<thead>
<tr>
<th>SARC basis sets [5–9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmented all-electron relativistically contracted basis sets for use with the DKH2 and ZORA Hamiltonians. Available for elements beyond Xe.</td>
</tr>
<tr>
<td>SARC-DKH-TZVP</td>
</tr>
<tr>
<td>SARC-DKH-TZVPP</td>
</tr>
<tr>
<td>SARC-ZORA-TZVP</td>
</tr>
<tr>
<td>SARC-ZORA-TZVPP</td>
</tr>
<tr>
<td>SARC-DKH-SVP and SARC-ZORA-SVP are also available for the 5d transition metals only.</td>
</tr>
<tr>
<td>Note: SARC/J is the general-purpose Coulomb-fitting auxiliary for all SARC orbital basis sets.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SARC2 basis sets for the lanthanides [10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARC basis sets of quadruple-zeta quality for lanthanides. With polarization they are suitable for accurate calculations using correlated wave function methods.</td>
</tr>
<tr>
<td>SARC2-DKH-QZV</td>
</tr>
<tr>
<td>SARC2-DKH-QZVP</td>
</tr>
<tr>
<td>SARC2-ZORA-QZV</td>
</tr>
<tr>
<td>SARC2-ZORA-QZVP</td>
</tr>
<tr>
<td>Note: Each of the above basis sets has a large dedicated /JK auxiliary basis set for simultaneous Coulomb and exchange fitting.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jensen basis bets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pc-n$ ($n = 0, 1, 2, 3, 4$) “Polarization-consistent” generally contracted basis sets ($H–Kr$) of up to quintuple-zeta quality, optimized for SCF calculations</td>
</tr>
<tr>
<td>aug-$pc-n$</td>
</tr>
<tr>
<td>As above, augmented by diffuse functions</td>
</tr>
<tr>
<td>pcseg-n</td>
</tr>
<tr>
<td>Segmented PC basis sets ($H–Kr$), DFT-optimized</td>
</tr>
<tr>
<td>aug-$pcseg-n$</td>
</tr>
<tr>
<td>As above, augmented by diffuse functions</td>
</tr>
<tr>
<td>pcSseg-n</td>
</tr>
<tr>
<td>Segmented contracted basis sets ($H–Kr$) optimized for nuclear magnetic shielding</td>
</tr>
<tr>
<td>aug-$pcSseg-n$</td>
</tr>
<tr>
<td>As above, augmented by diffuse functions</td>
</tr>
<tr>
<td>pcJ-n</td>
</tr>
<tr>
<td>Segmented contracted basis sets ($H–Ar$) optimized for spin-spin coupling constants</td>
</tr>
<tr>
<td>aug-$pcJ-n$</td>
</tr>
<tr>
<td>As above, augmented by diffuse functions</td>
</tr>
</tbody>
</table>
6.3 Basis Sets

Sapporo basis bets
- **Sapporo-\(n\)ZP-2012** \((n = D, T, Q)\) All-electron generally contracted non-relativistic basis sets (H–Xe)
- **Sapporo-DKH\(n\)ZP-2012** \((n = D, T, Q)\) All-electron basis sets optimized for the DKH3 Hamiltonian and finite nucleus (K–Rn)

Correlation-consistent basis sets
- **cc-pVDZ** Dunning correlation-consistent polarized double-zeta
- **cc-pVTZ** Dunning correlation-consistent polarized triple-zeta
- **cc-pVQZ** Dunning correlation-consistent polarized quintuple-zeta
- **cc-pV6Z** Dunning correlation-consistent polarized sextuple-zeta
- **aug-cc-pV\(n\)Z** \((n = D, T, Q, 5, 6)\) Augmented with diffuse functions
- **cc-pCV\(n\)Z** \((n = D, T, Q, 5, 6)\) Core-polarized basis sets
- **aug-cc-pCV\(n\)Z** \((n = D, T, Q, 5, 6)\) as above, augmented with diffuse functions
- **cc-pwCV\(n\)Z** \((n = D, T, Q, 5)\) Core-polarized with weighted core functions
- **aug-cc-pwCV\(n\)Z** \((n = D, T, Q, 5)\) as above, augmented with diffuse functions
- **cc-pV\(n\)(+d)Z** \((n = D, T, Q, 5)\) with tight d functions

DKH versions of correlation-consistent basis sets
- **cc-pV\(n\)Z-DK** \((n = D, T, Q, 5)\) Correlation-consistent all-electron basis sets for use with the 2nd-order Douglas-Kroll-Hess Hamiltonian
- **aug-cc-pV\(n\)Z-DK** \((n = D, T, Q, 5)\) as above, augmented with diffuse functions
- **cc-pwCV\(n\)Z-DK** \((n = D, T, Q, 5)\) DK versions of weighted core correlation-consistent basis sets
- **aug-cc-pwCV\(n\)Z-DK** \((n = D, T, Q, 5)\) weighted-core DK basis sets with diffuse functions

ECP-based versions of correlation-consistent basis sets
- **cc-pV\(n\)Z-PP** \((n = D, T, Q, 5)\) Correlation-consistent all-electron basis sets combined with SK-MCDHF-RSC effective core potentials
- **aug-cc-pV\(n\)Z-PP** \((n = D, T, Q, 5)\) as above, augmented with diffuse functions
- **cc-pwCV\(n\)Z-PP** \((n = D, T, Q, 5)\) with weighted core functions
- **aug-cc-pwCV\(n\)Z-PP** \((n = D, T, Q, 5)\) as above, augmented with diffuse functions

F12 and F12-CABS basis sets
- **cc-pV\(n\)Z-F12** \((n = D, T, Q)\) Special orbital basis sets for F12 calculations (larger than the regular D, T, Q-zeta basis sets!)
- **cc-pCV\(n\)Z-F12** \((n = D, T, Q)\) with core polarization functions
- **cc-pV\(n\)Z-PP-F12** \((n = D, T, Q)\) ECP-based versions
- **cc-pV\(n\)Z-F12-CABS** \((n = D, T, Q)\) Near-complete auxiliary basis sets for F12 calculations
- **cc-pV\(n\)Z-F12-OptRI** \((n = D, T, Q)\)
- **cc-pCV\(n\)Z-F12-OptRI** \((n = D, T, Q)\)
- **cc-pV\(n\)Z-PP-F12-OptRI** \((n = D, T, Q)\)
- **aug-cc-pV\(n\)Z-PP-F12-OptRI** \((n = D, T, Q, 5)\)
Atomic Natural Orbital basis sets

<table>
<thead>
<tr>
<th>Basis Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ano-pVnZ</code></td>
<td>$(n = D, T, Q, 5)$. Our newly contracted ANO basis sets on the basis of the cc-pV6Z (or pc-4 where missing) primitives. These are very accurate basis sets that are significantly better than the cc-pVnZ counterparts for the same number of basis functions (but much larger number of primitives of course).</td>
</tr>
<tr>
<td><code>saug-ano-pVnZ</code></td>
<td>$(n = D, T, Q)$ augmentation with a single set of sp functions. Greatly enhances the accuracy of the SCF energies but not for correlation energies.</td>
</tr>
<tr>
<td><code>aug-ano-pVnZ</code></td>
<td>$(n = D, T, Q)$ full augmentation with spd, spdf, spdfg set of polarization functions. Almost as expensive as the next higher basis set. In fact, <code>aug-ano-pVnZ = ano-pV(n + 1)Z</code> with the highest angular momentum polarization function deleted.</td>
</tr>
</tbody>
</table>

Relativistic contracted ANO-RCC basis sets

<table>
<thead>
<tr>
<th>Basis Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANO-RCC-FULL</td>
<td>The complete ANO-RCC basis sets (H-Cm). Some default contractions are provided for convenience with the keywords:</td>
</tr>
<tr>
<td>ANO-RCC-DZP</td>
<td></td>
</tr>
<tr>
<td>ANO-RCC-TZP</td>
<td></td>
</tr>
<tr>
<td>ANO-RCC-QZP</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous and specialized basis sets

<table>
<thead>
<tr>
<th>Basis Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D95</td>
<td>Dunning’s double-zeta basis set (H–Cl).</td>
</tr>
<tr>
<td>D95p</td>
<td>Polarized version of D95.</td>
</tr>
<tr>
<td>MINI</td>
<td>Huzinaga’s minimal basis set.</td>
</tr>
<tr>
<td>MINIS</td>
<td>Scaled version of the MINI.</td>
</tr>
<tr>
<td>MIDI</td>
<td>Huzinaga’s valence double-zeta basis set.</td>
</tr>
<tr>
<td>MINIX</td>
<td>Combination of small basis sets by Grimme (see Table 9.5).</td>
</tr>
<tr>
<td>Wachters+f</td>
<td>First-row transition metal basis set (Sc–Cu).</td>
</tr>
<tr>
<td>Partridge-n</td>
<td>$(n = 1, 2, 3, 4)$ Uncontracted basis sets by Partridge.</td>
</tr>
<tr>
<td>LANL2DZ</td>
<td>Los Alamos valence double-zeta with Hay–Wadt ECPs.</td>
</tr>
<tr>
<td>LANL2TZ</td>
<td>Triple-zeta version.</td>
</tr>
<tr>
<td>LANL2TZ(f)</td>
<td>Triple-zeta plus polarization.</td>
</tr>
<tr>
<td>LANL08</td>
<td>Uncontracted basis set.</td>
</tr>
<tr>
<td>LANL08(f)</td>
<td>Uncontracted basis set + polarization.</td>
</tr>
<tr>
<td>EPR-II</td>
<td>Barone’s basis set (H, B–F) for EPR calculations (double-zeta).</td>
</tr>
<tr>
<td>EPR-III</td>
<td>Barone’s basis set for EPR calculations (triple-zeta).</td>
</tr>
<tr>
<td>IGLO-II</td>
<td>Kutzelnigg’s basis set (H, B–F, Al–Cl) for NMR and EPR calculations.</td>
</tr>
<tr>
<td>IGLO-III</td>
<td>Larger version of the above.</td>
</tr>
<tr>
<td><code>aug-cc-pVTZ-J</code></td>
<td>Sauer’s basis set for accurate hyperfine coupling constants.</td>
</tr>
</tbody>
</table>

Auxiliary basis sets. Auxiliary basis sets for the RI-J and RI-MP2 approximations can also be specified directly in the simple input:
Table 6.4: Overview of auxiliary basis sets available in ORCA.

<table>
<thead>
<tr>
<th>Auxiliary basis sets for Coulomb fitting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def2/J</td>
<td>Weigend’s “universal” Coulomb fitting basis that is suitable for all def2 type basis sets. Assumes the use of ECPs beyond Kr (do not use with DKH/ZORA).</td>
</tr>
<tr>
<td>SARC/J</td>
<td>General-purpose Coulomb fitting basis set for all-electron calculations. Consists of the decontracted def2/J up to Kr and of our own auxiliary basis sets for the rest of the periodic table. Appropriate for use in DKH or ZORA calculations with the recontracted versions of the all-electron def2 basis sets (up to Kr) and the SARC basis sets for the heavier elements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary basis sets for simultaneously fitting Coulomb and exchange</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def2/JK</td>
<td>Coulomb+Exchange fitting for all def2 basis sets</td>
</tr>
<tr>
<td>Def2/JKsmall</td>
<td>reduced version of the above</td>
</tr>
<tr>
<td>cc-pVnZ/JK (n = T, Q, 5)</td>
<td>for the respective cc-pVnZ orbital basis</td>
</tr>
<tr>
<td>aug-cc-pVnZ/JK (n = T, Q, 5)</td>
<td>for the respective aug-cc-pVnZ orbital basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary basis sets for correlation calculations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def2-SVP/C</td>
<td>Correlation fitting for the def2-SVP orbital basis</td>
</tr>
<tr>
<td>Def2-TZVP/C</td>
<td>for the def2-TZVP orbital basis</td>
</tr>
<tr>
<td>Def2-TZVPP/C</td>
<td>for the def2-TZVPP orbital basis</td>
</tr>
<tr>
<td>Def2-QZVPP/C</td>
<td>for the def2-QZVPP orbital basis</td>
</tr>
<tr>
<td>cc-pVnZ/C (n = D, T, Q, 5, 6)</td>
<td>for the respective cc-pVnZ orbital basis</td>
</tr>
<tr>
<td>aug-cc-pVnZ/C (n = D, T, Q, 5, 6)</td>
<td>for the respective aug-cc-pVnZ orbital basis</td>
</tr>
<tr>
<td>cc-pwCVnZ/C (n = D, T, Q, 5)</td>
<td>for the respective cc-pwCVnZ orbital basis</td>
</tr>
<tr>
<td>aug-cc-pwCVnZ/C (n = D, T, Q)</td>
<td>for the respective aug-cc-pwCVnZ orbital basis</td>
</tr>
<tr>
<td>cc-pVnZ-PP/C (n = D, T, Q)</td>
<td>for the respective cc-pVnZ-PP orbital basis</td>
</tr>
<tr>
<td>aug-cc-pVnZ-PP/C (n = D, T, Q)</td>
<td>for the respective aug-cc-pVnZ-PP orbital basis</td>
</tr>
<tr>
<td>cc-pwCVnZ-PP/C (n = D, T, Q)</td>
<td>for the respective cc-pwCVnZ-PP orbital basis</td>
</tr>
<tr>
<td>aug-cc-pwCVnZ-PP/C (n = D, T, Q)</td>
<td>for the respective aug-cc-pwCVnZ-PP orbital basis</td>
</tr>
<tr>
<td>cc-pVnZ-F12-MP2fit (n = D, T, Q)</td>
<td>for the respective cc-pVnZ-F12 orbital basis</td>
</tr>
<tr>
<td>cc-pCVnZ-F12-MP2fit (n = D, T, Q)</td>
<td>for the respective cc-pCVnZ-F12 orbital basis</td>
</tr>
<tr>
<td>cc-pVnZ-PP-F12-MP2fit (n = D, T, Q)</td>
<td>for the respective cc-pVnZ-PP-F12 orbital basis</td>
</tr>
<tr>
<td>AutoAux</td>
<td>Automatic construction of a general purpose auxiliary basis for simultaneously fitting Coulomb, exchange and correlation calculations. See section 9.3.1 for details.</td>
</tr>
</tbody>
</table>

NOTE: ORCA versions before 4.0 allowed the use of multiple keywords to invoke the same def2 Coulomb or Coulomb+exchange fitting basis set of Weigend. To avoid confusion all these keywords are now deprecated and the auxiliary basis sets are simply called using “def2/J” and “def2/JK”.

NOTE: Starting from version 2.6.63 ORCA can deal with two auxiliary basis sets – one for Coulomb and one for correlation. The default is the Coulomb fitting aux-basis. If you select a separate correlation fitting
basis, the correlation modules (RI-MP2, RI-MDCI, RI-MRCI) will replace this Coulomb fitting aux-basis with the correlation fitting basis. In order to use this feature you have to give the “/C”-fit basis via the “simple input” lines.

6.3.2 Use of scalar relativistic basis sets

For DKH and ZORA calculations ORCA provides relativistically recontracted versions of the Karlsruhe basis sets for elements up to Kr. These can be requested by adding the prefix DKH- or ZORA- to the normal basis set name. Note that for other non-relativistic basis sets (for example Pople-style bases) no recontraction has been performed and consequently such calculations are inconsistent! The basis set and the scalar relativistic Hamiltonian are specified in the keyword line, for example:

```
! B3LYP ZORA ZORA-TZVP ...
```

If an auxiliary basis set is required for these recontracted Karlsruhe basis sets, we recommend the use of the decontracted def2/J. This can be obtained simply by using the keyword “! SARC/J” (instead of the equivalent “! def2/J DecontractAux”) and is the recommended option as it simultaneously covers the use of SARC basis sets for elements beyond Krypton.

```
! TPSS ZORA ZORA-def2-TZVP SARC/J ...
```

For all-electron calculations with heavier elements (third-row transition metals, lanthanides, actinides and 6p elements) we offer the SARC (segmented all-electron relativistically contracted) basis sets [5–9]. These were specifically developed for scalar relativistic calculations and are individually adapted to the DKH2 and ZORA Hamiltonians. In this case the auxiliary basis set must be specified as SARC/J.

```
! PBE DKH SARC-DKH-TZVP SARC/J ...
```

Other basis sets suitable for scalar relativistic calculations are various versions of the all-electron correlation-consistent basis sets that are optimized for the DKH2 Hamiltonian and can be called with the suffix “-DK”. The relativistically contracted atomic natural orbital (ANO-RCC) basis sets of Roos and coworkers were also developed for the DKH2 Hamiltonian and have almost complete coverage of the periodic table (up to Cm).

6.3.3 Effective Core Potentials

Starting from version 2.8.0, ORCA features effective core potentials (ECPs). They are a good alternative to scalar relativistic all-electron calculations if heavy elements are involved. This pertains to geometry optimizations and energy calculations but may not be true for property calculations.

In order to reduce the computational effort, the usually highly contracted and chemically inert core basis functions can be eliminated by employing ECPs. ECP calculations comprise a “valence-only” basis and thus are subject to the frozen core approximation. Contributions due to the core orbitals are accounted for by an effective one-electron operator U^{core} which replaces the interactions between core and valence electrons and
accounts for the indistinguishability of the electrons. Its radial parts \(U_l(r) \) are generally expressed as a linear combination of Gaussian functions, while the angular dependence is included through angular momentum projectors \(S_{lm}^l \).

\[
U_{\text{core}} = U_L(r) + \sum_{l=0}^{L-1} \sum_{m=-l}^{l} |S_{lm}^l \rangle \langle U_l(r) - U_L(r) | S_{lm}^l |
\]

\[
U_l = \sum_k d_{kl} r^{n_{kl}} \exp(-\alpha_{kl} r^2)
\]

The maximum angular momentum \(L \) is generally defined as \(l_{\text{atom}}^{\text{max}} + 1 \). The parameters \(n_{kl}, \alpha_{kl} \) and \(d_{kl} \) that are necessary to evaluate the ECP integrals have been published by various authors, among them the well-known Los Alamos (LANL) [11] and Stuttgart–Dresden (SD) [12–57] parameter sets. Depending on the specific parametrization of the ECP, relativistic effects can be included in a semiempirical fashion in an otherwise nonrelativistic calculation. Introducing \(U_{\text{core}} \) into the electronic Hamiltonian yields two types of ECP integrals, the local (or type-1) integrals that arise because of the maximum angular momentum potential \(U_L \) and the semi-local (or type-2) integrals that result from the projected potential terms. The evaluation of these integrals in ORCA proceeds according to the scheme published by Flores-Moreno et al. [58].

A selection of ECP parameters and associated basis sets is directly accessible in ORCA through the internal ECP library (see table 6.5 for a listing of keywords).

<table>
<thead>
<tr>
<th>ECP keyword</th>
<th>Core size (^1)</th>
<th>Elements</th>
<th>Valence basis sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>def2-ECP</td>
<td>28</td>
<td>Rb–Xe</td>
<td>Karlsruhe basis sets:</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Cs–La</td>
<td>def2-SVP, def2-TZVP, etc.</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Ce–Lu</td>
<td>def2-SVPD, def2-TZVPD, etc.</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Hf–Rn</td>
<td>ma-def2-SVP, ma-def2-TZVP, etc.</td>
</tr>
<tr>
<td>SK-MCDHF-RSC</td>
<td>10</td>
<td>Ca, Cu–Kr</td>
<td>Correlation-consistent basis sets:</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Sr–Xe</td>
<td>cc-pV(_n)Z-PP, aug-cc-pV(_n)Z-PP,</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Ba</td>
<td>cc-pCV(_n)Z-PP, aug-cc-pCV(_n)Z-PP,</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Hf–Rn</td>
<td>cc-pwCV(_n)Z-PP, aug-cc-pwCV(_n)Z-PP</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>Ra</td>
<td>((n = D, T, Q, 5))</td>
</tr>
<tr>
<td>HayWadt(^2)</td>
<td>10</td>
<td>Na–Cu</td>
<td>LANL-type basis sets:</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Zn</td>
<td>LANL2DZ, LANL2TZ, LANL2TZ(f),</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Ga–Ag</td>
<td>LANL08, LANL08(f)</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Cd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>In–La</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Hf–Au</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>Hg–Tl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>Pb–Bi, U–Pu</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\) Core size \(= \sum_{l=0}^{L-1} n_{kl} \) for each ECP.

\(^{2}\) Recommended for chemically inert elements.

\(^{3}\) LANL2DZ(f), LANL2TZ(f) for lanthanides and actinides.

<table>
<thead>
<tr>
<th>ECP keyword</th>
<th>Core size (^1)</th>
<th>Elements</th>
<th>Valence basis sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>def2-SD</td>
<td>28, MWB</td>
<td>Rb–Cd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28, MDF(^3)</td>
<td>In–Xe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46, MWB</td>
<td>Cs–La</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60, MWB</td>
<td>Hf–Pt</td>
<td></td>
</tr>
</tbody>
</table>
General Structure of the Input File

Def-Sd

<table>
<thead>
<tr>
<th>Method</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def-Sd</td>
<td>Au–Rn</td>
</tr>
<tr>
<td></td>
<td>Rb–Cd</td>
</tr>
<tr>
<td></td>
<td>In–La</td>
</tr>
<tr>
<td></td>
<td>Ce–Lu</td>
</tr>
<tr>
<td></td>
<td>Hf–Pt</td>
</tr>
<tr>
<td></td>
<td>Au, Hg, Rn</td>
</tr>
<tr>
<td></td>
<td>Tl–At</td>
</tr>
<tr>
<td></td>
<td>Fr, Ra</td>
</tr>
<tr>
<td></td>
<td>Ac–Lr</td>
</tr>
</tbody>
</table>

Sdd

<table>
<thead>
<tr>
<th>Method</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sdd</td>
<td>Li, Be</td>
</tr>
<tr>
<td></td>
<td>B–Ne</td>
</tr>
<tr>
<td></td>
<td>Na, Mg</td>
</tr>
<tr>
<td></td>
<td>Al–Ca</td>
</tr>
<tr>
<td></td>
<td>Sc–Zn</td>
</tr>
<tr>
<td></td>
<td>Cu–Zn</td>
</tr>
<tr>
<td></td>
<td>Ga–Sr</td>
</tr>
<tr>
<td></td>
<td>Y–Cd</td>
</tr>
<tr>
<td></td>
<td>Ge–Br, Rb–Xe</td>
</tr>
<tr>
<td></td>
<td>In–Ba</td>
</tr>
<tr>
<td></td>
<td>La–Lu</td>
</tr>
<tr>
<td></td>
<td>Hf–Hg</td>
</tr>
<tr>
<td></td>
<td>Tl–Rn</td>
</tr>
<tr>
<td></td>
<td>Ac–Lr</td>
</tr>
</tbody>
</table>

Lanl1

<table>
<thead>
<tr>
<th>Method</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanl1</td>
<td>Na–Ar</td>
</tr>
<tr>
<td></td>
<td>K–Zn</td>
</tr>
<tr>
<td></td>
<td>Ga–Kr</td>
</tr>
<tr>
<td></td>
<td>Rb–Cd</td>
</tr>
<tr>
<td></td>
<td>In–Xe</td>
</tr>
<tr>
<td></td>
<td>Cs–La</td>
</tr>
<tr>
<td></td>
<td>Hf–Tl</td>
</tr>
<tr>
<td></td>
<td>Pb, Bi</td>
</tr>
</tbody>
</table>

Lanl2

<table>
<thead>
<tr>
<th>Method</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanl2</td>
<td>K–Cu</td>
</tr>
<tr>
<td></td>
<td>Rb–Ag</td>
</tr>
<tr>
<td></td>
<td>Cs–La</td>
</tr>
<tr>
<td></td>
<td>Hf–Au</td>
</tr>
</tbody>
</table>

1. Where applicable, reference method and data are given (S: single-valence-electron ion; M: neutral atom; HF: Hartree–Fock; WB: quasi-relativistic; DF: relativistic).

2. Corresponds to Lanl2 and to Lanl1 where Lanl2 is unavailable.

3. I: OLD-Sd(28,Mdf) for compatibility with TURBOMOLE.

4. Au, Hg: OLD-Sd(60,Mdf) for compatibility with TURBOMOLE.

By default, the Def2-X basis sets use the Def2-Ecp effective core potential definition!

The simplest way to assign ECPs is by using the ECP keyword within the keyword line. The ECP keyword itself assigns only the effective core potential, not a valence basis set!
Ordinary Radial Basis Functions (ORCA) and Symmetry

As an example for an explicitly named ECP you could use

```
! def2-TZVP def2-SD
```

This would assign the def2-SD ECP according to the definition given in the table above. Without the def2-SD keyword ORCA would default to Def2-ECP. Other basis sets also have default ECP definitions - see the footnotes under table 9.7.

6.4 ORCA and Symmetry

For most of its life, ORCA did not take advantage of molecular symmetry. Starting from version 2.8.0 there is at least limited use. On request, with the `UseSym` keyword, the program detects the point group, cleans up the coordinates, orients the molecule and produces symmetry-adapted orbitals in SCF/CASSCF calculations. Note however that the calculation time will not be reduced. Only D_{2h} and subgroups are currently supported. The only correlation module that makes use of this information so far is the MRCI module. Here and in CASSCF calculations, the use of symmetry helps to control the calculation and the interpretation of the results. More symmetry is likely to be implemented in the future, although it is unlikely that the program will ever take advantage of symmetry in a very big way.

If the automatic symmetry detection fails to find the expected point group, the coordinates specified are not absolutely symmetrical to that group, and one should take a careful look at the input coordinates, maybe using a visualization program. A problem often encountered when using coordinates generated from other jobs (e.g. geometry optimizations) is the detection of a “too low” symmetry because of numerical noise. This can be solved by increasing the detection threshold using an input line which looks like this:

```
%method SymThresh 5.0e-2 end
```

However, it is not recommended to run calculations on a very high threshold, since this may introduce some odd behavior. Instead, a method to symmetrize the coordinates is to do a “fake” run with `NoIter`, `XYZFile` and an increased threshold, and then to use the created `.xyz` file as input for the actual calculation. This has the additional benefit that the input coordinates stored in your data are already symmetrical. To give an example: the following coordinates for staggered ethane were obtained by geometry optimization NOT using the symmetry module. They are, however, not recognized as D_{3d} symmetrical due to numerical noise and instead are found to be of C_i symmetry (a subgroup of D_{3d}). To counter this, the detection threshold is increased and a symmetry perfected coordinate file is produced by the following input:

```
! RHF SVP UseSym NoIter XYZfile
%method SymThresh 1.0e-2 end
*xyz 0 1
  C -0.002822 -0.005082 -0.001782
  C -0.723141 -1.252323 -0.511551
  H  0.017157  0.029421  1.100049
  H  1.042121  0.030085 -0.350586
```
6.5 Jobs with Multiple Steps

ORCA supports input files with multiple jobs. This feature is designed to simplify series of closely related calculations on the same molecule or calculations on different molecules. The objectives for implementing this feature include:

- Calculate of a molecular property using different theoretical methods and/or basis sets for one molecule.
- Calculations on a series of molecules with identical settings.
- Geometry optimization followed by more accurate single points and perhaps property calculations.
- Crude calculations to provide good starting orbitals that may then be used for subsequent calculations with larger basis sets.

For example consider the following job that in the first step computes the g-tensor of BO at the LDA level, and in the second step using the BP86 functional.

```
# -----------------------------------------------------
! UKS LSD SVP grid5 NoFinalGrid TightSCF KeepInts
# -----------------------------------------------------
%eprnmr
gtensor 1 end

* int 0 2
  B 0 0 0 0 0 0
  O 1 0 0 1.2049 0 0

* 

# *************************************************
# ****** This starts the input for the next job *
# *************************************************
$new_job
# --------------------------------------------------
! BP86 SVP SmallPrint ReadInts NoKeepInts
# --------------------------------------------------
%eprnmr
gtensor 1 end

* int 0 2
  B 0 0 0 0 0 0
```
What happens if you use the new_job feature is that all calculation flags for the actual job are transferred from the previous job and that only the changes in the settings must be input by the user. Thus if you turn on some flags for one calculation that you do not want for the next, you have to turn them off again yourself (for example the use of the RI approximation)! In addition, the default is that the new job takes the orbitals from the old job as input. If you do not want this you have to overwrite this default by specifying your desired guess explicitly.

Changing the default BaseName

Normally the output files for MyJob.inp are returned in MyJob.xxx (any xxx, for example xxx=out). Sometimes, and in particular in multistep jobs, you will want to change this behavior. To this end there is the variable “%base” that can be user controlled. All filenames (also scratch files) will then be based on this default name.
7 Input of Coordinates

Coordinates can be either specified directly in the input file or read from an external file, and they can be in either Cartesian ("xyz") or internal coordinate format ("Z-matrix").

7.1 Reading coordinates from the input file

The easiest way to specify coordinates in the input file is by including a block like the following, enclosed by star symbols:

```
* CType Charge Multiplicity
... coordinate specifications ...
*
```

Here `CType` can be one of `xyz`, `int` (or `internal`), or `gzmt`, which correspond to Cartesian coordinates, internal coordinates, and internal coordinates in Gaussian Z-matrix format.

The input of Cartesian coordinates in the "xyz" option is straightforward. Each line consists of the label for a given atom type and three numbers that specify the coordinates of the atom. The units can be either Ångström or Bohr. The default is to specify the coordinates in Ångströms (this can be changed through the keyword line or via the variable `Units` in the `%coords` main block described below).

```
* xyz Charge Multiplicity
Atom1 x1 y1 z1
Atom2 x2 y2 z2
...
*
```

For example for CO\(^+\) in a \(S = 1/2\) state (multiplicity = \(2 \times 1/2 + 1 = 2\))

```
* xyz 1 2
C 0.0 0.0 0.0
O 0.0 0.0 1.1105
*
```
Internal coordinates are specified in the form of the familiar “Z-matrix”. A Z-matrix basically contains information about molecular connectivity, bond lengths, bond angles and dihedral angles. The program then constructs Cartesian coordinates from this information. Both sets of coordinates are printed in the output such that conversion between formats is facilitated. The input in that case looks like:

```
* int Charge Multiplicity
Atom1 0 0 0 0.0 0.0 0.0
Atom2 1 0 0 R1 0.0 0.0
Atom3 1 2 0 R2 A1 0.0
Atom4 1 2 3 R3 A2 D1
  . . .
AtomN NA NB NC RN AN DN
*  
```

The rules for connectivity in the “internal” mode are as follows:

- **NA**: The atom that the actual atom has a distance (RN) with.
- **NB**: The actual atom has an angle (AN) with atoms NA and NB.
- **NC**: The actual atom has a dihedral angle (DN) with atoms NA, NB and NC. This is the angle between the actual atom and atom NC when looking down the NA-NB axis.

Angles are always given in degrees! The rules are compatible with those used in the well known MOPAC and ADF programs.

Finally, **gzmt** specifies internal coordinates in the format used by the Gaussian program. This resembles the following:

```
* gzmt 0 1
  C
  0 1 4.454280
  Si 2 1.612138 1 56.446186
  0 3 1.652560 2 114.631525 1 -73.696925
  C 4 1.367361 3 123.895399 2 -110.635060
  . . .
  *
```

An alternative way to specify coordinates in the input file is through the use of the **%coords** block, which is organized as follows:

```
%coords
 CTyp xyz  # the type of coordinates = xyz or internal
 Charge 0  # the total charge of the molecule
 Mult 2    # the multiplicity = 2S+1
```
7.2 Reading coordinates from external files

It is also possible to read the coordinates from external files. The most common format is a .xyz file, which can in principle contain more than one structure (see section 8.2.9 for this multiple XYZ feature):

```
* xyzfile 1 2 mycoords.xyz
```

A lot of graphical tools like Gabedit, molden or Jmol can write Gaussian Z-Matrices (.gzmt). ORCA can also read them from an external file with the following

```
* gzmtfile 1 2 mycoords.gzmt
```

Note that if multiple jobs are specified in the same input file then new jobs can read the coordinates from previous jobs. If no filename is given as fourth argument then the name of the actual job is automatically used.

```
... specification for the first job

$new_job
! keywords
* xyzfile 1 2
```

In this way, optimization and single point jobs can be very conveniently combined in a single, simple input file. Examples are provided in the following sections.
7.3 Special definitions

- **Dummy atoms** are defined in exactly the same way as any other atom, by using “DA” as the atomic symbol.

- **Ghost atoms** are specified by adding “:” right after the symbol of the element (see 8.1.6).

- **Point charges** are specified with the symbol “Q”, followed by the charge (see 9.1.3).

- **Embedding potentials** are specified by adding a “>” right after the symbol of the element (see 9.3.7).

- **Non-standard** isotopes or nuclear charges are specified with the statements “M = ...” and “Z = ...”, respectively, after the atomic coordinate definition.

- **Fragments** can be conveniently defined by declaring the fragment number a given atom belongs to in parentheses “(n)” following the element symbol (see 9.1.1).
8 Running Typical Calculations

Before entering the detailed documentation of the various features of ORCA it is instructive to provide a chapter that shows how “typical” tasks may be performed. This should make it easier for the user to get started on the program and not get lost in the details of how-to-do-this or how-to-do-that. We hope that the examples are reasonably intuitive.

8.1 Single Point Energies and Gradients

8.1.1 Hartree-Fock

8.1.1.1 Standard Single Points

In general single point calculations are fairly easy to run. What is required is the input of a method, a basis set and a geometry. For example, in order run a single point Hartree-Fock calculation on the CO molecule with the SVP basis set type:

```verbatim
# My first ORCA calculation :-) #
! HF SVP
* xyz 0 1
  C  0  0  0
  0  0  0  1.13
*
```

As an example consider this simple calculation on the cyclohexane molecule that may serve as a prototype for this type of calculation.

```verbatim
# Test a simple direct HF calculation
! HF RHF SV(P)
* xyz 0 1
  C -0.79263  0.55338  -1.58694
  C  0.68078  0.13314  -1.72622
  C  1.50034  0.61020  -0.52199
```
8.1.1.2 Basis Set Options

There is extensive flexibility in the specification of basis sets in ORCA. First of all, you are not only restricted to the basis sets that are built in ORCA, but can also read basis set definitions from files. In addition there is a convenient way to change basis sets on certain types of atoms or on individual atoms. Consider the following example:

```
# CuCl4
! UHF HF
%basis basis "SV"
    newGTO Cl "DUNNING-DZP" end
end
* xyz -2 2
    Cu  0   0   0 newGTO "TZVPP" end
    Cl 2.25  0   0
    Cl -2.25  0   0
    Cl  0   2.25  0
    Cl  0   -2.25  0
* 
```

In this example the basis set is initialized as the Ahlrichs split valence basis. Then the basis set on all atoms of type Cl is changed to DUNNING-DZP and finally the basis set for only the copper atom is changed to the more accurate TZVPP set. In this way you could treat different atom types or even individual groups in a molecule according to the desired accuracy. Similar functionality regarding per-element or per-atom assignments exists for effective core potentials. More details are provided in section 9.3.
Sometimes you will like to change the ordering of the starting orbitals to obtain a different electronic state in the SCF calculation. For example, if we take the last input and want to converge to a ligand field excited state this can be achieved by:

```plaintext
! UHF HF SV
%basis newGTO Cl "Dunning-DZP" end
%scf rotate [48, 49, 90, 1, 1] end
* xyz -2 2
 Cu 0 0 0 newGTO "TZVPP" end
 Cl 2.25 0 0
 Cl -2.25 0 0
 Cl 0 2.25 0
 Cl 0 -2.25 0
*
```

In the present case, MO 48 is the spin-down HOMO and MO49 the spin-down LUMO. Since we do a calculation on a Cu(II) complex (d^9 electron configuration) the beta LUMO corresponds with the “SOMO”. Thus, by changing the SOMO we proceed to a different electronic state (in this case the one with the “hole” in the “d_{xy}” orbital instead of the “d_{x^2−y^2}” orbital). The interchange of the initial guess MOs is achieved by the command `rotate [48, 49, 90, 1, 1] end`. What this does is the following: take the initial guess MOs 48 and 49 and rotate them by an angle of 90 degree (this just interchanges them). The two last numbers mean that both orbitals are from the spin-down set. For RHF or ROHF calculations the operator would be 0. In general you would probably first take a look at the initial guess orbitals before changing them.

8.1.1.3 SCF and Symmetry

Upon request, the SCF program produces symmetry adapted orbitals. This can help to converge the SCF on specific excited states of a given symmetry. Take for example the cation H_2O^+: We first run the simple job:

```plaintext
! SVP UseSym
* xyz 1 2
 O 0.000000 0.000000 0.068897
 H 0.000000 0.788011 −0.546765
 H 0.000000 −0.788011 −0.546765
*
```

The program will recognize the C_{2v} symmetry and adapt the orbitals to this:
8.1 Single Point Energies and Gradients

SYMMETRY DETECTION

Preparing Data ... done
Detection Threshold: SymThresh ... 1.0000e-04

Point Group will now be determined:
Moving molecule to center of mass ... done

POINT GROUP ... C2v

The coordinates will now be cleaned:
Moving to standard coord frame ... done
(Changed main axis to z and one of the symmetry planes to xz plane)
Structure cleanup requested ... yes
Selected point group ... C2v
Cleaning Tolerance SymThresh ... 1.0000e-04

Some missing point group data is constructed:
Constructing symmetry operations ... done
Creating atom transfer table ... done
Creating asymmetric unit ... done
Cleaning coordinates ... done

SYMMETRY-PERFECTED CARTESIAN COORDINATES (A.U.)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>0.13019595</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0.00000000</td>
<td>1.48912498</td>
<td>-1.03323662</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>0.00000000</td>
<td>-1.48912498</td>
<td>-1.03323662</td>
</tr>
</tbody>
</table>

SYMMETRY REDUCTION

ORCA supports only abelian point groups.
It is now checked, if the determined point group is supported:
Point Group (C2v) is ... supported

(Re)building abelian point group:
Creating Character Table ... done
Making direct product table ... done

ASYMMETRIC UNIT IN C2v

<table>
<thead>
<tr>
<th>#</th>
<th>AT</th>
<th>MASS</th>
<th>COORDS</th>
<th>BAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td>15.9990</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>1.0080</td>
<td>0.00000000</td>
<td>1.48912498</td>
</tr>
</tbody>
</table>

SYMMETRY ADOPTED BASIS

The coefficients for the symmetry adopted linear combinations (SALCS) of basis functions will now be computed:
Number of basis functions ... 24
The initial guess in the SCF program will then recognize and freeze the occupation numbers in each irreducible representation of the C_{2v} point group.

The symmetry of the initial guess is 2-B1

Irrep occupations for operator 0

<table>
<thead>
<tr>
<th>Irrep</th>
<th>OCC</th>
<th>E(Eh)</th>
<th>E(eV)</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3</td>
<td>-21.127827</td>
<td>-574.9174</td>
<td>1-A1</td>
</tr>
<tr>
<td>A2</td>
<td>0</td>
<td>-1.867576</td>
<td>-50.8193</td>
<td>2-A1</td>
</tr>
<tr>
<td>B1</td>
<td>1</td>
<td>-1.192139</td>
<td>-32.4597</td>
<td>1-B2</td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
<td>-1.124657</td>
<td>-30.6955</td>
<td>1-B1</td>
</tr>
</tbody>
</table>

Irrep occupations for operator 1

<table>
<thead>
<tr>
<th>Irrep</th>
<th>OCC</th>
<th>E(Eh)</th>
<th>E(eV)</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3</td>
<td>-1.0000</td>
<td>-21.081198</td>
<td>-573.6486</td>
</tr>
<tr>
<td>A2</td>
<td>0</td>
<td>-0.306683</td>
<td>-8.3453</td>
<td>3-A1</td>
</tr>
<tr>
<td>B1</td>
<td>0</td>
<td>-0.139418</td>
<td>-3.7937</td>
<td>4-A1</td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
<td>-0.062261</td>
<td>-1.6942</td>
<td>2-B2</td>
</tr>
</tbody>
</table>

The calculation converges smoothly to

Total Energy : -75.56349710 Eh -2056.18729 eV

With the final orbitals being:

SPIN UP ORBITALS

<table>
<thead>
<tr>
<th>NO</th>
<th>OCC</th>
<th>E(Eh)</th>
<th>E(eV)</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>-21.081198</td>
<td>-573.6486</td>
<td>1-A1</td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>-1.710193</td>
<td>-46.5367</td>
<td>2-A1</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>-1.152855</td>
<td>-31.3708</td>
<td>1-B2</td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
<td>-1.032556</td>
<td>-28.0973</td>
<td>1-B1</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>-0.306683</td>
<td>-8.3453</td>
<td>3-A1</td>
</tr>
<tr>
<td>5</td>
<td>0.0000</td>
<td>-0.139418</td>
<td>-3.7937</td>
<td>4-A1</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>-0.062261</td>
<td>-1.6942</td>
<td>2-B2</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.374727</td>
<td>10.1968</td>
<td>3-B2</td>
</tr>
</tbody>
</table>

SPIN DOWN ORBITALS

<table>
<thead>
<tr>
<th>NO</th>
<th>OCC</th>
<th>E(Eh)</th>
<th>E(eV)</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>-21.081198</td>
<td>-573.6486</td>
<td>1-A1</td>
</tr>
<tr>
<td>1</td>
<td>1.0000</td>
<td>-1.710193</td>
<td>-46.5367</td>
<td>2-A1</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>-1.152855</td>
<td>-31.3708</td>
<td>1-B2</td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
<td>-1.032556</td>
<td>-28.0973</td>
<td>1-B1</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>-0.306683</td>
<td>-8.3453</td>
<td>3-A1</td>
</tr>
<tr>
<td>5</td>
<td>0.0000</td>
<td>-0.139418</td>
<td>-3.7937</td>
<td>4-A1</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>-0.062261</td>
<td>-1.6942</td>
<td>2-B2</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.374727</td>
<td>10.1968</td>
<td>3-B2</td>
</tr>
</tbody>
</table>
Suppose now that we want to converge on an excited state formed by flipping the spin-beta HOMO and LUMO that have different symmetries.

```plaintext
! SVP UseSym
! moread
%moinp "Test-SYM-H2O+.gbw"
%scf rotate {3,4,90,1,1}
  end
* xyz 1 2
  O 0.000000 0.000000 0.068897
  H 0.000000 0.788011 -0.546765
  H 0.000000 -0.788011 -0.546765
*
```

The program now finds:

- Irrep occupations for operator 0:
 - A1: 3
 - A2: 0
 - B1: 1
 - B2: 1

- Irrep occupations for operator 1:
 - A1: 2
 - A2: 0
 - B1: 1
 - B2: 1

And converges smoothly to

```
Total Energy : -75.48231924 Eh -2053.97833 eV
```

Which is obviously an excited state of the H$_2$O$^+$ molecule. In this situation (and in many others) it is an advantage to have symmetry adapted orbitals.

8.1.2 MP2

8.1.2.1 MP2 and RI-MP2 Energies

You can do conventional or integral direct MP2 calculations for RHF, UHF or high-spin ROHF reference wavefunctions. MP3 functionality is not implemented as part of the MP2 module, but can be accessed through the MDCI module. Analytic gradients and Hessians are available for RHF and UHF. The frozen core approximation is used by default. An extensive coverage of MP2 exists in the literature. [59–72]
NOTE:

- There are two algorithms for MP2 calculations without the RI approximation. The first one uses main memory as much as possible. The second one uses more disk space and is usually faster (in particular, if you run the calculations in single precision using ! FLOAT, UCFLOAT or CFLOAT). The memory algorithm is used using $Q1Opt > 0$ and the disk based algorithm uses $Q1Opt = -1$. Gradients are presently only available for the memory based algorithm.

The RI approximation to MP2 [69–72] is fairly easy to use, too. It results in a tremendous speedup of the calculation, while errors in energy differences are very small. For example, consider the same calculation as before:

```
! RI-MP2 RHF def2-TZP def2-TZVP/C TightSCF
%mp2 MaxCore 100
end
%paras
  rCO  =  1.20  
  ACOH =  120  
  rCH  =  1.08  
end
* int 0 1
  C  0 0 0 0.00  0.0  0.00
  O  1 0 0 {rCO}  0.0  0.00
  H  1 2 0 {rCH} {ACOH}  0.00
  H  1 2 3 {rCH} {ACOH}  180.00
* 
```

Generally, the RI approximation can be switched on by setting $RI true$ in the $%MP2$ block. Specification of an appropriate auxiliary basis set (“/C”) for correlated calculations is required. Note that if the RIJCOSX
method (section 8.1.4.3) or the RI-JK method (section 8.1.4.4) is used to accelerate the SCF calculation, then two basis sets should be specified: firstly the appropriate Coulomb (“/J”) or exchange fitting set (“/JK”), and secondly the correlation fitting set (“/C”), as shown in the example below.

```
# Simple input line for RIJCOSX:
! RHF RI-MP2 RIJCOSX def2-TZVP def2/J def2-TZVP/C TightSCF

# Simple input line for RI-KJ:
! RHF RI-MP2 RI-JK def2-TZVP def2/JK def2-TZVP/C TightSCF
```

The MP2 module can also do Grimme’s spin-component scaled MP2 [73]. It is a semi-empirical modification of MP2 which applies different scaling factors to same-spin and opposite-spin components of the MP2 energy. Typically it gives a fair bit better results than MP2 itself.

```
# Spin-component scaled MP2 example

! SCS-MP2 RHF def2-TZVPP TightSCF

%paras
rCO = 1.20
ACOH = 120
rCH = 1.08
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 {rCO} 0.0 0.00
H 1 2 0 {rCH} {ACOH} 0.00
H 1 2 3 {rCH} {ACOH} 180.00
*
```

Energy differences with SCS-MP2 appear to be much better than from MP2 itself according to Grimme’s detailed evaluation study. For the sake of efficiency, it is beneficial to make use of the RI approximation using the RI-SCS-MP2 keyword. The opposite-spin and same-spin scaling factors can be modified using PS and PT in the MP2-block, respectively. By default, $PS = \frac{6}{5}$ and $PT = \frac{1}{3}$.

NOTE

- In very large RI-MP2 runs you can cut down the amount of main memory used by a factor of two if you use the keyword ! FLOAT. This is more important in gradient runs than in single point runs. Deviations from double precision values for energies and gradients should be in the μEh and sub-μEh range. However, we have met cases where this option introduced a large and unacceptable error, in particular in transition metal calculations. You are therefore advised to be careful and check things out beforehand.
8.1.2.2 Frozen Core Options

In MP2 energy and gradient runs the Frozen Core (FC) approximation is applied by default. This implies that the core electrons are not included in the perturbation treatment, since the inclusion of dynamic correlation in the core electrons usually effects relative energies or geometry parameters insignificantly.

The frozen core option can be switched on or off with FrozenCore or NoFrozenCore in the simple input line. Furthermore, frozen orbitals can be selected by means of an energy window:

```plaintext
%method FrozenCore FC_EWIN end
%mp2 ewin -1.5, 1.0e3 end
```

More information and the different options can be found in section 9.8

8.1.2.3 Orbital Optimized MP2 Methods

By making the Hylleraas functional stationary with respect to the orbital rotations one obtains the orbital-optimized MP2 method that is implemented in ORCA in combination with the RI approximation (OO-RI-MP2). One obtains from these calculations orbitals that are adjusted to the dynamic correlation field at the level of second order many-body perturbation theory. Also, the total energy of the OO-RI-MP2 method is lower than that of the RI-MP2 method itself. One might think of this method as a special form of multiconfigurational SCF theory except for the fact that the Hamiltonian is divided into a 0\(^{th}\) order term and a perturbation.

The main benefit of the OO-RI-MP2 method is that it “repairs” the poor Hartree–Fock orbitals to some extent which should be particularly beneficial for systems which suffer from the imbalance in the Hartree-Fock treatment of the Coulomb and the Exchange hole. Based on the experience gained so far, the OO-RI-MP2 method is no better than RI-MP2 itself for the thermochemistry of organic molecules. However, for reactions barriers and radicals the benefits of OO-MP2 over MP2 are substantial. This is particularly true with respect to the spin-component scaled variant of OO-RI-MP2 that is OO-RI-SCS-MP2. Furthermore, the OO-RI-MP2 method substantially reduces the spin contamination in UHF calculations on radicals.

Since every iteration of the OO-MP2 method is as expensive as a RI-MP2 relaxed density calculation, the computational cost is much higher than for RI-MP2 itself. One should estimate about a factor of 10 increase in computation time with respect to the RI-MP2 time of a normal calculation. This may still be feasible for calculations in the range of 1000–2000 basis functions (the upper limit, however, implies very significant computational costs). A full assessment of the orbital optimized MP2 method has been published. [74]

OO-RI-MP2 is triggered with \texttt{! OO-RI-MP2} or \texttt{! OO-RI-SCS-MP2} (with spin component scaling). The method comes with new variables:

```plaintext
%mp2 OrbOpt true  # turns on the orbital optimization
CalcS2 false  # calculate the S**2 expectation value
              # in spin-unrestricted calculations
MaxOrbIter 64  # Max. number of iterations
```
The solver is a simple DIIS type scheme with additional level shifting. We have found that it is not really beneficial to first converge the Hartree-Fock equations. Thus it is sensible to additionally use the keyword !noiter in order to turn off the standard Hartree-Fock SCF process before entering the orbital optimizations.

The OO-RI-MP2 method is implemented for RHF and UHF reference wavefunctions. Analytic gradients are available.

The density does not need to be requested separately in OO-RI-MP2 calculations because it is automatically calculated. Also, there is no distinction between relaxed and unrelaxed densities because the OO-RI-MP2 energy is fully stationary with respect to all wavefunction parameters and hence the unrelaxed and relaxed densities coincide.

8.1.2.4 MP2 and RI-MP2 Gradients and Hessians

Geometry optimization with MP2, RI-MP2, SCS-MP2 and RI-SCS-MP2 proceeds just as with any SCF method. Frequencies can be calculated analytically in all-electron calculations. With frozen core orbitals, second derivatives of any kind are currently only available numerically. The RIJCOSX approximation (section 8.1.4.3) is supported in RI-MP2 and hence also in double-hybrid DFT gradient runs. This leads to large speedups in larger calculations, particularly if the basis sets are accurate.

--- Optimized Parameters ---
(Angstroem and degrees)

<table>
<thead>
<tr>
<th>Definition</th>
<th>OldVal</th>
<th>dE/dq</th>
<th>Step</th>
<th>FinalVal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B(O 1,C 0)</td>
<td>1.2081</td>
<td>0.000488</td>
<td>-0.0003</td>
<td>1.2078</td>
</tr>
<tr>
<td></td>
<td>Definition</td>
<td>OldVal</td>
<td>dE/dq</td>
<td>Step</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>B(H 2,C 0)</td>
<td>1.1027</td>
<td>0.000009</td>
<td>-0.0000</td>
</tr>
<tr>
<td>3</td>
<td>B(H 3,C 0)</td>
<td>1.1027</td>
<td>0.000009</td>
<td>-0.0000</td>
</tr>
<tr>
<td>4</td>
<td>A(O 1,C 0,H 3)</td>
<td>121.85</td>
<td>0.000026</td>
<td>-0.00</td>
</tr>
<tr>
<td>5</td>
<td>A(H 2,C 0,H 3)</td>
<td>116.29</td>
<td>-0.000053</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>A(O 1,C 0,H 2)</td>
<td>121.85</td>
<td>0.000026</td>
<td>-0.00</td>
</tr>
<tr>
<td>7</td>
<td>I(O 1,H 3,H 2,C 0)</td>
<td>-0.00</td>
<td>-0.000000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Just to demonstrate the accuracy of RI-MP2, here is the result with RI-SCS-MP2 instead of SCS-MP2, with the addition of def2-TZVP/C:

<table>
<thead>
<tr>
<th></th>
<th>Definition</th>
<th>OldVal</th>
<th>dE/dq</th>
<th>Step</th>
<th>FinalVal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B(O 1,C 0)</td>
<td>1.2081</td>
<td>0.000487</td>
<td>-0.0003</td>
<td>1.2078</td>
</tr>
<tr>
<td>2</td>
<td>B(H 2,C 0)</td>
<td>1.1027</td>
<td>0.000009</td>
<td>-0.0000</td>
<td>1.1027</td>
</tr>
<tr>
<td>3</td>
<td>B(H 3,C 0)</td>
<td>1.1027</td>
<td>0.000009</td>
<td>-0.0000</td>
<td>1.1027</td>
</tr>
<tr>
<td>4</td>
<td>A(O 1,C 0,H 3)</td>
<td>121.85</td>
<td>0.000026</td>
<td>-0.00</td>
<td>121.85</td>
</tr>
<tr>
<td>5</td>
<td>A(H 2,C 0,H 3)</td>
<td>116.29</td>
<td>-0.000053</td>
<td>0.01</td>
<td>116.30</td>
</tr>
<tr>
<td>6</td>
<td>A(O 1,C 0,H 2)</td>
<td>121.85</td>
<td>0.000026</td>
<td>-0.00</td>
<td>121.85</td>
</tr>
<tr>
<td>7</td>
<td>I(O 1,H 3,H 2,C 0)</td>
<td>-0.00</td>
<td>0.000000</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

You see that nothing is lost in the optimized geometry through the RI approximation thanks to the efficient and accurate RI-auxiliary basis sets of the Karlsruhe group (in general the deviations in the geometries between standard MP2 and RI-MP2 are very small). Thus, RI-MP2 really is a substantial improvement in efficiency over standard MP2.

Geometric gradients and Hessians can be calculated with RI-MP2 in conjunction with the RIJCOSX method. They are called the same way as with a conventional SCF wave function, for example to perform a geometry optimization with tight convergence parameters:

```
! RI-MP2 def2-TZVPP def2/J def2-TZVPP/C TightSCF RIJCOSX
! TightOpt
...
```

8.1.2.5 MP2 Properties, Densities and Natural Orbitals

The MP2 method can be used to calculate electric and magnetic properties such as dipole moments, polarizabilities, hyperfine couplings or g-tensors. For this purpose, the appropriate MP2 density needs to be requested - otherwise the properties are calculated using the SCF density!
Two types of densities can be constructed - an "unrelaxed" density (which basically corresponds to the MP2 expectation value density) and a "relaxed" density which incorporates orbital relaxation. For both sets of densities a population analysis is printed if the SCF calculation also requested this population analysis. These two densities are stored as JobName.pmp2ur.tmp and JobName.pmp2re.tmp, respectively. The corresponding spin densities are also constructed.

In addition to the density options, the user has the ability to construct MP2 natural orbitals. If relaxed densities are available, the program uses the relaxed densities and otherwise the unrelaxed ones. The natural orbitals are stored as JobName.mp2nat which is a GBW type file that can be read as input for other jobs (for example, it is sensible to start CASSCF calculations from MP2 natural orbitals). The density construction can be controlled separately in the input file (even without running a gradient or optimization) by:

```
#    # MP2 densities and natural orbitals
#
%mp2 Density none   # no density
  unrelaxed  # unrelaxed density
  relaxed   # relaxed density
  NatOrbs true  # Natural orbital construction on or off
end
```

Below is a calculation of the dipole and quadrupole moments of a water molecule:

```
! RHF RI-MP2 def2-SVP def2-SVP/C
%mp2 density relaxed end
%elprop dipole true
  quadrupole true
end
* int 0 1
  0 0 0 0 0 0
  H 1 0 0 0.9584 0 0
  H 1 2 0 0.9584 104.45 0
* 
```

Another example is a simple g-tensor calculation with MP2:

```
! UHF RI-MP2 def2-SVP def2-SVP/C TightSCF SOMF(1X) NoFrozenCore
%eprnmr gtensor 1
  ori -3
end
%mp2 density relaxed end
* int 1 2
  0 0 0 0 0 0
```
8.1.2.6 Explicitly correlated MP2 calculations

ORCA features an efficient explicit correlation module that is available for MP2 and coupled-cluster calculations (section 8.1.3.6). It is described below in the context of coupled-cluster calculations.

8.1.2.7 Local MP2 calculations

Purely domain-based local MP2 methodology dates back to Pulay and has been developed further by Werner, Schütz and co-workers. ORCA features a local MP2 method (DLPNO-MP2) that combines the ideas of domains and local pair natural orbitals, so that RI-MP2 energies are reproduced efficiently to within chemical accuracy. Due to the intricate connections with other DLPNO methods, reading of the sections 8.1.3.8 and 9.10.4 is recommended. A full description of the method for RHF reference wave functions has been published. [75] Explicit correlation is supported through the DLPNO-MP2-F12 methodology. [76]

Since DLPNO-MP2 employs an auxiliary basis set to evaluate integrals, its energies converge systematically to RI-MP2 as thresholds are tightened. The computational effort of DLPNO-MP2 with default settings is usually comparable with or less than that of a Hartree-Fock calculation. However, for small and medium-sized molecules, RI-MP2 is even faster than DLPNO-MP2.

Calculations on open-shell systems are supported through a UHF treatment. While most approximations are consistent between the RHF and UHF versions, this is not true for the PNO spaces. DLPNO-MP2 gives different energies for closed-shell molecules in the RHF and UHF formalisms. Therefore, numbers obtained through the UHF formalism must only be compared to other UHF numbers (and not to RHF numbers), even for closed-shell species. As for canonical MP2, ROHF reference wave functions are subject to an ROMP2 treatment through the UHF machinery. It is not consistent with the RHF version of DLPNO-MP2, unlike in the case of RHF-/ROHF-DLPNO-CCSD.

Input for DLPNO-MP2 requires little specification from the user:

```
# DLPNO-MP2 calculation with standard settings
# sufficient for most purposes
! def2-TZVP def2-TZVP/C DLPNO-MP2 TightSCF

# OR: DLPNO-MP2 with tighter thresholds
# May be interesting for weak interactions, calculations with diffuse basis sets etc.
! def2-TZVP def2-TZVP/C DLPNO-MP2 TightPNO TightSCF

%maxcore 2000
```
Noteworthy aspects of the DLPNO-MP2 method:

- Both DLPNO-CCSD(T) and DLPNO-MP2 are linear-scaling methods (albeit the former has a larger prefactor). This means that if a DLPNO-MP2 calculation can be performed, DLPNO-CCSD(T) is often going to be within reach, too. However, CCSD(T) is generally much more accurate than MP2 and thus should be given preference.

- A correlation fitting set must be provided, as the method makes use of the RI approximation.

- Canonical RI-MP2 energy differences are typically reproduced to within a fraction of 1 kcal/mol. The default thresholds have been chosen so as to reproduce about 99.9% of the total RI-MP2 correlation energy.

- The preferred way to control the accuracy of the method is by means of specifying “LoosePNO”, “NormalPNO” and “TightPNO” keywords. “NormalPNO” corresponds to default settings and does not need to be given explicitly. More details and an exhaustive list of input parameters are provided in section 9.9.7. Note that the thresholds differ from DLPNO coupled cluster.

- Results obtained from RI-MP2 and DLPNO-MP2, or from DLPNO-MP2 with different accuracy settings, must never be mixed, such as when computing energy differences. In calculations involving open-shell species, even the closed-shell molecules need to be subject to a UHF treatment.

- Spin-component scaled DLPNO-MP2 calculations are invoked by using the ! DLPNO-SCS-MP2 keyword instead of ! DLPNO-MP2 in the simple input line. Weights for same-spin and opposite-spin contributions can be adjusted as described for the canonical SCS-MP2 method.

- The frozen core approximation is used by default. If core orbitals are involved in the calculation, they are subject to the treatment described in section 9.9.7.

- Calculations can be performed in parallel.

- No analytic derivatives are implemented.

- It may be beneficial to accelerate the Hartree-Fock calculation by means of the RIJCOSX method (requiring specification of a second auxiliary set).

Explicit correlation has been implemented in the DLPNO-MP2-F12 methodology for RHF reference wave functions. The available approaches are C (keyword ! DLPNO-MP2-F12) and the somewhat more approximate D (keyword ! DLPNO-MP2-F12/D). Approach D is generally recommended as it results in a significant speedup while leading only to small errors relative to approach C. In addition to the MO and correlation fitting sets, a CABS basis set is also required for both F12 approaches as shown below.
8.1.3 Coupled-Cluster and Coupled-Pair Methods

8.1.3.1 Basics

The coupled-cluster method is presently available for RHF and UHF references. The implementation is fairly efficient and suitable for large-scale calculations. The most elementary use of this module is fairly simple.

! METHOD
where METHOD is:
CCSD CCSD(T) QCISD QCISD(T) CPF/n NCPF/n CEPA/n NCEPA/n
(n=1,2,3 for all variants) ACPF NACPF AQCC CISD

! AOX-METHOD
computes contributions from integrals with 3- and 4-external
labels directly from AO integrals that are pre-stored in a
packed format suitable for efficient processing

! AO-METHOD
computes contributions from integrals with 3- and 4-external
labels directly from AO integrals. Can be done for integral
direct and conventional runs. In particular, the conventional
calculations can be very efficient

! MO-METHOD (this is the default)
performs a full four index integral transformation. This is
also often a good choice

! RI-METHOD
selects the RI approximation for all integrals. Rarely advisable

! RI34-METHOD
selects the RI approximation for the integrals with 3- and 4-
external labels
#
The module has many additional options that are documented
later in the manual.
8.1 Single Point Energies and Gradients

| ! RCSinglesFock |
| ! RIJKSinglesFock |
| ! NoRCSinglesFock |
| ! NoRIJKSinglesFock |

Keywords to select the way the so-called singles Fock calculation is evaluated. The first two keywords turn on, the second two turn off # RIJCOSX or RIJK, respectively.

NOTE

- The same FrozenCore options as for MP2 are applied in the MDCI module.

The computational effort for these methods is high — $O(N^6)$ for all methods and $O(N^7)$ if the triples correction is to be computed (calculations based on an unrestricted determinant are roughly 3 times more expensive than closed-shell calculations and approximately six times more expensive if triple excitations are to be calculated). This restricts the calculations somewhat: on presently available PCs 300–400 basis functions are feasible and if you are patient and stretch it to the limit it may be possible to go up to 500–600; if not too many electrons are correlated may be even up to 800–900 basis functions (then using AO-direct methods).

TIP

- For calculations on small molecules and large basis sets the MO-METHOD option is usually the most efficient; say perhaps up to about 300 basis functions. For integral conventional runs the AO-METHOD may even more efficient.

- For large calculations (>300 basis functions) the AO-METHOD option is a good choice. If, however, you use very deeply contracted basis sets such as ANOs these calculations should be run in the integral conventional mode.

- AOX-METHOD is usually slightly less efficient than MO-METHOD or AO-METHOD.

- RI-METHOD is seldom the most efficient choice. If the integral transformation time is an issue than you can select `%mdci trafotype trafo.ri` or choose RI-METHOD and then `%mdci kcopt kc.ao`.

- Regarding the singles Fock keywords (RCSinglesFock, etc.), the program usually decides which method to use to evaluate the singles Fock term. For more details on the nature of this term, and options related to its evaluation, see 9.10.6.

To put this into perspective, consider a calculation on serine with the cc-pVDZ basis set — a basis on the lower end of what it suitable for a highly correlated calculation. The time required to solve the equations is listed in Table 8.1. We can draw the following conclusions:

- As long as one can store the integrals and the I/O system of the computer is not the bottleneck, the most efficient way to do coupled-cluster type calculations is usually to go via the full transformation (it scales as $O(N^5)$ whereas the later steps scale as $O(N^6)$ and $O(N^7)$ respectively).
• AO-based coupled-cluster calculations are not much inferior. For larger basis sets (i.e. when the ratio of virtual to occupied orbitals is larger), the computation times will be even more favorable for the AO based implementation. The AO direct method uses much less disk space. However, when you use a very expensive basis set the overhead will be larger than what is observed in this example. Hence, conventionally stored integrals — if affordable — are a good choice.

• AOX based calculations runs at essentially the same speed as AO based calculations. Since AOX based calculations take four times as much disk space they are pretty much outdated and the AOX implementation is only kept for historical reasons.

• RI based coupled-cluster methods are significantly slower. There are some disk space savings but the computationally dominant steps are executed less efficiently.

• CCSD is at most 10% more expensive than QCISD. With the latest AO implementation the awkward coupled-cluster terms are handled efficiently.

• CEPA is not much more than 20% faster than CCSD. In many cases CEPA results will be better than CCSD and then it is a real saving compared to CCSD(T), which is the most rigorous.

• If triples are included practically the same comments apply for MO versus AO based implementations as in the case of CCSD.

ORCA is quite efficient in this type of calculation but it is also clear that the range of application of these rigorous methods is limited as long as one uses canonical MOs. ORCA implements novel variants of the so-called local Coupled-Cluster method which can calculate large, real-life molecules in a linear scaling time. This will be addressed in Sec. 8.1.3.8.

Table 8.1: Computer times (minutes) for solving the coupled-cluster/coupled-pair equations for Serine (cc-pVDZ basis set).

<table>
<thead>
<tr>
<th>Method</th>
<th>SCFMode</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO-CCSD</td>
<td>Conv</td>
<td>38.2</td>
</tr>
<tr>
<td>AO-CCSD</td>
<td>Conv</td>
<td>47.5</td>
</tr>
<tr>
<td>AO-CCSD</td>
<td>Direct</td>
<td>50.8</td>
</tr>
<tr>
<td>AOX-CCSD</td>
<td>Conv</td>
<td>48.7</td>
</tr>
<tr>
<td>RI-CCSD</td>
<td>Conv</td>
<td>64.3</td>
</tr>
<tr>
<td>AO-QCISD</td>
<td>Conv</td>
<td>44.8</td>
</tr>
<tr>
<td>AO-CEPA/1</td>
<td>Conv</td>
<td>40.5</td>
</tr>
<tr>
<td>MO-CCSD(T)</td>
<td>Conv</td>
<td>147.0</td>
</tr>
<tr>
<td>AO-CCSD(T)</td>
<td>Conv</td>
<td>156.7</td>
</tr>
</tbody>
</table>

All of these methods are designed to cover dynamic correlation in systems where the Hartree-Fock determinant dominates the wavefunctions. The least attractive of these methods is CISD which is not size-consistent and therefore practically useless. The most rigorous are CCSD(T) and QCISD(T). The former is perhaps to be preferred since it is more stable in difficult situations. One can get highly accurate results from such

1The exponential of the T1 operator serves to essentially fully relax the orbitals of the reference wavefunction. This is not included in the QCISD model that only features at most a bilinear T1T2 term in the singles residuum. Hence, if the Hartree-Fock wavefunction is a poor starting point but static correlation is not the main problem,
calculations. However, one only gets this accuracy in conjunction with large basis sets. It is perhaps not very meaningful to perform a CCSD(T) calculation with a double-zeta basis set (see Table 8.2). The very least basis set quality required for meaningful results would perhaps be something like def2-TZVP(-f) or preferably def2-TZVPP (cc-pVTZ, ano-pVTZ). For accurate results quadruple-zeta and even larger basis sets are required and at this stage the method is restricted to rather small systems.

Let us look at the case of the potential energy surface of the N\(_2\) molecule. We study it with three different basis sets: TZVP, TZVPP and QZVP. The input is the following:

```plaintext
! RHF TZVPP CCSD(T)
%paras R= 1.05,1.13,8
end
* xyz @ 1
N 0 0 0
N 0 0 {R}
* 
```

For even higher accuracy we would need to introduce relativistic effects and - in particular - turn the core correlation on.

<table>
<thead>
<tr>
<th>Method</th>
<th>Basis set</th>
<th>(R_e) (pm)</th>
<th>(\omega_e) (cm(^{-1}))</th>
<th>(\omega_ex_e) (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD(T)</td>
<td>SVP</td>
<td>111.2</td>
<td>2397</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>TZVP</td>
<td>110.5</td>
<td>2354</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>TZVPP</td>
<td>110.2</td>
<td>2349</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>QZVP</td>
<td>110.0</td>
<td>2357</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>ano-pVDZ</td>
<td>111.3</td>
<td>2320</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>ano-pVTZ</td>
<td>110.5</td>
<td>2337</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>ano-pVQZ</td>
<td>110.1</td>
<td>2351</td>
<td>14.5</td>
</tr>
<tr>
<td>CCSD</td>
<td>QZVP</td>
<td>109.3</td>
<td>2437</td>
<td>13.5</td>
</tr>
<tr>
<td>Exp</td>
<td></td>
<td>109.7</td>
<td>2358.57</td>
<td>14.32</td>
</tr>
</tbody>
</table>

One can see from Table 8.2 that for high accuracy - in particular for the vibrational frequency - one needs both - the connected triple-excitations and large basis sets (the TZVP result is fortuitously good). While this is an isolated example, the conclusion holds more generally. If one pushes it, CCSD(T) has an accuracy (for reasonably well-behaved systems) of approximately 0.2 pm in distances, <10 cm\(^{-1}\) for harmonic frequencies and a few kcal/mol for atomization energies. It is also astonishing how well the Ahlrichs basis sets do in CCSD is much preferred over QCISD. This is not uncommon in transition metal complexes.

2Note that core correlation is not simply introduced by including the core orbitals in the correlation problem. In addition, special correlation core-polarization functions are needed. They have been standardized for a few elements in the cc-pCVxZ (X=D,T,Q,5,6) basis sets.

3However, in recent years it became more evident that even CCSD(T) achieves its high apparent accuracy through error cancellations. The full CCSDT method (triples fully included) usually performs worse than CCSD(T). The reason is that the (T) correction undershoots the effects of the triples to some extent and thereby compensates for...
these calculations — even slightly better than the much more elaborate ANO bases.

NOTE:

• The quality of a given calculation is not always high because it carries the label “Coupled-Cluster”. Accurate results are only obtained in conjunction with large basis sets and for systems where the HF approximation is a good 0th order starting point.

8.1.3.2 Coupled-Cluster Densities

If one is mainly accustomed to Hartree-Fock or DFT calculations, the calculation of the density matrix is more or less a triviality and is automatically done together with the solution of the self-consistent field equations. Unfortunately, this is not the case in coupled-cluster theory (and also not in MP2 theory). The underlying reason is that in coupled-cluster theory, the expansion of the exponential $e^\hat{T}$ in the expectation value

$$ D_{pq} = \frac{\langle \Psi | E_p^q | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle e^\hat{T} \Psi_0 | E_p^q | e^\hat{T} \Psi_0 \rangle}{\langle e^\hat{T} \Psi_0 | e^\hat{T} \Psi_0 \rangle} $$

only terminates if all possible excitation levels are exhausted, i.e., if all electrons in the reference determinant Ψ_0 (typically the HF determinant) are excited from the space of occupied to the space of virtual orbitals (here D_{pq} denotes the first order density matrix, E_p^q are the spin traced second quantized orbital replacement operators, and \hat{T} is the cluster operator). Hence, the straightforward application of these equations is far too expensive. It is, however, possible to expand the exponentials and only keep the linear term. This then defines a linearized density which coincides with the density that one would calculate from linearized coupled-cluster theory (CEPA/0). The difference to the CEPA/0 density is that converged coupled-cluster amplitudes are used for its evaluation. This density is straightforward to compute and the computational effort for the evaluation is very low. Hence, this is a density that can be easily produced in a coupled-cluster run. It is not, however, what coupled-cluster aficionados would accept as a density.

The subject of a density in coupled-cluster theory is approached from the viewpoint of response theory. Imagine one adds a perturbation of the form

$$ H^{(\lambda)} = \lambda \sum_{pq} h_{pq}^\lambda E_p^q $$

to the Hamiltonian. Then it is always possible to cast the first derivative of the total energy in the form:

$$ \frac{dE}{d\lambda} = \sum_{pq} D_{pq}^{\text{(response)}} h_{pq}^\lambda $$

This is a nice result. The quantity $D_{pq}^{\text{(response)}}$ is the so-called response density. In the case of CC theory where the energy is not obtained by variational optimization of an energy functional, the energy has to be replaced by a Lagrangian reading as follows:

$$ L_{CC} = E_{HF} + \sum_{aa} z_{aa} F_{aa} + \frac{1}{4} \sum_{ijab} (ij||ab) t_{ijab}^{(2)} + \sum_{\mu} z_{\mu} |\mu| \hat{H} e^\hat{T} |\Psi_0\rangle $$

the neglect of connected quadruple excitations. For very high accuracy quantum chemistry, even these must be considered. The prospects for treating chemically more relevant molecules with such methods is not particularly bright for the foreseeable future...
Here μ denotes any excited determinant (singly, doubly, triply,). There are two sets of Lagrange multipliers: the quantities z_{ai} that guarantee that the perturbed wavefunction fulfills the Hartree-Fock conditions by making the off-diagonal Fock matrix blocks zero and the quantities z_{μ} that guarantee that the coupled-cluster projection equations for the amplitudes are fulfilled. If both sets of conditions are fulfilled then the coupled-cluster Lagrangian simply evaluates to the coupled-cluster energy. The coupled-cluster Lagrangian can be made stationary with respect to the Lagrangian multipliers z_{ai} and z_{μ}. The response density is then defined through:

$$\frac{dL_{CC}}{d\lambda} = \sum_{pq} D_{pq}^{(\text{response})} h_{pq}^\lambda$$

The density D_{pq} appearing in this equation does not have the same properties as the density that would arise from an expectation value. For example, the response density can have eigenvalues lower than 0 or larger than 2. In practice, the response density is, however, the best “density” there is for coupled-cluster theory.

Unfortunately, the calculation of the coupled-cluster response density is quite involved because additional sets of equations need to be solved in order to determine the z_{ai} and z_{μ}. If only the equations for z_{μ} are solved one speaks of an “unrelaxed” coupled-cluster density. If both sets of equations are solved, one speaks of a “relaxed” coupled-cluster density. For most intents and purposes, the orbital relaxation effects incorporated into the relaxed density are small for a coupled-cluster density. This is so, because the coupled-cluster equations contain the exponential of the single excitation operator $e^{\hat{T}_1} = \exp(\sum ai t^a_i E^a_i)$. This brings in most of the effects of orbital relaxation. In fact, replacing the \hat{T}_1 operator by the operator $\hat{\kappa} = \sum ai \kappa^a_i (E^a_i - E^a_i)$ would provide all of the orbital relaxation thus leading to “orbital optimized coupled-cluster theory” (OOCC).

Not surprisingly, the equations that determine the coefficients z_{μ} (the Z vector equations) are as complicated as the coupled-cluster amplitude equations themselves. Hence, the calculation of the unrelaxed coupled-cluster density matrix is about twice as expensive as the calculation of the coupled-cluster energy (but not quite as with proper program organization terms can be reused and the Z vector equations are linear equations that converge somewhat better than the non-linear amplitude equations).

ORCA features the calculation of the unrelaxed coupled-cluster density on the basis of the Z vector equations for closed- and open-shell systems. If a fully relaxed coupled-cluster density is desired then ORCA still features the orbital-optimized coupled-cluster doubles method (OOCCD). This is not exactly equivalent to the fully relaxed CCSD density matrix because of the operator $\hat{\kappa}$ instead of \hat{T}_1. However, results are very close and orbital optimized coupled-cluster doubles is the method of choice if orbital relaxation effects are presumed to be large.

In terms of ORCA keywords, the coupled-cluster density is obtained through the following keywords:

```plaintext
#
# coupled-cluster density
#
%mdci density none linearized unrelaxed orbopt
end
```
which will work together with CCSD or QCISD (QCISD and CCSD are identical in the case of OOCCD because of the absence of single excitations). Note, that an unrelaxed density for CCSD(T) is NOT available.

Instead of using the density option “orbopt” in the mdci-block, OOCCD can also be invoked by using the keyword:

```
! OOCD
```

8.1.3.3 Static versus Dynamic Correlation

Having said that, let us look at an “abuse” of the single reference correlation methods by studying (very superficially) a system which is not well described by a single HF determinant. This already occurs for the twisting of the double bond of C\(\text{2H}_4\). At a 90° twist angle the system behaves like a diradical and should be described by a multireference method (see section 8.1.7)

![Figure 8.1: A rigid scan along the twisting coordinate of C\(\text{2H}_4\). The inset shows the T\(_1\) diagnostic for the CCSD calculation.](image)

As can be seen in Figure 8.1, there is a steep rise in energy as one approaches a 90° twist angle. The HF curve is actually discontinuous and has a cusp at 90°. This is immediately fixed by a simple CASSCF(2,2) calculation which gives a smooth potential energy surface. Dynamic correlation is treated on top of the CASSCF(2,2) method with the MRACPF approach as follows:

```plaintext
# twisting the double bond of C2H4
!
RHF SV(P) def2-TZVP/C SmallPrint NoPop MRACPF
%casscf nel 2
  norb 2
  mult 1
  nroots 1
```
This is the reference calculation for this problem. One can see that the RHF curve is far from the MRACPF reference but the CASSCF calculation is very close. Thus, dynamic correlation is not important for this problem! It only appears to be important since the RHF determinant is such a poor choice. The MP2 correlation energy is insufficient in order to repair the RHF result. The CCSD method is better but still falls short of quantitative accuracy. Finally, the CCSD(T) curve is very close the MRACPF. This even holds for the total energy (inset of Figure 8.2) which does not deviate by more than 2–3 mEh from each other. Thus, in this case one uses the powerful CCSD(T) method in an inappropriate way in order to describe a system that has multireference character. Nevertheless, the success of CCSD(T) shows how stable this method is even in tricky situations. The “alarm” bell for CCSD and CCSD(T) is the so-called “T₁-diagnostic”\(^4\) that is also shown in Figure 8.2. A rule of thumb says, that for a value of the diagnostic of larger than 0.02 the results are not to be trusted. In this calculation we have not quite reached this critical point although the T₁ diagnostic blows up around the 90° twist.

The computational cost (disregarding the triples) is such that the CCSD method is the most expensive followed by QCISD (∼10% cheaper) and all other methods (about 50% to a factor of two cheaper than CCSD). The most accurate method is generally CCSD(T). However, this is not so clear if the triples are omitted and in this regime the coupled pair methods (in particular CPF/1 and NCPF/1\(^5\)) can compete with CCSD.

Let us look at the same type of situation from a slightly different perspective and dissociate the single bond of F\(_2\). As is well known, the RHF approximation fails completely for this molecule and predicts it to be unbound. Again we use a much too small basis set for quantitative results but it is enough to illustrate the principle.

\(^4\)It is defined as \(\|T_1\|/N^{1/2}\) where \(T_1\) are the singles amplitudes and \(N\) the number of correlated electrons. The original reference is [77].

\(^5\)The “N” methods have been suggested by [78] and are exclusive to ORCA. Please note that our NCPF/1 is different from the MCPF method in the literature [79]. The original CPF method — which we prefer — is from [80]; see also [81] for a nice review about the coupled pair approaches and the underlying philosophy.
We first generate a “reference” PES with the MRACPF method:

```
! RHF def2-SV def2-SVP/C MRACPF
%casscf nel 2
    norb 2
    nroots 1
    mult 1
end
%mrci tsel 1e-10
    tpre 1e-10
end
%paras R= 3.0,1.3,35
end
* xyz 0 1
F 0 0 0
F 0 0 {R}
*
```

Note that we scan from outward to inward. This helps the program to find the correct potential energy surface since at large distances the σ and σ* orbitals are close in energy and fall within the desired 2 × 2 window for the CASSCF calculation (see section 8.1.7). Comparing the MRACPF and CASSCF curves it becomes evident that the dynamic correlation brought in by the MRACPF procedure is very important and changes the asymptote (loosely speaking the binding energy) by almost a factor of two. Around the minimum (roughly up to 2.0 Å) the CCSD(T) and MRACPF curves agree beautifully and are almost indistinguishable. Beyond this distance the CCSD(T) calculation begins to diverge and shows an unphysical behavior while the multireference method is able to describe the entire PES up to the dissociation limit. The CCSD curve is qualitatively ok but has pronounced quantitative shortcomings: it predicts a minimum that is much too short and a dissociation energy that is much too high. Thus, already for this rather “simple” molecule, the
effect of the connected triple excitations is very important. Given this (rather unpleasant) situation, the behavior of the much simpler CEPA method is rather satisfying since it predicts a minimum and dissociation energy that is much closer to the reference MRACPF result than CCSD or CASSCF. It appears that in this particular case CEPA/1 and CEPA/2 bracket the correct result.

![Figure 8.3: Potential energy surface of the F₂ molecule calculated with some single-reference methods and compared to the MRACPF reference.](image)

As for MP2 calculations, the RI approximation can be introduced. It does not lead to spectacular performance gains but easens the burden for the integral transformation in larger calculations. The error introduced by the RI-approximation is usually negligible. For larger systems the AO or AOX methods are usually used.

8.1.3.4 Basis Sets for Correlated Calculations. The case of ANOs.

In HF and DFT calculations the generation and digestion of the two-electron repulsion integrals is usually the most expensive step of the entire calculation. Therefore, the most efficient approach is to use loosely contracted basis sets with as few primitives as possible — the Ahlrichs basis sets (SVP, TZVP, TZVPP, QZVP, def2-TZVPP, def2-QZVPP) are probably the best in this respect. Alternatively, the polarization-consistent basis sets pc-1 through pc-4 could be used, but they are only available for H-Ar. For large molecules such basis sets also lead to efficient prescreening and consequently efficient calculations.

This situation is different in highly correlated calculations such as CCSD and CCSD(T) where the effort scales steeply with the number of basis functions. In addition, the calculations are usually only feasible for a limited number of basis functions and are often run in the integral conventional mode since high angular momentum basis functions are present and these are expensive to recomputed all the time. Hence, a different strategy concerning the basis set design seems logical. It would be good to use as few basis functions as possible but make them as accurate as possible. This is compatible with the philosophy of atomic natural orbital (ANO) basis sets. Such basis sets are generated from correlated atomic calculations and replicate the primitives of a given angular momentum for each basis function. Therefore, these basis sets are deeply contracted and expensive but the natural atomic orbitals form a beautiful basis for molecular calculations. In ORCA an accurate and systematic set of ANOs (ano-pVnZ, n = D, T, Q, 5 is incorporated). A related
strategy underlies the design of the correlation-consistent basis sets (cc-pVnZ, \(n = D, T, Q, 5, 6, \ldots\)) that are also generally contracted except for the outermost primitives of the “principal” orbitals and the polarization functions that are left uncontracted.

Let us study this subject in some detail using the H\(_2\)CO molecule at a standard geometry and compute the SCF and correlation energies with various basis sets. In judging the results one should view the total energy in conjunction with the number of basis functions and the total time elapsed. Looking at the data in the Table below, it is obvious that the by far lowest SCF energies for a given cardinal number (2 for double-zeta, 3 for triple zeta and 4 for quadruple-zeta) are provided by the ANO basis sets. Using specially optimized ANO integrals that is available since ORCA 2.7.0, the calculations are not even much more expensive than those with standard basis sets. Obviously, the correlation energies delivered by the ANO bases are also the best of all 12 basis sets tested. Hence, ANO basis sets are a very good choice for highly correlated calculations. The advantages are particularly large for the early members (DZ/TZ).

<table>
<thead>
<tr>
<th>Basis set</th>
<th>No. Basis Fcn</th>
<th>E(SCF)</th>
<th>(E_C(\text{CCSD(T)}))</th>
<th>(E_{\text{tot}}(\text{CCSD(T)}))</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc-pVDZ</td>
<td>38</td>
<td>-113.876184</td>
<td>-0.34117952</td>
<td>-114.217364</td>
<td>2</td>
</tr>
<tr>
<td>cc-pVTZ</td>
<td>88</td>
<td>-113.911871</td>
<td>-0.42135475</td>
<td>-114.333226</td>
<td>40</td>
</tr>
<tr>
<td>cc-pVQZ</td>
<td>170</td>
<td>-113.920926</td>
<td>-0.44760332</td>
<td>-114.368529</td>
<td>695</td>
</tr>
<tr>
<td>def2-SVP</td>
<td>38</td>
<td>-113.778427</td>
<td>-0.34056109</td>
<td>-114.118988</td>
<td>2</td>
</tr>
<tr>
<td>def2-TZVPP</td>
<td>90</td>
<td>-113.917271</td>
<td>-0.41990287</td>
<td>-114.337174</td>
<td>46</td>
</tr>
<tr>
<td>def2-QZVPP</td>
<td>174</td>
<td>-113.922738</td>
<td>-0.44643753</td>
<td>-114.369175</td>
<td>730</td>
</tr>
<tr>
<td>pc-1</td>
<td>38</td>
<td>-113.840092</td>
<td>-0.33918253</td>
<td>-114.179274</td>
<td>2</td>
</tr>
<tr>
<td>pc-2</td>
<td>88</td>
<td>-113.914256</td>
<td>-0.41321906</td>
<td>-114.327475</td>
<td>43</td>
</tr>
<tr>
<td>pc-3</td>
<td>196</td>
<td>-113.922543</td>
<td>-0.44911659</td>
<td>-114.371660</td>
<td>1176</td>
</tr>
<tr>
<td>ano-pVDZ</td>
<td>38</td>
<td>-113.910571</td>
<td>-0.35822337</td>
<td>-114.268795</td>
<td>12</td>
</tr>
<tr>
<td>ano-pVTZ</td>
<td>88</td>
<td>-113.920389</td>
<td>-0.42772994</td>
<td>-114.348119</td>
<td>113</td>
</tr>
<tr>
<td>ano-pVQZ</td>
<td>170</td>
<td>-113.922788</td>
<td>-0.44995355</td>
<td>-114.372742</td>
<td>960</td>
</tr>
</tbody>
</table>

Let us look at one more example in Table 8.4: the optimized structure of the N\(_2\) molecule as a function of basis set using the MP2 method (these calculations are a bit older from the time when the ano-pVnZ basis sets did not yet exist. Today, the ano-pVnZ would be preferred).

The highest quality basis set here is QZVP and it also gives the lowest total energy. However, this basis set contains up to g-functions and is very expensive. The Bonn-ANO-TZ3P is of the same size as TZVPP and gives the same result as QZVP for the geometry and an energy that is intermediate between TZVPP and QZVP. To not use a set of f-functions has still a noticeable effect on the outcome of the calculations and leads to an overestimation of the bond distance of 0.2 pm — a small change but for benchmark calculations of this kind still significant. Among these spd-only basis sets the Bonn-ANO-TZ2P basis set gives a better result than TZV(2d,2p) and a lower energy as well. In fact, similarly as for the Bonn-ANO-TZ3P, the distances is as good as that from TZVPP and the energy is intermediate between TZV(2d,2p) and TZVPP(\(\equiv\)TZV(2df,2pd)).
The error made by the TZVP basis set that lacks the second set of d-functions is surprisingly small even though the deletion of the second d-set “costs” more than 20 mEh in the total energy.

A significant error on the order of 1 – 2 pm in the calculated distances is produced by smaller DZP type basis sets which underlines once more that such basis sets are really too small for correlated molecular calculations — the ANO-DZP basis sets are too strongly biased towards the atom and the “usual” molecule targeted DZP basis sets like SVP have the d-set designed to cover polarization but not correlation (the correlating d-functions are steeper than the polarizing ones). Among the three tested basis sets the Bonn-ANO-DZP fares best in this test and cc-pVDZ fares worst. The relatively good energy of the Bonn-ANO-DZP basis certainly comes from the good description of the atoms. The performance of the very economical SVP basis set should be considered as very good.

Essentially the same picture is obtained by looking at the (uncorrected for ZPE) binding energy calculated at the MP2 level – the largest basis set, QZVP gives the largest binding energy while the small basis set underestimate it. The error of the DZP type basis sets is fairly large (≈ 2 eV) and therefore caution is advisable when using such bases. In all cases it was found that the Bonn-ANO bases do slightly better than the segmented contracted basis sets of the same size. This still holds for the calculated ionization potential of the nitrogen atom. In principle, this is a worst case scenario for the ANO basis sets since they are supposedly strongly biased towards the neutral atom. Yet, they fare no worse than the segmented contracted basis sets. Here, an error cancellation is likely: The ANO bases recover more correlation (larger for the neutral) but are biased towards the neutral (underestimating the SCF energy for the cation). This bias perhaps shows up most clearly for the ANO-DZP basis set which gives a calculated IP that is accidentally almost right. The largest ANO-TZ3P even slightly overshoots relative to the QZVP basis set, which is expected.

Table 8.4: Comparison of various basis sets for correlated calculations.

<table>
<thead>
<tr>
<th>Basis set</th>
<th>(R_{eq}) (pm)</th>
<th>(E(2N-N_2)) (eV)</th>
<th>(IP(N/N^+)) (eV)</th>
<th>(E(MP2)) (Eh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVP</td>
<td>112.2</td>
<td>-9.67</td>
<td>14.45</td>
<td>-109.1677</td>
</tr>
<tr>
<td>cc-pVDZ</td>
<td>112.9</td>
<td>9.35</td>
<td>14.35</td>
<td>-109.2672</td>
</tr>
<tr>
<td>TZVP</td>
<td>111.5</td>
<td>10.41</td>
<td>14.37</td>
<td>-109.3423</td>
</tr>
</tbody>
</table>
8.1.3.5 Automatic extrapolation to the basis set limit

As eluded to in the previous section, one of the biggest problems with correlation calculations is the slow convergence to the basis set limit. One possibility to overcome this problem is the use of explicitly correlated methods. The other possibility is to use basis set extrapolation techniques. Since this involves some fairly repetitive work, some procedures were hardwired into the ORCA program. So far, only energies are supported. For extrapolation, a systematic series of basis sets is required. This is, for example, provided by the cc-pVnZ, aug-cc-pVnZ or the corresponding ANO basis sets. Here \(n \) is the “cardinal number” that is 2 for the double-zeta basis sets, 3 for triple-zeta, etc.

The convergence of the HF energy to the basis set limit is assumed to be given by:

\[
E_{\text{SCF}}^{(X)} = E_{\text{SCF}}^{(\infty)} + A \exp \left(-\alpha \sqrt{X} \right)
\]

(8.1)

Here, \(E_{\text{SCF}}^{(X)} \) is the SCF energy calculated with the basis set with cardinal number \(X \), \(E_{\text{SCF}}^{(\infty)} \) is the basis set limit SCF energy and \(A \) and \(\alpha \) are constants. The approach taken in ORCA is to do a two-point extrapolation. This means that either \(A \) or \(\alpha \) have to be known. Here, we take \(A \) as to be determined and \(\alpha \) as a basis set specific constant.

The correlation energy is supposed to converge as:

\[
E_{\text{corr}}^{(\infty)} = \frac{X^\beta E_{\text{corr}}^{(X)} - Y^\beta E_{\text{corr}}^{(Y)}}{X^\beta - Y^\beta}
\]

(8.2)

The theoretical value for \(\beta \) is 3.0. However, it was found by Truhlar and confirmed by us, that for 2/3 extrapolations \(\beta = 2.4 \) performs considerably better.

For a number of basis sets, we have determined the optimum values for \(\alpha \) and \(\beta \) [82]:

<table>
<thead>
<tr>
<th>Basis Set</th>
<th>(\alpha_{23})</th>
<th>(\beta_{23})</th>
<th>(\alpha_{34})</th>
<th>(\beta_{34})</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc-pVnZ</td>
<td>4.42</td>
<td>2.46</td>
<td>5.46</td>
<td>3.05</td>
</tr>
<tr>
<td>pc-n</td>
<td>7.02</td>
<td>2.01</td>
<td>9.78</td>
<td>4.09</td>
</tr>
<tr>
<td>def2</td>
<td>10.39</td>
<td>2.40</td>
<td>7.88</td>
<td>2.97</td>
</tr>
<tr>
<td>ano-pVnZ</td>
<td>5.41</td>
<td>2.43</td>
<td>4.48</td>
<td>2.97</td>
</tr>
<tr>
<td>saug-ano-pVnZ</td>
<td>5.48</td>
<td>2.21</td>
<td>4.18</td>
<td>2.83</td>
</tr>
<tr>
<td>aug-ano-pVnZ</td>
<td>5.12</td>
<td>2.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the \(\beta \) values for 2/3 are close to 2.4, we always take this value. Likewise, all 3/4 and higher extrapolations...
are done with $\beta = 3$. However, the optimized values for α are taken throughout.

Using the keyword `! Extrapolate(X/Y,basis)`, where X and Y are the corresponding successive cardinal numbers and `basis` is the type of basis set requested (= cc, aug-cc, cc-core, ano, saug-ano, aug-ano, def2) ORCA will calculate the SCF and optionally the MP2 or MDCI energies with two basis sets and separately extrapolate.

The keyword works also in the following way: `! Extrapolate(n,basis)` where n is the number of energies to be used. In this way the program will start from a double-zeta basis and perform calculations with n cardinal numbers and then extrapolates the different pairs of basis sets. Thus for example the keyword `! Extrapolate(3,CC)` will perform calculations with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets and then estimate the extrapolation results of both cc-pVDZ/cc-pVTZ and cc-pVTZ/cc-pVQZ combinations.

Let us take the example of the H2O molecule at the B3LYP/TZVP optimized geometry. The reference values have been determined from a HF calculation with the decontracted aug-cc-pV6Z basis set and the correlation energy was obtained from the cc-pV5Z/cc-pV6Z extrapolation. This gives:

<table>
<thead>
<tr>
<th>E(SCF,CBS)</th>
<th>-76.066958 Eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC(CCSD(T),CBS)</td>
<td>-0.30866 Eh</td>
</tr>
<tr>
<td>Etot(CCSD(T),CBS)</td>
<td>-76.37561 Eh</td>
</tr>
</tbody>
</table>

Now we can see what extrapolation can bring in:

```
!CCSD(T) Extrapolate(2/3) TightSCF Conv Bohrs
  * int 0 1
  0 0 0 0 0 0 0
  H 1 0 0 1.81975 0 0
  H 1 2 0 1.81975 105.237 0
  *
```

NOTE:

- The RI-JK and RIJCOSX approximations work well together with this option and RI-MP2 is also possible. Auxiliary basis sets are automatically chosen and can not be changed.

- All other basis set choices, externally defined bases etc. will be ignored — the automatic procedure only works with the default basis sets!

- The basis sets with the “core” postfix contain core correlation functions. By default it is assumed that this means that the core electrons are also to be correlated and the frozen core approximation is turned off. However, this can be overridden in the method block by choosing, e.g. `%method frozencore fc_electrons end`

- So far, the extrapolation is only implemented for single points and not for gradients. Hence, geometry optimizations cannot be done in this way.
The extrapolation method should only be used with very tight SCF. For open shell methods, additional caution is advised.

This gives:

| Alpha(2/3) | 4.420 (SCF Extrapolation) |
| Beta(2/3) | 2.460 (correlation extrapolation) |

SCF energy with basis cc-pVDZ:	-76.026430944
SCF energy with basis cc-pVTZ:	-76.056728252
Extrapolated CBS SCF energy (2/3):	-76.066581429 (-0.009853177)

MDCI energy with basis cc-pVDZ:	-0.214591061
MDCI energy with basis cc-pVTZ:	-0.275383015
Extrapolated CBS correlation energy (2/3):	-0.310905962 (-0.035522947)
Estimated CBS total energy (2/3):	-76.377487391

Thus, the error in the total energy is indeed strongly reduced. Let us look at the more rigorous 3/4 extrapolation:

| Alpha(3/4) | 5.460 (SCF Extrapolation) |
| Beta(3/4) | 3.050 (correlation extrapolation) |

SCF energy with basis cc-pVTZ:	-76.056728252
SCF energy with basis cc-pVQZ:	-76.064381269
Extrapolated CBS SCF energy (3/4):	-76.066687152 (-0.002305884)

MDCI energy with basis cc-pVTZ:	-0.275383015
MDCI energy with basis cc-pVQZ:	-0.295324345
Extrapolated CBS correlation energy (3/4):	-0.309520369 (-0.014196024)
Estimated CBS total energy (3/4):	-76.376207521

In our experience, the ANO basis sets extrapolate similarly to the cc-basis sets. Hence, repeating the entire calculation with **Extrapolate(3,ANO)** gives:

| Estimated CBS total energy (2/3): | -76.377652793 |
| Estimated CBS total energy (3/4): | -76.376983432 |

Which is within 1 mEh of the estimated CCSD(T) basis set limit energy in the case of the 3/4 extrapolation and within 2 mEh for the 2/3 extrapolation.

For larger molecules, the bottleneck of the calculation will be the CCSD(T) calculation with the larger basis set. In order to avoid this expensive (or prohibitive) calculation, it is possible to estimate the CCSD(T) energy at the basis set limit as:

\[
E_{\text{corr}}^{(\text{CCSD(T);Y})} \approx E_{\text{corr}}^{(\text{CCSD(T);X})} + E_{\text{corr}}^{(\text{MP2};\infty)} - E_{\text{corr}}^{(\text{MP2};X)}
\]

(8.3)
This assumes that the basis set dependence of MP2 and CCSD(T) is similar. One can then extrapolate as before. Alternatively, the standard way — as extensively exercised by Hobza and co-workers — is to simply use:

\[
E_{\text{total}}^{(\text{CCSD(T);CBS})} \approx E_{\text{SCF}}^{(Y)} + E_{\text{corr}}^{(\text{CCSD(T);X})} + E_{\text{corr}}^{(\text{MP2};\infty)} - E_{\text{corr}}^{(\text{MP2};X)}
\]

The appropriate keyword is:

```
!RHF ExtrapolateEP2(2/3,ANO,MP2) TightSCF Conv Bohrs
```

This creates the following output:

```
Alpha : 5.410 (SCF Extrapolation)
Beta : 2.430 (correlation extrapolation)
SCF energy with basis ano-pVDZ: -76.059178452
SCF energy with basis ano-pVTZ: -76.064774379
Extrapolated CBS SCF energy : -76.065995735 (-0.001221356)
MP2 energy with basis ano-pVDZ: -0.219202872
MP2 energy with basis ano-pVTZ: -0.267858629
Extrapolated CBS correlation energy : -0.295568596 (-0.028509967)
CCSD(T) correlation energy with basis ano-pVDZ: -0.229478341
CCSD(T) - MP2 energy with basis ano-pVDZ: -0.010275470
Estimated CBS total energy : -76.371839801
```

The estimated correlation energy is not really bad — within 3 mEh from the basis set limit.

Using the `ExtrapolateEP2(n/m,bas,[method, method-details])` keyword one can use a generalization of the above method where instead of MP2 any available correlation method can be used as described in Ref. [83]. `method` is optional and can be either MP2 or DLPNO-CCSD(T), the latter being the default. In case the method is DLPNO-CCSD(T) in the `method-details` option one can ask for LoosePNO, NormalPNO or TightPNO.

\[
E_{\text{corr}}^{(\text{CCSD(T);CBS})} \approx E_{\text{corr}}^{(\text{CCSD(T);X})} + E_{\text{corr}}^{(\text{M;CBS})}(X, X + 1) - E_{\text{corr}}^{(\text{M;X})}
\]

Here M represents any correlation method one would like to use. For the previous water molecule the input of a calculation that uses DLPNO-CCSD(T) (that is the default now) instead of MP2 would look like:
Running Typical Calculations

! RHF ExtrapolateEP2(2/3,cc,DLPNO-CCSD(T)) TightSCF Conv Bohrs
* int 0 1
 0 0 0 0 0 0 0
 H 1 0 0 1.81975 0 0
 H 1 2 0 1.81975 105.237 0
*

and it would produce the following output:

```
Alpha :  4.420 (SCF Extrapolation)
Beta :  2.460 (correlation extrapolation)

SCF energy with basis cc-pVDZ:   -76.026430944
SCF energy with basis cc-pVTZ:   -76.056728252
Extrapolated CBS SCF energy :   -76.066581429 (-0.009853177)
MDCI energy with basis cc-pVDZ:   -0.214582636
MDCI energy with basis cc-pVTZ:   -0.275299616
Extrapolated CBS correlation energy :   -0.310778753 (-0.035479137)
CCSD(T) correlation energy with basis cc-pVDZ:   -0.214699894
CCSD(T) - MDCI energy with basis cc-pVDZ:   -0.000117258
Estimated CBS total energy :   -76.377477440
```

which is less than 2 mEh from the basis set limit. Finally it was shown [83] that instead of extrapolating the cheap method, M, using cardinal numbers X and $X + 1$ it is better to use cardinal numbers $X + 1$ and $X + 2$.

$$
E_{\text{corr}}^{(\text{CCSD(T);CBS})} \approx E_{\text{corr}}^{(\text{CCSD(T);X})} + E_{\text{corr}}^{(\text{M;CBS})}(X + 1, X + 2) - E_{\text{corr}}^{(\text{M;X})}
$$

This can be done using the `ExtrapolateEP3(bas,[method,method-details])` keyword:

```
! RHF ExtrapolateEP3(CC) TightSCF Conv Bohrs
```

and the corresponding output would be:

```
Alpha :  5.460 (SCF Extrapolation)
Beta :  3.050 (correlation extrapolation)

SCF energy with basis cc-pVDZ:   -76.026430944
SCF energy with basis cc-pVTZ:   -76.056728252
SCF energy with basis cc-pVQZ:   -76.064381269
Extrapolated CBS SCF energy :   -76.066687152 (-0.002305884)
```
8.1 Single Point Energies and Gradients

MDCI energy with basis cc-pVDZ: \(-0.214582636\)
MDCI energy with basis cc-pVTZ: \(-0.275299615\)
MDCI energy with basis cc-pVQZ: \(-0.295229881\)
Extrapolated CBS correlation energy : \(-0.309418028 \text{ (-0.014188147)}\)
CCSD(T) correlation energy with basis cc-pVDZ: \(-0.214699894\)
CCSD(T) - MDCI energy with basis cc-pVDZ: \(-0.000117257\)
Estimated CBS total energy : \(-76.376222438\)

For the ExtrapolateEP2, and ExtrapolateEP3 keywords the default cheap method is the DLPNO-CCSD(T) with the NormalPNO thresholds. There also available options with MP2, and DLPNO-CCSD(T) with LoosePNO and TightPNO settings.

8.1.3.6 Explicitly Correlated MP2 and CCSD(T) Calculations

A physically perhaps somewhat more satisfying alternative to basis set extrapolation is the theory of explicit correlation. In this method terms are added to the wavefunction Ansatz that contain the interelectronic coordinates explicitly (hence the name “explicit correlation”). Initially these terms were linear in the interelectronic distances (“R12-methods”). However, it has later been found that better results can be obtained by using other functions, such as an exponential, of the the interelectronic distance (“F12-methods”). These methods are known to yield near basis set limit results for correlation energies in conjunction with much smaller orbital basis sets.

In applying these methods several points are important:

- Special orbital basis sets are at least advantageous. The development of such basis sets is still in its infancy. For a restricted range of elements the basis sets cc-pVnZ-F12 are available (where \(n = D, T, Q\) and are recommended. Note, that other than their names suggest, these are a fair bit larger than regular double, triple or quadruple-zeta basis sets

- In addition to an orbital basis set, a near-complete auxiliary basis set must be specified. This is the so-called “CABS” basis. For the three basis sets mentioned above these are called cc-pVnZ-F12-CABS. If you have elements that are not covered you are on your own to supply a CABS basis set. CABS basis sets can be read into ORCA in a way analogous to RI auxiliary basis sets (replace “AUX” by “CABS” in the input

- if the RI approximation is used in conjunction with F12, a third basis set is required - this can be the regular auxiliary “/C” basis, but we recommend to step one level up in the auxiliary basis set (e.g. use a cc-pVTZ/C fitting basis in conjunction with cc-pVDZ-F12)

- It is perfectly feasible to use RIJCOSX or RI-JK at the same time. In this case, you should provide a fourth basis set for the Coulomb fitting

- RHF and UHF are available, ROHF not.

- Gradients are not available
Doing explicitly correlated MP2 calculations is straightforward. For example look at the following calculation on the water molecule at a given geometry:

```bash
# ! F12-MP2 cc-pVDZ-F12 cc-pVDZ-F12-CABS VeryTightSCF PModel
* xyz 0 1
  O 0.000000000000 0.000000000000 0.369372944000
  H 0.783975899000 0.000000000000 -0.184686472000
  H -0.783975899000 0.000000000000 -0.184686472000
*
```

and similarly in conjunction with the RI approximation:

```bash
# ! F12-RI-MP2 cc-pVDZ-F12 cc-pVDZ-F12-CABS cc-pVTZ/C VeryTightSCF PModel
* xyz 0 1
  O 0.000000000000 0.000000000000 0.369372944000
  H 0.783975899000 0.000000000000 -0.184686472000
  H -0.783975899000 0.000000000000 -0.184686472000
*
```

The output is relatively easy to interpret:

```
---------------
RI-MP2-F12 ENERGY
---------------
EMP2 correlation Energy : -0.286878725335
F12 correction : -0.013254851100
---------------------
MP2 basis set limit estimate : -0.300133576436
Hartree-Fock energy : -76.066649848665
(2)_CABS correction to EHF : -0.000124410174
---------------------
HF basis set limit estimate : -76.066774258839
MP2 total energy before F12 : -76.353528574000
Total F12 correction : -0.013379261275
---------------------
Final basis set limit MP2 estimate : -76.366967835275
```

It consists of several parts. The first is the regular (RI-)MP2 correlation energy in the orbitals basis followed by the additive MP2 correction that are combined to provide a MP2 correlation energy basis set limit estimate.
8.1 Single Point Energies and Gradients

The second part consists of an estimate in the error in the underlying SCF energy. This is the “(2) CABS” correction. The combination of the SCF energy with this correction yields an estimate of the SCF basis set limit. The correction will typically undershoot somewhat, but the error is very smooth. Finally, the corrected correlation energy and the corrected SCF energy are added to yield the F12 total energy estimate at the basis set limit.

Let’s look at some results and compare to extrapolation:

```
# Correlation energies of the water molecule: extrapolation versus F12
#
# cc-pVDZ MP2: -0.201 380 894
# T : -0.261 263 141
# Q : -0.282 661 311
# T/Q : -0.298 276 192
# Q/5 : -0.300 598 282
# F12-DZ : -0.295 775 804
# RI-F12-DZ : -0.295 933 560 (cc-pVDZ/C)
# -0.295 774 489 (cc-pVTZ/C)
# F12-TZ : -0.299 164 006
# RI-F12-TZ : -0.299 163 478 (cc-pVQZ/C)
# F12-QZ : -0.300 130 686
```

It is obvious that extrapolated and F12 correlation energies converge to the same number (in this case around 300 mEh). The best extrapolated result is still below the F12 result (this would primarily be meaningful in a variational calculation). However, first of all this was an expensive extrapolation and second, the small residual F12 error is very smooth and cancels in energy differences. In any case, already the F12-double-zeta (where “double zeta” is to be interpreted rather loosely) brings one into within 5 mEh of the basis set limit correlation energy and the F12-triple-zeta calculation to within 1 mEh, which is impressive.

The additional effort for the F12 calculation is rather high, since five types of additional two-electron integrals need to be calculated. Both, integrals in CABS space and in the original orbital (OBS) space must be calculated and mixed Fock matrices are also required. Hence, one may wonder, whether a double-zeta F12 calculation actually saves any time over, say, a quadruple-zeta regular calculation. The actual answer to this question is: “NO”. Given all possibilities of obtained approximate MP2 and SCF energies, we have investigated the question of how to obtain MP2 basis set limit energies most efficiently in some detail. The results show that in terms of timings, basis set extrapolation in combination with RI-JK is the method of choice in combination for MP2. [84] However, energy differences are more reliable with F12-MP2. In combination with RI-JK or RIJCOSX F12-MP2 becomes also competitive in terms of computational efficiency.

This situation is different in the case of coupled-cluster methods, where F12 methods outperform extrapolation and are the method of choice.

For coupled-cluster theory, everything works in a very similar fashion:

```
# the keywords
! F12-CCSD(T)
# and
! CCSD(T)-F12
# are equivalent
```
A special feature of ORCA that can use large amounts of time, is to use the RI approximation only for the F12-part. The keyword here is:

```
! F12/RI-CCSD(T)
# or
! CCSD(T)-F12/RI
```

Everything else works as described for F12-MP2.

8.1.3.7 Frozen Core Options

In Coupled Cluster calculations the Frozen Core (FC) approximation is applied by default. This implies that the core electrons are not included in the correlation treatment, since the inclusion of dynamic correlation in the core electrons usually effects relative energies insignificantly.

The frozen core option can be switched on or off with ! FrozenCore or ! NoFrozenCore in the simple input. More information and further options are given in section 9.8 and in section 9.10.4.1.

8.1.3.8 Local Coupled Pair and Coupled-Cluster Calculations

ORCA features a special set of local correlation methods. The prevalent local coupled-cluster approaches date back to ideas of Pulay and have been extensively developed by Werner, Schütz and co-workers. They use the concept of correlation domains in order to achieve linear scaling with respect to CPU, disk and main memory. While the central concept of electron pairs is very similar in both approaches, the local correlation methods in ORCA follow a completely different and original philosophy.

In ORCA rather than trying to use sparsity, we exploit data compression. To this end two concepts are used: (a) localization of internal orbitals, which reduces the number of electron pairs to be correlated since the pair correlation energies are known to fall off sharply with distance; (b) use of a truncated pair specific natural orbital basis to span the significant part of the virtual space for each electron pair. This guarantees the fastest convergence of the pair wavefunction and a nearly optimal convergence of the pair correlation energy while not introducing any real space cut-offs or geometrically defined domains. These PNOs have been used previously by the pioneers of correlation theory. However, as discussed in the original papers, the way in which they have been implemented into ORCA is very different. For a full description of technical details and numerical tests see:

- F. Neese, A. Hansen, D. G. Liakos: Efficient and accurate local approximations to the coupled-cluster singles and doubles method using a truncated pair natural orbital basis. [82]
- F. Neese, F. Wennmohs, A. Hansen: Efficient and accurate local approximations to coupled electron pair approaches. An attempt to revive the pair-natural orbital method. [86]
8.1 Single Point Energies and Gradients

- D. G. Liakos, A. Hansen, F. Neese: Weak molecular interactions studied with parallel implementations of the local pair natural orbital coupled pair and coupled-cluster methods. [87]
- C. Riplinger, F. Neese: An efficient and near linear scaling pair natural orbital based local coupled-cluster method. [89]
- C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese: Natural triple excitations in local coupled-cluster calculations with pair natural orbitals. [90]
- D. Datta, S. Kossmann, F. Neese: Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory [92]

In 2013, the so-called DLPNO-CCSD method (“domain based local pair natural orbital”) was introduced. [89] This method is near linear scaling with system size and allows for giant calculations to be performed. In 2016, significant changes to the algorithm were implemented leading to linear scaling with system size concerning computing time, hard disk and memory consumption. [91] The principle idea behind DLPNO is the following: it became clear early on that the PNO space for a given electron pair (ij) is local and located in the same region of space as the electron pair (ij). In LPNO-CCSD this locality was partially used in the local fitting to the PNOs (controlled by the parameter TCutMKN). However, the PNOs were expanded in canonical virtual orbitals which led to some higher order scaling steps. In DLPNO, the PNOs are expanded in the set of projected atomic orbitals:

\[
|\tilde{\mu}\rangle = (1 - \sum_i |i\rangle \langle i|) |\mu\rangle \tag{8.7}
\]

where \(|\mu\rangle\) is an atomic orbital and \(|i\rangle\) refers to an occupied molecular orbital. Such projected orbitals are an overcomplete representation of the virtual space. The projected orbital \(|\tilde{\mu}\rangle\) is located in the same region of space as \(|\mu\rangle\) and hence can be assigned to atomic centers. This has first been invented and used by Pulay and Saebø [94] in their pioneering work on local correlation methods and widely exploited by Werner, Schütz and co-workers in their local correlation approaches. [95,96] DLPNO-CCSD goes one step further in expanding the PNOs \(|\tilde{\alpha}_{ij}\rangle\) of a given pair (ij) as:

\[
|\tilde{\alpha}_{ij}\rangle = \sum_{\tilde{\mu} \in \{ij\}} d^{ij}_{\tilde{\mu} \tilde{\alpha}} |\tilde{\mu}\rangle \tag{8.8}
\]

where \(\tilde{\mu} \in \{ij\}\) is the domain of atoms (range of \(\tilde{\mu}\)) that is associated with the electron pair ij. The advantage of the PNO method is, that these domains can be chosen to be large (>15-20 atoms) without compromising the efficiency of the method.
The comparison between LPNO-CCSD and DLPNO-CCSD is shown in Figure 8.5. It is obvious that DLPNO-CCSD is (almost) never slower than LPNO-CCSD. However, its true advantages do become most apparent for molecules with more than approximately 60 atoms. The triples correction, that was added with our second paper from 2013, shows a perfect linear scaling, as is shown in part (a) of Figure 8.5. For large systems it adds about 10%–20% to the DLPNO-CCSD computation time, hence its addition is possible for all systems for which the latter can still be obtained. Since 2016, the entire DLPNO-CCSD(T) algorithm is linear scaling. The improvements of the linear-scaling algorithm, compared to DLPNO2013-CCSD(T), start to become significant at system sizes of about 300 atoms, as becomes evident in part (b) of Figure 8.5.

Using the DLPNO-CCSD(T) approach it was possible for the first time (in 2013) to perform a CCSD(T) level calculation on an entire protein (Crambin with more than 650 atoms, Figure 8.6). While the calculation using a double-zeta basis took about 4 weeks on one CPU with DLPNO2013-CCSD(T), it takes only about 4 days to complete with DLPNO-CCSD(T). With DLPNO-CCSD(T) even the triple-zeta basis calculation can be completed within reasonable time, taking 2 weeks on 4 CPUs.
8.1 Single Point Energies and Gradients

![Structure of the Crambin protein - the first protein to be treated with a CCSD(T) level ab initio method](image)

The use of the LPNO (and DLPNO) methods is simple and requires little special attention from the user:

```plaintext
# Local Pair Natural Orbital Test
! cc-pVTZ cc-pVTZ/C LPNO-CCSD TightSCF
# or
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD TightSCF
%maxcore 2000

# these are the default values - they need not to be touched!
%mdci TCutPNO 3.33e-7 # cutoff for PNO occupation numbers. This is the main truncation parameter
TCutPairs 1e-4 # cut-off for estimated pair correlation energies. This exploits the locality in the internal space
TCutMKN 1e-3 # this is a technical parameter here that controls the domain size for the local fit to the PNOs. It is conservative.

end

* xyz 0 1
... (coordinates)
```

Using the well tested default settings, the LPNO-CEPA (LPNO-CPF, LPNO-VCEPA), LPNO-QCISD and LPNO-CCSD (LPNO-pCCSD) methods\(^6\) can be run in strict analogy to canonical calculations and should approximate the canonical result very closely. In fact, one should not view the LPNO methods as new model

\(^6\)As a technical detail: The closed-shell LPNO QCISD and CCSD come in two technical variants - LPNO1-CEPA/QCISD/CCSD and LPNO2-CEPA/CCSD/QCISD. The “2” variants consume less disk space but are also slightly less accurate than the “1” variants. This is discussed in the original paper in the case of QCISD and CCSD. For the sake of accuracy, the “1” variants are the default. In those cases, where “1” can still be performed, the
chemistry - they are designed to reproduce the canonical results, including BSSE. This is different from the
domain based local correlation methods that do constitute a new model chemistry with properties that are
different from the original methods.

In some situations, it may be appropriate to adapt the accuracy of the calculation. Sensible defaults have
been determined from extensive benchmark calculations and are accessible via LoosePNO, NormalPNO and
TightPNO keywords in the simple input line. [97]

These keywords represent the recommended way to control the accuracy of DLPNO calculations as follows.
Manual changing of thresholds beyond these specifying these keywords is usually discouraged.

| # Tight settings for increased accuracy, e.g. when investigating weak interactions or conformational equilibria |
| cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) TightPNO TightSCF |
| # OR: Default settings (no need to give NormalPNO explicitly) Useful for general thermochemistry |
| cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) NormalPNO TightSCF |
| # OR: Loose settings for rapid estimates |
| cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) LoosePNO TightSCF |

%maxcore 2000

* xyz 0 1
... (coordinates)
*

Since ORCA 4.0, the linear-scaling DLPNO implementation described in reference [91] is the default DLPNO
algorithm. However, for comparison, the first DLPNO implementation from references [89] and [90] can still
be called by using the DLPNO2013 prefix instead of the DLPNO- prefix.

| # DLPNO-CCSD(T) calculation using the 2013 implementation |
| cc-pVTZ cc-pVTZ/C DLPNO2013-CCSD(T) |
| # DLPNO-CCSD(T) calculation using the linear-scaling implementation |
| cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) |
* xyz 0 1
... (coordinates)
*

computational efficiency of both approaches is not grossly different. For LPNO CCSD there is also a third variant
(LPNO3-CCSD, also in the open-shell version) which avoids neglecting the dressing of the external exchange
operator. However, the results do not differ significantly from variant 1 but the calculations will become more
expensive. Thus it is not recommend to use variant 3. Variant 2 is not available in the open-shell version.
Since ORCA 4.0, the high-spin open-shell version of the DLPNO-CISD/QCISD/CCSD implementations have been made available on top of the same machinery as the 2016 version of the RHF-DLPNO-CCSD code. The present UHF-DLPNO-CCSD is designed to be an heir to the UHF-LPNO-CCSD and serves as a natural extension to the RHF-DLPNO-CCSD. A striking difference between UHF-LPNO and newly developed UHF-DLPNO methods is that the UHF-DLPNO approach gives the identical results to that of the RHF variant when applied to the closed-shell species while the UHF-LPNO does not. Usage of this program is quite straightforward and shown below:

```
# (1) In case of ROHF reference
! ROHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (2) In case of UHF reference, the QROs are constructed first and used for
# the open-shell DLPNO-CCSD computations
! UHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (3) In case that the UKS are specified, the QROs are constructed first and used as
# "unconverged" UHF orbitals for the open-shell DLPNO-CCSD computations.
! UKS CAM-B3LYP DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO
```

Note that this implementation is dedicated to the closed-shell and high-spin open-shell species. For spin-polarized systems, the UHF-LPNO-CCSD or Mk-LPNO-CCSD are available in addition to DLPNO-NEVPT2. The same set of truncation parameters as the closed-shell DLPNO-CCSD is used also in case of open-shell DLPNO. The open-shell DLPNO-CCSD produces more than 99.9 % of the canonical CCSD correlation energy as in case of the closed-shell variant. This feature is certainly different from the UHF-LPNO methods because the open-shell DLPNO-CCSD is re-designed from scratch on the basis of a new PNO ansatz which makes use of the high-spin open-shell NEVPT framework. The computational timings of the UHF-DLPNO-CCSD and RIJCOSX-UHF for linear alkane chains in triplet state are shown in Figure 8.7.

![Figure 8.7: Computational times of RIJCOSX-UHF and UHF-DLPNO-CCSD for the linear alkane chains (C\textsubscript{n}H\textsubscript{n+2}) in triplet state with def2-TZVPP basis and default frozen core settings. 4 CPU cores and 128 GB of memory were used on a single cluster node.](image)

Figure 8.7: Computational times of RIJCOSX-UHF and UHF-DLPNO-CCSD for the linear alkane chains (C\textsubscript{n}H\textsubscript{n+2}) in triplet state with def2-TZVPP basis and default frozen core settings. 4 CPU cores and 128 GB of memory were used on a single cluster node.
Although those systems are somewhat idealized for the DLPNO method to best perform, it is clear that the preceding RIJCOSX-UHF is the rate-determining step in the total computational time for large examples. In the open-shell DLPNO implementations, SOMOs are included not only in the occupied space but also in the PNO space in the preceding integral transformation step. This means the presence of more SOMOs may lead to more demanding PNO integral transformation and DLPNO-CCSD iterations. The illustrative examples include active site model of the [NiFe] Hydrogenase in triplet state and the oxygen evolving complex (OEC) in the high-spin state, which are shown in Figures 8.8 and 8.9, respectively. With def2-TZVPP basis set and NormalPNO settings, a single point calculation on [NiFe] Hydrogenase (Figure 8.8) took approximately 45 hours on a single cluster node by using 4 CPU cores of Xeon E5-2670®. A single point calculation on the OEC compound (Figure 8.9) with the same computational settings finished in 44 hours even though the number of AO in this system is even fewer than the Hydrogenase: the Hydrogenase active site model and OEC involve 4007 and 2606 AO basis functions, respectively. Special care should be taken if the system possess more than ten SOMOs since inclusion of more SOMOs may drastically increase the prefactor of the calculations. In addition, if the SOMOs are distributed over the entire molecular skeleton, each pair domain may not be truncated at all; in this case speedup attributed to the domain truncation will not be achieved at all.

Figure 8.8: Ni-Fe active center in the [NiFe] Hydrogenase in its second-coordination sphere. The whole model system is composed of 180 atoms.
8.1 Single Point Energies and Gradients

Figure 8.9: A model compound for the OEC in the S_2 state of photosystem II which is comprised of 238 atoms. In its high-spin state, the OEC possesses 13 SOMOs in total.

Calculation of the orbital-unrelaxed density has been implemented for closed-shell DLPNO-CCSD. This permits analytical computation of first-order properties, such as multipole moments or electric field gradients. In order to reproduce conventional unrelaxed CCSD properties to a high degree of accuracy, tighter thresholds may be needed than given by the default settings. Reading of the reference [92] is recommended. Calculation of the unrelaxed density is requested as usual:

```
%MDCI Density Unrelaxed End
```

There are a few things to be noticed about (D)LPNO methods:

- The LPNO methods obligatorily make use of the RI approximation. Hence, a correlation fit set must be provided.

- The DLPNO-CCSD(T) method is applicable to closed-shell or high-spin open-shell species. When performing DLPNO calculations on open-shell species, it is always better to have UCO option: If preceding SCF converges to broken-symmetry solutions, it is not guaranteed that the DLPNO-CCSD gives physically meaningful results.

- Besides the closed-shell version which uses a RHF or RKS reference determinant there is an open-shell version of the LPNO-CCSD for high-spin open-shell molecules (see original paper) using an UHF or UKS reference determinant build from quasi-restricted orbitals (QROs, see section 7.8.3). Since the results of the current open-shell version are slightly less accurate than that of the closed-shell version it is mandatory to specify if you want to use the closed-shell or open-shell version for calculations of closed-shell systems, i.e. always put the “RHF” (“RKS”) or “UHF” (“UKS”) keyword in the simple keyword line. Open-shell systems can be of course only treated by the open-shell version. Do not mix
results of the closed- and open-shell versions of LPNO methods (e.g. if you calculate reaction energies of a reaction in which both closed- and open-shell molecules take part, you should use the open-shell version throughout). This is because the open-shell LPNO results for the closed-shell species certainly differ from those of closed-shell implementations. This drawback of the open-shell LPNO methods has led to the development of a brand new open-shell DLPNO approach which converges to the RHF-DLPNO in the closed-shell limit. Importantly, one can mix the results of closed- and open-shell versions of DLPNO approaches.

- The open-shell version of the DLPNO approach uses a different strategy to the LPNO variant to define the open-shell PNOs. This ensures that, unlike the open-shell LPNO, the PNO space converges to the closed-shell counterpart in the closed-shell limit. Therefore, in the closed-shell limit, the open-shell DLPNO gives identical correlation energy to the RHF variant up to at least the third decimal place. The perturbative triples correction referred to as, (T), is also available for the open-shell species.

- When performing a calculation on the open-shell species with either of canonical/LPNO/DLPNO methods on top of the Slater determinant constructed from the QROs, a special attention should be paid on the orbitals energies of those QROs. In some cases, the orbitals energy of the highest SOMO appear to be higher than that of the lowest VMO. Similarly to this, the orbital energy of the highest DOMO may appear to higher than that of the lowest SOMOs. In such cases, the CEPA/QCISD/CCSD iteration may show difficulty in convergence. In the worst case, it just diverges. Most likely, in such cases, one has to suspect the charge and multiplicity might be wrong. If they are correct, you may need much prettier starting orbitals and a bit of good luck!

- F12-variants will become available in the foreseeable future.

- Parallelization is done.

- There are three thresholds that can be user controlled that can all be adjusted in the %mdci block: (a) \(T_{\text{CutPNO}} \) controls the number of PNOs per electron pair. This is the most critical parameter and has a default value of \(3.33 \times 10^{-7} \). (b) \(T_{\text{CutPairs}} \) controls a perturbative selection of significant pairs and has a default value of \(10^{-4} \). (c) \(T_{\text{CutMKN}} \) is a technical parameter and controls the size of the fit set for each electron pair. It has a default value of \(10^{-3} \). All of these default values are conservative. Hence, no adjustment of these parameters is necessary. All DLPNO-CCSD truncations are bound to these three truncation parameters and should not almost be touched (Hence they are also not documented :-)).

- The preferred way to adjust accuracy when needed is to use the “LoosePNO/NormalPNO/TightPNO” keywords. In addition, “TightPNO” triggers the full iterative (DLPNO-MP2) treatment in the MP2 guess, whereas the other options use a semicanonical MP2 calculation. Tables 8.6 and 8.7 contain the thresholds used by the current (2016) and old (2013) implementations, respectively.

- LPNO-VCEPA/n (n=1,2,3) methods are only available in the open-shell version yet.

- LPNO variants of the parameterized coupled-cluster methods (pCCSD, see section 7.8.1) are also available (e.g. LPNO-pCCSD/1a and LPNO-pC CSD/2a).

- The LPNO methods reproduce the canonical energy differences typically better than 1 kcal/mol. This accuracy exists over large parts of the potential energy surface. Tightening TCutPairs to 1e-5 gives more accurate results but also leads to significantly longer computation times.
Potential energy surfaces are virtually but not perfectly smooth (like any method that involves cut-offs). Numerical gradient calculations have been attempted and reported to have been successful.

The LPNO methods do work together with RIJCOSX, RI-JK and also with ANO basis sets and basis set extrapolation. They also work for conventional integral handling.

The methods behave excellently with large basis sets. Thus, they stay efficient even when large basis sets are used that are necessary to obtain accurate results with wavefunction based *ab initio* methods. This is a prerequisite for efficient computational chemistry applications.

For LPNO-CCSD, calculations with about 1000 basis functions are routine, calculations with about 1500 basis functions are possible and calculations with 2000-2500 basis functions are the limit on powerful computers. For DLPNO-CCSD much larger calculations are possible. There is virtually no crossover and DLPNO-CCSD is essentially always more efficient than LPNO-CCSD. Starting from about 50 atoms the differences become large. The largest DLPNO-CCSD calculation to date featured >1000 atoms and more than 20000 basis functions!

Using large main memory is not mandatory but advantageous since it speeds up the initial integral transformation significantly (controlled by “MaxCore” in the %mdci block, see section 7.8.4).

The open-shell versions are about twice as expensive as the corresponding closed-shell versions.

Analytic gradients are not available.

An unrelaxed density implementation is available for closed-shell DLPNO-CCSD, permitting calculation of first-order properties.

<table>
<thead>
<tr>
<th>Setting</th>
<th>T_{CutPairs}</th>
<th>T_{CutDO}</th>
<th>T_{CutPNO}</th>
<th>T_{CutMKN}</th>
<th>MP2 pair treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoosePNO</td>
<td>10^{-3}</td>
<td>2×10^{-2}</td>
<td>1.00×10^{-6}</td>
<td>10^{-3}</td>
<td>semicanonical</td>
</tr>
<tr>
<td>NormalPNO</td>
<td>10^{-4}</td>
<td>1×10^{-2}</td>
<td>3.33×10^{-7}</td>
<td>10^{-3}</td>
<td>semicanonical</td>
</tr>
<tr>
<td>TightPNO</td>
<td>10^{-5}</td>
<td>5×10^{-3}</td>
<td>1.00×10^{-7}</td>
<td>10^{-4}</td>
<td>full iterative</td>
</tr>
</tbody>
</table>

As an example, see the following isomerization reaction that appears to be particularly difficult for DFT:
The results of the calculations (closed-shell versions) with the def2-TZVP basis set (about 240 basis functions) are shown below:

<table>
<thead>
<tr>
<th>Method</th>
<th>Energy Difference (kcal/mol)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD(T)</td>
<td>-14.6</td>
<td>92.4</td>
</tr>
<tr>
<td>CCSD</td>
<td>-18.0</td>
<td>55.3</td>
</tr>
<tr>
<td>LPNO-CCSD</td>
<td>-18.6</td>
<td>20.0</td>
</tr>
<tr>
<td>CEPA/1</td>
<td>-12.4</td>
<td>42.2</td>
</tr>
<tr>
<td>LPNO-CEPA/1</td>
<td>-13.5</td>
<td>13.4</td>
</tr>
</tbody>
</table>

The calculations are typical in the sense that: (a) the LPNO methods provide answers that are within 1 kcal/mol of the canonical results, (b) CEPA approximates CCSD(T) more closely than CCSD. The speedups of a factor of 2 – 5 are moderate in this case. However, this is also a fairly small calculation. For larger systems, speedups of the LPNO methods compared to their canonical counterparts are on the order of a factor >100–1000.
8.1.3.9 Cluster in molecules (CIM)

Cluster in molecules (CIM) approach is a linear scaling local correlation method developed by Li and the coworkers in 2002. [98] It was further improved by Li, Piecuch, Kállay and other groups recently. [99–102] CIM is inspired by the early local correlation method developed by Förner and coworkers. [103] The total correlation energy of a close-shell molecule can be considered as the summation of correlation energies for each occupied LMOs.

\[E_{\text{corr}} = \sum_{i}^{\text{occ}} E_i = \sum_{i}^{\text{occ}} \frac{1}{4} \sum_{j,ab} \langle ij || ab \rangle T_{ij}^{ab} \]

(8.9)

For each occupied LMO, it only correlated with its nearby occupied LMOs and virtual MOs. To reproduce the correlation energies for each occupied LMO, only a subset of occupied and virtual LMOs are needed in the correlation calculation. Instead of doing the correlation calculation of the whole molecule, the correlation energy can be obtained by calculating various subsystems. The CIM approach implemented in ORCA is almost following the algorithm proposed by Guo and coworkers. [102] However, to avoid the real space cutoff, we use the differential overlap integral (DOI) instead of distance threshold. There is only one parameter ‘CIMTHRESH’ in CIM approach, which controls the numbers of MOs in subsystems. If the DOI between LMO \(i\) and LMO \(j\) is larger than CIMTHRESH, \(j\) will be included into the MO domain of \(i\). By including all nearby LMO of \(i\), one can construct a subsystem for MO \(i\). The default value of CIMTHRESH is 0.001, which can reproduce about 99.8% of the correlation energies. If accurate results are needed, the tight CIMTHRESH must be used. To reproduce the correlation energies at different levels, CIM can invoke different correlation methods to calculate the subsystems. In ORCA the CIM-RI-MP2, CIM-CCSD(T) and CIM-DLPNO-CCSD(T) is available now, which can reproduce the energies of RI-MP2, CCSD(T) and DLPNO-CCSD(T).

The usage of CIM in ORCA is simple. For CIM-RI-MP2,

```
#   # CIM-RI-MP2 calculation  
#   ! RI-MP2 cc-pVDZ cc-pVDZ/C CIM
%CIM
   CIMTHRESH 0.0005 # Default value is 0.001
end

* xyzfile 0 1 CIM.xyz
```

For CIM-DLPNO-CCSD(T),

```
#   # CIM-DLPNO-CCSD calculation  
#   ! DLPNO-CCSD(T) cc-pVDZ cc-pVDZ/C CIM
* xyzfile 0 1 CIM.xyz
```
The parallelization of CIM have been implemented. However, it is only parallelized within one subsystem calculation. The parallelization between subsystems will be released in the next generation of ORCA. The generalization of CIM from close-shell to open-shell will also be implemented in near future.

8.1.3.10 Arbitrary Order Coupled-Cluster Calculations

ORCA features an interface to Kallay’s powerful MRCC program. This program must be obtained separately. The interface is restricted to single point energies but can be used for rigid scan calculations or numerical frequencies.

The use of the interface is simple:

```plaintext
# Test the MRCC code of Mihael Kallay
!
cc-pVDZ Conv SCFConv10 UseSym

%mrcc method "CCSDT"
     ETol  9
end

* xyz 0 1
  F 0 0 0
  H 0 0 0.95
*
```

The Method string can be any of:

```plaintext
# The excitation level specification can be anything
# like SD, SDT, SDTQ, SDTQP etc.
%mrcc method "CCSDT"
    "CCSD(T)"
    "CCSD[T]"
    "CCSD(T)_L" (the lambda version)
    "CC3"
    "CCSDT-1a"
    "CCSDT-1b"
    "CISDT"
```

It is not a good idea, of course, to use this code for CCSD or CCSD(T) or CISD. Its real power lies in performing the higher order calculations. Open-shell calculations can presently not be done with the interface.
8.1.4 Density Functional Theory

8.1.4.1 Standard Density Functional Calculations

Density functional calculations are as simple to run as HF calculations. In this case you may want to adjust the integration grid and you almost certainly will want to use the RI-J approximation in case that you have a LDA, GGA or meta-GGA functional (non-hybrid functional). For hybrid functionals, the RIJCOSX and RI-JK approximations offer large speedups.

For example, consider this B3LYP calculation on the cyclohexane molecule.

```bash
# Test a simple DFT calculation
! RKS B3LYP SVP Grid4
* xyz 0 1
C  -0.79263  0.55338  -1.58694
C   0.68078  0.13314  -1.72622
C   1.50034  0.61020  -0.52199
C  -1.01517  -0.06749   0.77103
C  -0.49095  -0.38008   0.74228
C  -1.24341  0.64089  -0.11866
H   1.10490  0.53546  -2.67754
H   0.76075  -0.97866  -1.78666
H  -0.95741  1.54560  -2.07170
H  -1.42795  -0.17916  -2.14055
H  -2.34640   0.48232  -0.04725
H  -1.04144  1.66089   0.28731
H  -0.66608  -1.39636   0.31480
H  -0.89815  -0.39708   1.78184
H   1.25353   0.59796   1.63523
H   1.57519  -1.01856   0.93954
H   2.58691   0.40499  -0.67666
H   1.39420  1.71843  -0.44053
*
```

If you want an accurate single point energy then it is wise to choose “TightSCF”, select a basis set of at least valence triple-zeta plus polarization quality (e.g. `def2-TZVP`) and also to move one step up in the DFT integration grid (i.e. “Grid4”).

8.1.4.2 DFT Calculations with RI

DFT calculations that do not require the HF exchange to be calculated (non-hybrid DFT) can be very efficiently executed with the RI-J approximation. It leads to very large speedups at essentially no loss of accuracy. The use of the RI-J approximation may be illustrated for a medium sized organic molecule - Penicillin:
RI-DFT calculation on the Penicillin molecule

! RKS BP86 RI SVP def2/J TightSCF

* xyz 0 1

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3.17265</td>
<td>1.15815</td>
<td>-0.09175</td>
</tr>
<tr>
<td>C</td>
<td>2.66167</td>
<td>0.72032</td>
<td>1.18601</td>
</tr>
<tr>
<td>C</td>
<td>4.31931</td>
<td>0.59242</td>
<td>-0.73003</td>
</tr>
<tr>
<td>C</td>
<td>2.02252</td>
<td>1.86922</td>
<td>-0.54680</td>
</tr>
<tr>
<td>C</td>
<td>1.37143</td>
<td>1.52404</td>
<td>0.79659</td>
</tr>
<tr>
<td>S</td>
<td>2.72625</td>
<td>-1.05563</td>
<td>0.80065</td>
</tr>
<tr>
<td>C</td>
<td>4.01305</td>
<td>-0.91195</td>
<td>-0.52441</td>
</tr>
<tr>
<td>C</td>
<td>5.58297</td>
<td>1.09423</td>
<td>-0.06535</td>
</tr>
<tr>
<td>O</td>
<td>1.80801</td>
<td>2.36292</td>
<td>-1.62137</td>
</tr>
<tr>
<td>N</td>
<td>0.15715</td>
<td>0.73759</td>
<td>0.70095</td>
</tr>
<tr>
<td>C</td>
<td>5.25122</td>
<td>-1.72918</td>
<td>-0.12001</td>
</tr>
<tr>
<td>C</td>
<td>3.41769</td>
<td>-1.50152</td>
<td>-1.81857</td>
</tr>
<tr>
<td>O</td>
<td>6.06623</td>
<td>1.14077</td>
<td>-0.91855</td>
</tr>
<tr>
<td>O</td>
<td>5.72538</td>
<td>1.40990</td>
<td>1.08931</td>
</tr>
<tr>
<td>C</td>
<td>-1.08932</td>
<td>1.35001</td>
<td>0.75816</td>
</tr>
<tr>
<td>C</td>
<td>-2.30230</td>
<td>0.45820</td>
<td>0.54941</td>
</tr>
<tr>
<td>O</td>
<td>-1.19855</td>
<td>2.53493</td>
<td>0.96288</td>
</tr>
<tr>
<td>O</td>
<td>-3.48875</td>
<td>1.21403</td>
<td>0.57063</td>
</tr>
<tr>
<td>C</td>
<td>-4.66939</td>
<td>0.59150</td>
<td>0.27339</td>
</tr>
<tr>
<td>C</td>
<td>-4.84065</td>
<td>-0.79240</td>
<td>0.11956</td>
</tr>
<tr>
<td>C</td>
<td>-5.79523</td>
<td>1.39165</td>
<td>0.03916</td>
</tr>
<tr>
<td>C</td>
<td>-6.07568</td>
<td>-1.34753</td>
<td>-0.22401</td>
</tr>
<tr>
<td>C</td>
<td>-7.03670</td>
<td>0.85454</td>
<td>-0.30482</td>
</tr>
<tr>
<td>C</td>
<td>-7.18253</td>
<td>-0.52580</td>
<td>-0.43612</td>
</tr>
<tr>
<td>H</td>
<td>3.24354</td>
<td>1.69074</td>
<td>2.02120</td>
</tr>
<tr>
<td>H</td>
<td>4.33865</td>
<td>0.87909</td>
<td>-1.77554</td>
</tr>
<tr>
<td>H</td>
<td>1.26605</td>
<td>2.42501</td>
<td>1.39138</td>
</tr>
<tr>
<td>H</td>
<td>0.17381</td>
<td>-0.25857</td>
<td>0.47675</td>
</tr>
<tr>
<td>H</td>
<td>6.05024</td>
<td>-1.64196</td>
<td>-0.89101</td>
</tr>
<tr>
<td>H</td>
<td>5.67754</td>
<td>-1.39089</td>
<td>0.85176</td>
</tr>
<tr>
<td>H</td>
<td>5.01118</td>
<td>-2.81229</td>
<td>-0.01401</td>
</tr>
<tr>
<td>H</td>
<td>2.50304</td>
<td>-0.95210</td>
<td>-2.14173</td>
</tr>
<tr>
<td>H</td>
<td>4.15186</td>
<td>-1.44541</td>
<td>-2.65467</td>
</tr>
<tr>
<td>H</td>
<td>3.14138</td>
<td>-2.57427</td>
<td>-1.69700</td>
</tr>
<tr>
<td>H</td>
<td>7.29069</td>
<td>1.46408</td>
<td>-0.31004</td>
</tr>
<tr>
<td>H</td>
<td>-2.21049</td>
<td>-0.82915</td>
<td>-0.44999</td>
</tr>
<tr>
<td>H</td>
<td>-2.34192</td>
<td>-0.28647</td>
<td>1.37775</td>
</tr>
<tr>
<td>H</td>
<td>-4.00164</td>
<td>-1.48999</td>
<td>0.26950</td>
</tr>
<tr>
<td>H</td>
<td>-5.69703</td>
<td>2.48656</td>
<td>0.12872</td>
</tr>
<tr>
<td>H</td>
<td>-6.17811</td>
<td>-2.44045</td>
<td>-0.33185</td>
</tr>
<tr>
<td>H</td>
<td>-7.89945</td>
<td>1.51981</td>
<td>-0.47737</td>
</tr>
<tr>
<td>H</td>
<td>-8.15811</td>
<td>-0.96111</td>
<td>-0.71027</td>
</tr>
</tbody>
</table>

*
The job has 42 atoms and 430 contracted basis functions. Yet, it executes in just a few minutes elapsed time on any reasonable personal computer.

NOTES:

- The RI-J approximation requires an “auxiliary basis set” in addition to a normal orbital basis set. For the Karlsruhe basis sets there is the universal auxiliary basis set of Weigend that is called with the name \texttt{def2/J} (all-electron up to Kr). When scalar relativistic Hamiltonians are used (DKH or ZORA) along with all-electron basis sets, then a general-purpose auxiliary basis set is the \texttt{SARC/J} that covers most of the periodic table. Other choices are documented in sections 6.3 and 9.3.

- For “pure” functionals the use of RI-J with the \texttt{def2/J} auxiliary basis set is the default.

Since DFT is frequently applied to open-shell transition metals we also show one (more or less trivial) example of a Cu(II) complex treated with DFT.

```plaintext
! UKS BP86 RI SV def2/J SlowConv
%base "temp"
* xyz -2 2
  Cu 0 0 0
  Cl 2.25 0 0
  Cl -2.25 0 0
  Cl 0 2.25 0
  Cl 0 -2.25 0
*

$new_job

! UKS B3LYP NoRI TZVP TightSCF MORead
%moinp "temp.gbw"
%scf GuessMode CMatrix
end
* xyz -2 2
  Cu 0 0 0
  Cl 2.25 0 0
  Cl -2.25 0 0
  Cl 0 2.25 0
  Cl 0 -2.25 0
*
```

Although it would not have been necessary for this example, it shows a possible strategy how to converge such calculations. First a less accurate but fast job is performed using the RI approximation, a GGA functional and a small basis set without polarization functions. Note that a larger damping factor has been used in order to guide the calculation (\texttt{SlowConv}). The second job takes the orbitals of the first as input and performs a more accurate hybrid DFT calculation. A subtle point in this calculation on a dianion in the gas phase is the command \texttt{GuessMode CMatrix} that causes the corresponding orbital transformation to be used in order to
match the orbitals of the small and the large basis set calculation. This is always required when the orbital energies of the small basis set calculation are positive as will be the case for anions.

8.1.4.3 Hartree–Fock and Hybrid DFT Calculations with RIJCOSX

Frustrated by the large difference in execution times between pure and hybrid functionals, we have been motivated to study approximations to the Hartree-Fock exchange term. The method that we have finally come up with is called the “chain of spheres” COSX approximation and may be thought of as a variant of the pseudo-spectral philosophy. Essentially, in performing two electron integrals, the first integration is done numerically on a grid and the second (involving the Coulomb singularity) is done analytically. Upon combining this treatment with the Split-RI-J method for the Coulomb term (thus, you do need a Coulomb fitting basis!), we have designed the RIJCOSX approximation that can be used to accelerate Hartree-Fock and hybrid DFT calculations. Note that this introduces another grid on top of the DFT integration grid which is usually significantly smaller.

In particular for large and accurate basis sets, the speedups obtained in this way are very large - we have observed up to a factor of sixty! The procedure is essentially linear scaling such that large and accurate calculations become possible with high efficiency. The RIJCOSX approximation is basically available throughout the program. The errors are on the order of 1 kcal mol\(^{-1}\) or less in the total energies as well as in energy differences and can be made smaller with larger than the default grids or by running the final SCF cycle without this approximation. The impact on bond distances is a fraction of a pm, angles are better than a few tenth of a degree and soft dihedral angles are good to about 1 degree. To the limited extent to which it has been tested, vibrational frequencies are roughly good to 2–10 wavenumbers with the default settings.

The use of RIJCOSX is very simple:

```
! B3LYP def2-TZVPP def2/J TightSCF RIJCOSX
...
```

One thing to be mentioned in correlation calculations with RIJCOSX is that the requirements for the SCF and correlation fitting bases are quite different. We therefore now support two different auxiliary basis sets in the same run:

```
! RI-MP2 def2-TZVPP def2/J def2-TZVPP/C TightSCF RIJCOSX
...
```

CAUTION:

- This feature does NOT work in multiple job inputs

\(^7\)For algorithmic and theoretical details see: [104].
8.1.4.4 Hartree–Fock and Hybrid DFT Calculations with RI-JK

An alternative algorithm for accelerating the HF exchange in hybrid DFT or HF calculations is to use the RI approximation for both Coulomb and exchange. This is implemented in ORCA for SCF single point energies but not for gradients.

\[\text{RHF def2-TZVPP def2/JK RI-JK} \]

The speedups for small molecules are better than for RIJCOSX, for medium sized molecules (e.g. (gly)₄) similar, and for larger molecules RI-JK is less efficient than RIJCOSX. The errors of RI-JK are usually below 1 mEh and the error is very smooth (smoother than for RIJCOSX). Hence, for small calculations with large basis sets, RI-JK is a good idea, for large calculations on large molecules RIJCOSX is better.

NOTES:

- For RI-JK you will need a larger auxiliary basis set. For the Karlsruhe basis set, the universal def2/JK and def2/JKsmall basis sets are available. They are large and accurate.
- For UHF RI-JK is roughly twice as expensive as for RHF. This is not true for RIJCOSX.
- RI-JK is available for conventional and direct runs and also for ANO bases. There the conventional mode is recommended.

A comparison of the RIJCOSX and RI-JK methods (taken from Ref. [105]) for the (gly)₂, (gly)₄ and (gly)₈ is shown below (wall clock times in second for performing the entire SCF):

<table>
<thead>
<tr>
<th></th>
<th>Def2-SVP</th>
<th>Def2-TZVP(-df)</th>
<th>Def2-TZVPP</th>
<th>Def2-QZVPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(gly)₂ Default</td>
<td>105</td>
<td>319</td>
<td>2574</td>
<td>27856</td>
</tr>
<tr>
<td>RI-JK</td>
<td>44</td>
<td>71</td>
<td>326</td>
<td>3072</td>
</tr>
<tr>
<td>RIJCOSX</td>
<td>70</td>
<td>122</td>
<td>527</td>
<td>3659</td>
</tr>
<tr>
<td>(gly)₄ Default</td>
<td>609</td>
<td>1917</td>
<td>13965</td>
<td>161047</td>
</tr>
<tr>
<td>RI-JK</td>
<td>333</td>
<td>678</td>
<td>2746</td>
<td>30398</td>
</tr>
<tr>
<td>RIJCOSX</td>
<td>281</td>
<td>569</td>
<td>2414</td>
<td>15383</td>
</tr>
<tr>
<td>(gly)₈ Default</td>
<td>3317</td>
<td>12505</td>
<td>82774</td>
<td></td>
</tr>
<tr>
<td>RI-JK</td>
<td>3431</td>
<td>5452</td>
<td>16586</td>
<td>117795</td>
</tr>
<tr>
<td>RIJCOSX</td>
<td>1156</td>
<td>2219</td>
<td>8558</td>
<td>56505</td>
</tr>
</tbody>
</table>

It is obvious from the data that for small molecules the RI-JK approximation is the most efficient choice. For (gly)₄ this is already no longer obvious. For up to the def2-TZVPP basis set, RI-JK and RIJCOSX are almost identical and for def2-QZVPP RIJCOSX is already a factor of two faster than RI-JK. For large molecules like (gly)₈ with small basis sets RI-JK is not a big improvement but for large basis set it still beats the normal 4-index calculation. RIJCOSX on the other hand is consistently faster. It leads to speedups of around 10 for def2-TZVPP and up to 50-60 for def2-QZVPP. Here it outperforms RI-JK by, again, a factor of two.
8.1.4.5 DFT Calculations with Second Order Perturbative Correction (Double-Hybrid Functionals)

There is a family of functionals which came up in 2006 and were proposed by Grimme [106]. They consist of a semi-empirical mixture of DFT components and the MP2 correlation energy calculated with the DFT orbitals and their energies. Grimme referred to his functional as B2PLYP (B88 exchange, 2 parameters that were fitted and perturbative mixture of MP2 and LYP) – a version with improved performance (in particular for weak interactions) is mPW2PLYP [107] and is also implemented. From the extensive calibration work, the new functionals appear to give better energetics and a narrower error distribution than B3LYP. Thus, the additional cost of the calculation of the MP2 energy may be well invested (and is quite limited in conjunction with density fitting in the RI part). Martin has reported reparameterizations of B2PLYP (B2GP-PLYP, B2K-PLYP and B2T-PLYP) that are optimized for “general-purpose”, “kinetic” and “thermochemistry” applications. A fairly new variant of these double-hybrids is the PWPB95 functional by Grimme. For more information, see the detailed input section.

In this version of ORCA, the method is available for single points, geometry optimizations [108], dipole moments and other first order properties, as well as for numerical polarizabilities and frequencies.

8.1.4.6 DFT Calculations with Atom-pairwise Dispersion Correction

It is well known that DFT does not include dispersion forces. It is possible to use a simple atom-pairwise correction to account for the major parts of this contribution to the energy [1, 2, 109]. We have adopted the code and method developed by Stefan Grimme in this ORCA version. The method is parameterized for many established functionals (e.g. BLYP, BP86, PBE, TPSS, B3LYP, B2PLYP).\(^8\) The atom-pairwise dispersion correction with Becke-Johnson damping (keyword \texttt{D3BJ}) is the default option and will automatically be invoked by the simple keyword \texttt{D3}.

```plaintext
! BLYP D3 def2-QZVPP RI def2/J Opt Grid4

%paras R= 2.5,4.0,16
end

%geom Constraints
{ C 0 C }
{ C 1 C }
end

* xyz 0 1
Ar 0.0000000 0.0000000 {R}
H 0.0000000 0.0000000 0.0000000
```

\(^8\) For expert users: The keyword \texttt{D2}, \texttt{D3ZERO} and \texttt{D3BJ} select the empirical 2006 and the atom-pairwise 2010 model, respectively, with either zero-damping or Becke-Johnson damping. The default is the most accurate \texttt{D3BJ} model. The outdated model from 2004 [110] is no longer supported and can only be invoked by setting \texttt{DFTDOPT = 1}. The C6-scaling coefficient can be user defined using e.g. \texttt{%method DFTDScaleC6 1.2 end}
In this example, a BLYP calculation without dispersion correction will show a repulsive potential between the argon atom and the methane molecule. Using the D3 dispersion correction as shown above, the potential curve shows a minimum at about 3.1–3.2 Å. The atom-pairwise correction is quite successful and Grimme’s work suggests that this is more generally true. For many systems like stacked DNA basepairs, hydrogen bond complexes and other weak interactions the atom-pairwise dispersion correction will improve substantially the results of standard functionals at essentially no extra cost.

8.1.4.7 DFT Calculations with Range-Separated Hybrid Functionals

All range-separated functionals in ORCA use the error function based approach according to Hirao and coworkers. [111] This allows the definition of DFT functionals that dominate the short-range part by an adapted exchange functional of LDA, GGA or meta-GGA level and the long-range part by Hartree-Fock exchange. CAM-B3LYP, [112] LC-BLYP [113] and members of the ωB97-family of functionals have been implemented into ORCA, namely ωB97, ωB97X [114] and ωB97X-D3. [115] Some of them incorporate fixed amounts of Hartree-Fock exchange (EXX) and/or DFT exchange and they differ in the RS-parameter μ. In the case of ωB97X-D3, the proper D3 correction (employing the zero-damping scheme) should be calculated automatically. The user is encouraged to check this.

Several restrictions apply to these functionals at the moment. They have only been implemented and tested for use with the libint integral package and for RHF and UHF single-point, ground state nuclear gradient, ground state nuclear hessian, TDDFT, and TDDFT nuclear gradient calculations. Only the standard integral handling (NORI), RIJONX, and RIJCOSX are supported. Do not use these functionals with any other options.

8.1.5 Quadratic Convergence

Convergence in SCF calculations is not always easy to achieve. One way to go if the calculations converges only slowly or “creeps” towards the end of the SCF cycles such that many almost useless cycles are being performed is to switch on a powerful but somewhat expensive convergence helper – the full Newton-Raphson method. In the neighbourhood of a stable SCF solution this method converges quadratically which means that after 3–4 Newton-Raphson cycles the calculations are normally converged. However, each cycle consists of microiterations which are roughly as expensive as one SCF iteration. Thus, each SCF iteration becomes somewhat expensive but this may be more than compensated by the reduced number of cycles.

Consider the following example of a molecule with a small HOMO–LUMO gap (≈ 1 eV):

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>-1.0951073</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.5163499</td>
<td>0.8943443</td>
<td>-1.4604101</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.5163499</td>
<td>-0.8943443</td>
<td>-1.4604101</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.0326998</td>
<td>0.0000000</td>
<td>-1.4604101</td>
<td></td>
</tr>
</tbody>
</table>
Running Typical Calculations

! PModel RKS BP86 RI SemiDirect SV(P) def2/J TightSCF

* xyz 0 1
C -2.65720 1.06150 -0.05713
C -1.26906 0.45978 0.20734
C 2.30892 0.84241 -0.90960
C 3.66808 0.62825 -0.22855
C -3.24744 1.63074 1.22706
C 4.55462 1.85858 -0.37334
O -4.34718 2.12974 1.26070
O 4.32817 2.77288 -1.12962
S -0.52934 -0.10251 -1.36344
S 1.32901 -0.69440 -0.81445
N -3.52304 -0.01967 -0.66394
N 3.40865 0.27323 1.21839
O -2.67918 1.59541 2.29262
O 5.54649 1.99821 0.30260
H -2.59274 1.90623 -0.78323
H -3.61570 -0.84473 -0.06839
H -3.16141 -0.34892 -1.56042
H -4.47232 0.30853 -0.85012
H 4.27898 0.16311 1.74252
H 2.86502 0.97910 1.71822
H 2.90558 -0.60935 1.32107
H 4.22252 -0.21720 -0.70036
H 2.45549 1.12172 -1.97850
H 1.78000 1.68539 -0.40747
H -0.61420 1.23221 0.67374
H -1.35568 -0.39162 0.92184
*

$new_job

! PModel RKS BP86 RI SemiDirect SV(P) def2/J TightSCF NRSCF

* xyz 0 1
... etc, coordinates repeated
*

The first job converges as follows:

<table>
<thead>
<tr>
<th>ITER</th>
<th>Energy</th>
<th>Delta-E</th>
<th>Max-DP</th>
<th>RMS-DP</th>
<th>[F,P]</th>
<th>Damp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1441.4978981358</td>
<td>0.000000000000</td>
<td>0.401792</td>
<td>0.00763633</td>
<td>0.2989113</td>
<td>0.7000</td>
</tr>
<tr>
<td>1</td>
<td>-1441.7605061369</td>
<td>-0.262608001152</td>
<td>0.88234063</td>
<td>0.01388441</td>
<td>0.0944375</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>-1441.4732415586</td>
<td>0.287264578387</td>
<td>0.11142170</td>
<td>0.00283563</td>
<td>0.2353949</td>
<td>0.7000</td>
</tr>
</tbody>
</table>

Turning on DIIS
Thus, the job converges almost monotonically but it does so somewhat slowly towards the end. The second
job, however:

```
<table>
<thead>
<tr>
<th>ITER</th>
<th>Energy</th>
<th>Delta-E</th>
<th>Max-DP</th>
<th>RMS-DP</th>
<th>[F,P]</th>
<th>Damp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1441.4978981358</td>
<td>0.0000000000</td>
<td>0.40179217</td>
<td>0.00763633</td>
<td>0.2980113</td>
<td>0.7000</td>
</tr>
<tr>
<td>1</td>
<td>-1441.760561369</td>
<td>-0.262068001152</td>
<td>0.88234663</td>
<td>0.01384241</td>
<td>0.0918419</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>-1441.4732415586</td>
<td>0.28724578397</td>
<td>0.11421760</td>
<td>0.00283563</td>
<td>0.2353949</td>
<td>0.7000</td>
</tr>
<tr>
<td>3</td>
<td>-1441.7133455526</td>
<td>-0.2409893967</td>
<td>0.13295730</td>
<td>0.00537057</td>
<td>0.1969989</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>-1441.8576777984</td>
<td>0.16236617824</td>
<td>0.12684567</td>
<td>0.00251575</td>
<td>0.1502491</td>
<td>0.7000</td>
</tr>
<tr>
<td>5</td>
<td>-1441.961903323</td>
<td>0.08613161899</td>
<td>0.09818570</td>
<td>0.00195646</td>
<td>0.1031261</td>
<td>0.7000</td>
</tr>
<tr>
<td>6</td>
<td>-1442.0049616788</td>
<td>0.26817199</td>
<td>0.0537057</td>
<td>0.00300970</td>
<td>0.1969393</td>
<td>0.7000</td>
</tr>
<tr>
<td>7</td>
<td>-1442.0598897762</td>
<td>-0.05498297428</td>
<td>0.04412999</td>
<td>0.00080076</td>
<td>0.0423744</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>-1442.0665680897</td>
<td>-0.00667112101</td>
<td>0.00537057</td>
<td>0.00064591</td>
<td>0.0175566</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>-1442.0686166667</td>
<td>0.0020557103</td>
<td>0.00318862</td>
<td>0.00009817</td>
<td>0.0013287</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>-1442.0692557561</td>
<td>0.00618657537</td>
<td>0.00872807</td>
<td>0.00017711</td>
<td>0.0024081</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>-1442.0692790592</td>
<td>-0.000623303114</td>
<td>0.00136738</td>
<td>0.00006658</td>
<td>0.0010936</td>
<td>0.0000</td>
</tr>
<tr>
<td>12</td>
<td>-1442.0692835736</td>
<td>0.0001517858</td>
<td>0.00043798</td>
<td>0.00001226</td>
<td>0.0002705</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td>-1442.069389394</td>
<td>0.0000000829716</td>
<td>0.00028171</td>
<td>0.00004165</td>
<td>0.0001447</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>-1442.0693259972</td>
<td>-0.00000058216</td>
<td>0.00014881</td>
<td>0.00006515</td>
<td>0.0000856</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

*** Energy Check signals convergence ***
```

Thus, after reaching the threshold for initiating the Newton-Raphson procedure after nine iterations, the job takes only three more iterations to converge to the correct solution. Since each micro-iteration in the CP-SCF
procedure roughly corresponds to the formation of one Fock-matrix the second job is still somewhat more expensive. You cannot always expect the Newton-Raphson procedure to converge\(^9\) and it will not converge at all if your SCF solution is not stable (i.e. if the orbital Hessian has negative eigenvalues) – still, it is a powerfull technique to try if other alternatives do not do well. It is important, however, to bring the SCF into the radius of convergence of the Newton-Raphson procedure for it to be efficient.

The implementation covers closed-shell and spin-unrestricted Hartree-Fock and DFT calculations.

8.1.6 Counterpoise Correction

In calculating weak molecular interactions the nasty subject of the basis set superposition error (BSSE) arises. It consists of the fact that if one describes a dimer, the basis functions on A help to lower the energy of fragment B and vice versa. Thus, one obtains an energy that is biased towards the dimer formation due to basis set effects. Since this is unwanted, the Boys and Bernardi procedure aims to correct for this deficiency by estimating what the energies of the monomers would be if they had been calculated with the dimer basis set. This will stabilize the monomers relative to the dimers. The effect can be a quite sizeable fraction of the interaction energy and should therefore be taken into account. The original Boys and Bernardi formula for the interaction energy between fragments A and B is:

\[
\Delta E = E_{AB}^B(AB) - E_A^A(A) - E_B^B(B) - \left[E_{AB}^{AB}(AB) - E_A^{AB}(A) + E_B^{AB}(AB) - E_B^{AB}(B) \right]
\] (8.10)

Here \(E_X^Y(Z) \) is the energy of fragment X calculated at the optimized geometry of fragment Y with the basis set of fragment Z. Thus, you need to do a total the following series of calculations: (1) optimize the geometry of the dimer and the monomers with some basis set Z. This gives you \(E_{AB}^{AB}(AB), E_A^A(A) \) and \(E_B^B(B) \) (2) delete fragment A (B) from the optimized structure of the dimer and re-run the single point calculation with basis set Z. This gives you \(E_B^{AB}(B) \) and \(E_A^{AB}(A) \). (3) Now, the final calculation consists of calculating the energies of A and B at the dimer geometry but with the dimer basis set. This gives you \(E_A^{AB}(AB) \) and \(E_B^{AB}(AB) \).

In order to achieve the last step efficiently, a special notation was put into ORCA which allows you to delete the electrons and nuclear charges that come with certain atoms but retain the assigned basis set. This trick consists of putting a “:” after the symbol of the atom. Here is an example of how to run such a calculation of the water dimer at the MP2 level (with frozen core):

```plaintext
# 
# BSSE test 
# 
# --------------------------------------------
# First the monomer. It is a waste of course  
# to run the monomer twice ...  
# --------------------------------------------
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
\%id "monomer"  
```

\(^9\) For example try \%scf nrstart 0.1 end end to turn on the NRSCF after two iterations in the example above – it will run into trouble.
8.1 Single Point Energies and Gradients

* xyz @ 1
O 7.405639 6.725069 7.710504
H 7.029206 6.234628 8.442160
H 8.247948 6.296600 7.554030
*

Snew_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer"
* xyz @ 1
O 7.405639 6.725069 7.710504
H 7.029206 6.234628 8.442160
H 8.247948 6.296600 7.554030
*

--
now the dimer
--
Snew_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "dimer"
* xyz @ 1
O 7.439917 6.726792 7.762120
O 5.752050 6.489306 5.407671
H 7.025510 6.226170 8.467436
H 8.274883 6.280259 7.609894
H 6.313507 6.644667 6.176902
H 5.522285 7.367132 5.103852
*

--
Now the calculations of the monomer at the
dimer geometry
--
Snew_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer_1"
* xyz @ 1
O 7.439917 6.726792 7.762120
H 7.025510 6.226170 8.467436
H 8.274883 6.280259 7.609894
*

Snew_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer_1"
* xyz @ 1
O 5.752050 6.489306 5.407671
H 6.313507 6.644667 6.176902
H 5.522285 7.367132 5.103852
*

--
Now the calculation of the monomer at the
dimer geometry but with the dimer basis set
You obtain the energies:

- **Monomer**: -152.647062118 Eh
- **Dimer**: -152.655623625 Eh -5.372 kcal/mol
- **Monomer at dimer geometry**: -152.647006948 Eh 0.035 kcal/mol
- **Same with AB Basis set**: -152.648364970 Eh -0.818 kcal/mol

Thus, the corrected interaction energy is:

-5.372 kcal/mol $- (0.818-0.035) = -4.52$ kcal/mol

8.1.7 Complete Active Space Self-Consistent Field Method

8.1.7.1 Introduction

There are several situations where a complete-active space self-consistent field (CASSCF) treatment is a good idea:

- Wavefunctions with significant multireference character arising from several nearly degenerate configurations (static correlation)
- Wavefunctions which require a multideterminantal treatment (for example multiplets of atoms, ions, transition metal complexes, …)
- Situations in which bonds are broken or partially broken.
• Generation of orbitals which are a compromise between the requirements for several states.

• Generation of start orbitals for multireference methods covering dynamic correlation (NEVPT2, MRCI, MREOM,...)

• Generation of genuine spin eigenfunctions for multideterminantal/multireference wavefunctions.

In all of these cases the single-determinantal Hartree-Fock method fails badly and in most of these cases DFT methods will also fail. In these cases a CASSCF method is a good starting point. CASSCF is a special case of multiconfigurational SCF (MCSCF) methods which specialize to the situation where the orbitals are divided into three-subspaces: (a) the internal orbitals which are doubly occupied in all configuration state functions (CSFs), (b) partially occupied (active) orbitals and (c) virtual (external) orbitals which are empty in all CSFs. A fixed number of electrons is assigned to the internal subspace and the active subspace. If N-electrons are “active” in M orbitals one speaks of a CASSCF(N,M) wavefunctions. All spin-eigenfunctions for N-electrons in M orbitals are included in the configuration interaction step and the energy is made stationary with respect to variations in the MO and the CI coefficients. Any number of roots of any number of different multiplicities can be calculated and the CASSCF energy may be optimized with respect to a user defined average of these states.

The CASSCF method has the nice advantage that it is fully variational which renders the calculation of analytical gradients relatively easy. Thus, the CASSCF method may be used for geometry optimizations and numerical frequency calculations.

The price to pay for this strongly enhanced flexibility relative to the single-determinantal HF method is that the CASSCF method requires more computational ressources and also more insight and plannning from the user side. The technical details are explained in section 9.11. Here we explain the use of the CASSCF method by examples. In addition to the description in the manual, there is a separate tutorial for CASSCF with many more examples in the field of coordination chemistry. The tutorial covers the design of the calculation, practical tips on convergence as well as the computation of properties.

A number of properties are available in ORCA (g-tensor, ZFS splitting, CD, MCD, susceptibility, dipoles, ...). The majority of CASSCF properties such as EPR parameters are computed in the framework of the quasi-degenerate perturbation theory. Some properties such as ZFS splittings can also be computed via perturbation theory or rigorously extracted from an effective Hamiltonian. For a detailed description of the available properties and options see section 9.11.2. All the aforementioned properties are computed within the CASSCF module. An exception are Mössbauer parameters, which are computed with the usual keywords using the EPRNMR module (8.12.10).

8.1.7.2 A simple Example

One standard example of a multireference system is the Be atom. Let us run two calculations, a standard closed-shell calculation (1s²2s²) and a CASSCF(2,4) calculation which also includes the (1s²2s¹2p¹) and (1s²2s⁰2p²) configurations.
This standard closed-shell calculation yields the energy -14.56213241 Eh. The CASSCF calculation yields the energy -14.605381525 Eh. Thus, the inclusion of the 2p shell results in an energy lowering of 43 mEh which is considerable. The CASSCF program also prints the composition of the wavefunction:

```
CAS-SCF STATES FOR BLOCK 1 MULT=1 NROOTS=1

ROOT 0: E= -14.6053815294 Eh
    0.90060 [ 0]: 2000
    0.03313 [ 4]: 0200
    0.03313 [ 9]: 0002
    0.03313 [ 7]: 0020
```

This information is to be read as follows: The lowest state is composed of 90% of the configuration which has the active space occupation pattern 2000 which means that the first active orbital is doubly occupied in this configuration while the other three are empty. The MO vector composition tells us what these orbitals are (ORCA uses natural orbitals to canonicalize the active space).
Thus, the first active space orbital has occupation number 1.80121 and is the Be-2s orbital. The other three orbitals are 2p in character and all have the same occupation number 0.06626. Since they are degenerate in occupation number space, they are arbitrary mixtures of the three 2p orbitals. It is then clear that the other components of the wavefunction (each with 3.31%) are those in which one of the 2p orbitals is doubly occupied.

How did we know how to put the 2s and 2p orbitals in the active space? The answer is – WE DID NOT KNOW! In this case it was “good luck” that the initial guess produced the orbitals in such an order that we had the 2s and 2p orbitals active. IN GENERAL IT IS YOUR RESPONSIBILITY THAT THE ORBITALS ARE ORDERED SUCH THAT THE ORBITALS THAT YOU WANT IN THE ACTIVE SPACE COME IN THE DESIRED ORDER. In many cases this will require re-ordering and CAREFUL INSPECTION of the starting orbitals.

ATTENTION:

- If you include orbitals in the active space that are nearly empty or nearly doubly occupied, convergence problems are likely. The SuperCl(PT) and Newton-Raphson method are less prone to these problems.

8.1.7.3 Starting Orbitals

TIP

- In many cases natural orbitals of a simple correlated calculation of some kind provide a good starting point for CASSCF.

Let us illustrate this principle with a calculation on the Benzene molecule where we want to include all six π-orbitals in the active space. After doing a RHF calculation:

```plaintext
! RHF SV(P)

* int 0 1
  C 0 0 0 0.000000 0.000 0.000
  C 1 0 0 1.389437 0.000 0.000
  C 2 1 0 1.389437 120.000 0.000
  C 3 2 1 1.389437 120.000 0.000
  C 4 3 2 1.389437 120.000 0.000
  C 5 4 3 1.389437 120.000 0.000
  H 1 2 3 1.082921 120.000 180.000
  H 2 1 3 1.082921 120.000 180.000
  H 3 2 1 1.082921 120.000 180.000
  H 4 3 2 1.082921 120.000 180.000
  H 5 4 3 1.082921 120.000 180.000
  H 6 5 4 1.082921 120.000 180.000
```
We can look at the orbitals around the HOMO/LUMO gap:

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 C s</td>
<td>2.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C pz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C px</td>
<td>1.4</td>
<td>12.4</td>
<td>5.9</td>
<td>0.3</td>
<td>0.0</td>
<td>11.2</td>
</tr>
<tr>
<td>0 C py</td>
<td>4.2</td>
<td>4.1</td>
<td>10.1</td>
<td>5.9</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>0 C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C dxz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C dxy</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C s</td>
<td>2.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C pz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C px</td>
<td>1.4</td>
<td>12.4</td>
<td>5.9</td>
<td>0.3</td>
<td>0.0</td>
<td>11.2</td>
</tr>
<tr>
<td>1 C py</td>
<td>4.2</td>
<td>4.1</td>
<td>10.1</td>
<td>5.9</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>1 C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C dxz</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1 C dxy</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C s</td>
<td>2.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C pz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C px</td>
<td>5.7</td>
<td>0.0</td>
<td>0.0</td>
<td>20.9</td>
<td>0.0</td>
<td>10.1</td>
</tr>
<tr>
<td>2 C py</td>
<td>0.0</td>
<td>16.5</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C dxz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C dxz</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>2 C dxy</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C s</td>
<td>2.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C pz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C px</td>
<td>1.4</td>
<td>12.4</td>
<td>5.9</td>
<td>0.3</td>
<td>0.0</td>
<td>11.2</td>
</tr>
<tr>
<td>3 C py</td>
<td>4.2</td>
<td>4.1</td>
<td>10.1</td>
<td>5.9</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>3 C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C dxz</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>3 C dxy</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C s</td>
<td>2.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C pz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C px</td>
<td>1.4</td>
<td>12.4</td>
<td>5.9</td>
<td>0.3</td>
<td>0.0</td>
<td>11.2</td>
</tr>
<tr>
<td>4 C py</td>
<td>4.2</td>
<td>4.1</td>
<td>10.1</td>
<td>5.9</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>4 C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C dxz</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>4 C dxy</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C s</td>
<td>2.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C pz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C px</td>
<td>5.7</td>
<td>0.0</td>
<td>0.0</td>
<td>20.9</td>
<td>0.0</td>
<td>10.1</td>
</tr>
<tr>
<td>5 C py</td>
<td>0.0</td>
<td>16.5</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C dxz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C dxz</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>5 C dxy</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
8.1 Single Point Energies and Gradients

<table>
<thead>
<tr>
<th></th>
<th>H s</th>
<th>H s</th>
<th>H s</th>
<th>H s</th>
<th>H s</th>
<th>H s</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7.5</td>
<td>0.0</td>
<td>7.5</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>0.0</td>
<td>7.5</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>7.5</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
<td>0.0</td>
<td>9.9</td>
</tr>
<tr>
<td>9</td>
<td>7.5</td>
<td>0.0</td>
<td>7.5</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
<td>0.0</td>
<td>7.5</td>
<td>2.5</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>11</td>
<td>7.5</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
<td>0.0</td>
<td>9.9</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>-0.49833</td>
<td>-0.33937</td>
<td>-0.33937</td>
<td>0.13472</td>
<td>0.13472</td>
<td>0.18198</td>
<td></td>
</tr>
<tr>
<td>2.00000</td>
<td>2.00000</td>
<td>2.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 C s</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>0 C pz</td>
<td>0.0</td>
<td>8.1</td>
<td>24.4</td>
<td>7.8</td>
<td>23.4</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C px</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>0 C py</td>
<td>19.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>0 C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C dyz</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0 C dx2y2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>0 C dxy</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1 C s</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>1 C pz</td>
<td>0.0</td>
<td>8.1</td>
<td>24.4</td>
<td>7.8</td>
<td>23.4</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C px</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>1 C py</td>
<td>19.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>1 C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C dyz</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 C dx2y2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>1 C dxy</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2 C s</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2 C pz</td>
<td>0.0</td>
<td>32.5</td>
<td>0.0</td>
<td>31.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C px</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>2 C py</td>
<td>11.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C dxz</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>2 C dx2y2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>2 C dxy</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C s</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>3 C pz</td>
<td>0.0</td>
<td>8.1</td>
<td>24.4</td>
<td>7.8</td>
<td>23.4</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C px</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>3 C py</td>
<td>19.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>3 C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C dyz</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3 C dx2y2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>3 C dxy</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>4 C s</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>4 C pz</td>
<td>0.0</td>
<td>8.1</td>
<td>24.4</td>
<td>7.8</td>
<td>23.4</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C px</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>4 C py</td>
<td>19.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>4 C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C dyz</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 C dx2y2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>4 C dxy</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>5 C s</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>5 C pz</td>
<td>0.0</td>
<td>32.5</td>
<td>0.0</td>
<td>31.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C px</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>5 C py</td>
<td>11.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 C dxz</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
We see that the occupied π-orbitals number 16, 19, 20 and the unoccupied ones start with 21 and 22. However, the sixth high-lying π^*-orbital cannot easily be found. Thus, let us run a simple selected CEPA/2 calculation and look at the natural orbitals.

```plaintext
! RHF SV(P)
! moread
%moinp "Test-CASSCF-Benzene-1.gbw"

%mrci citype cepa2
tsel 1e-5
norbiters 1
newblock 1 *
nroots 1
refs cas(0,0) end
end
# ...etc, input of coordinates
```

The calculation prints the occupation numbers:

<table>
<thead>
<tr>
<th>N</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.98784765</td>
</tr>
<tr>
<td>7</td>
<td>1.98513069</td>
</tr>
<tr>
<td>8</td>
<td>1.98508633</td>
</tr>
<tr>
<td>9</td>
<td>1.97963799</td>
</tr>
<tr>
<td>10</td>
<td>1.97957039</td>
</tr>
<tr>
<td>11</td>
<td>1.97737886</td>
</tr>
<tr>
<td>12</td>
<td>1.97509724</td>
</tr>
<tr>
<td>13</td>
<td>1.97370616</td>
</tr>
<tr>
<td>14</td>
<td>1.97360821</td>
</tr>
<tr>
<td>15</td>
<td>1.96960145</td>
</tr>
<tr>
<td>16</td>
<td>1.96958645</td>
</tr>
<tr>
<td>17</td>
<td>1.96958581</td>
</tr>
<tr>
<td>18</td>
<td>1.95478929</td>
</tr>
<tr>
<td>19</td>
<td>1.91751184</td>
</tr>
<tr>
<td>20</td>
<td>1.91747498</td>
</tr>
</tbody>
</table>
From these occupation number it becomes evident that there are several natural orbitals which are not quite
doquently occupied MOs. Those with an occupation number of 1.95 and less should certainly be taken as active.
In addition the rather strongly occupied virtual MOs 21-23 should also be active leading to CASSCF(6,6).
Let us see what these orbitals are before starting CASSCF:

<table>
<thead>
<tr>
<th>Occupation Number</th>
<th>MO Type</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C pz</td>
<td>16.5</td>
<td>8.1</td>
<td>24.4</td>
<td>23.4</td>
<td>7.8</td>
<td>16.1</td>
</tr>
<tr>
<td>0</td>
<td>C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>C dyz</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>C pz</td>
<td>16.5</td>
<td>8.1</td>
<td>24.4</td>
<td>23.5</td>
<td>7.8</td>
<td>16.1</td>
</tr>
<tr>
<td>1</td>
<td>C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>C dyz</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>C pz</td>
<td>16.5</td>
<td>32.5</td>
<td>0.0</td>
<td>0.0</td>
<td>31.3</td>
<td>16.3</td>
</tr>
<tr>
<td>2</td>
<td>C dxz</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>C pz</td>
<td>16.5</td>
<td>8.1</td>
<td>24.4</td>
<td>23.4</td>
<td>7.8</td>
<td>16.1</td>
</tr>
<tr>
<td>3</td>
<td>C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>C dyz</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>C pz</td>
<td>16.5</td>
<td>8.1</td>
<td>24.4</td>
<td>23.5</td>
<td>7.8</td>
<td>16.1</td>
</tr>
<tr>
<td>4</td>
<td>C dxz</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>C dyz</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>C pz</td>
<td>16.5</td>
<td>32.5</td>
<td>0.0</td>
<td>0.0</td>
<td>31.3</td>
<td>16.3</td>
</tr>
<tr>
<td>5</td>
<td>C dxz</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>C dyz</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

This shows us that these six orbitals are precisely the \(\pi/\pi^* \) orbitals that we wanted to have active (you can
also plot them to get even more insight).
Now we know that the desired orbitals are in the correct order, we can do CASSCF:

```plaintext
! RHF SV(P)
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"

%casscf nel 6
   norb 6
   nroots 1
   mult 1
   switchstep nr
end
```

Here we have also used a special feature of the CASSCF program – the second order convergence provided by the Newton-Raphson method after a certain convergence has been reached (the `switchstep nr` statement). The output of the CASSCF program is:

```
------------
CAS-SCF ITERATIONS
------------

MACRO-ITERATION 1:
--- Inactive Energy E0 = -224.09726054 Eh
CI-ITERATION 0:
-230.5848801034 0.000000000000 ( 0.001) CI-PROBLEM SOLVED
DENSITIES MADE

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>
BLOCK 1 MULT= 1 NROOTS= 1
ROOT 0: E= -230.5848801035 Eh
  0.96883 [ 0]: 222000
  0.02462 [ 14]: 211110
  0.01674 [ 729]: 220200 0.01674971 [ 264]: 2202200
  0.01041 [ 5265]: 110110 0.01041170 [ 6350]: 1121101

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>
E(CAS)= -230.5848801034 E DE= 0.000000000
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.281 Act-Int = -0.001
--- current l-shift: Up(Ext-Act) = 1.88 Dn(Act-Int) = 1.60
N(occ)= 1.96763 1.92238 1.92238 0.07909 0.07909 0.02942
||g|| = 0.109239796 Max(G)= -0.049527078 Rot=45,20
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.109239796 Max(G)= -0.049527078 Rot=45,20
--- SFit(Active Orbitals)

MACRO-ITERATION 2:
--- Inactive Energy E0 = -224.09939043 Eh
```
CI-ITERATION 0:
-230.59027459 0.000000000000 (0.001) CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.59027459 Eh DE= -0.005147355
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.252 Act-Int = -0.001
--- current l-shift: Up(Ext-Act) = 1.35 Dn(Act-Int) = 1.10
N(occ)= 1.96232 1.90547 1.90547 0.03
||g|| = 0.032960383 Max(G)= -0.008631611 Rot=40,18
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.028051630 Max(X)(48,23) = -0.016849440
--- SFit(Active Orbitals)

MACRO-ITERATION 3:
--- Inactive Energy E0 = -224.07713574 Eh
CI-ITERATION 0:
-230.590266456 0.000000000000 (0.001) CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590266456 Eh DE= -0.000238998
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.242 Act-Int = -0.002
--- current l-shift: Up(Ext-Act) = 1.18 Dn(Act-Int) = 0.94
N(occ)= 1.96144 1.90281 1.90281 0.03
||g|| = 0.006907681 Max(G)= 0.003101930 Rot=404,18
--- Orbital Update [SuperCI(PT)]]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.001982580 Max(X)(83,23) = -0.000919157
--- SFit(Active Orbitals)

MACRO-ITERATION 4:
=》》》Convergence to 3.0e-02 achieved - switching to Step=NR
--- Inactive Energy E0 = -224.07930018 Eh
CI-ITERATION 0:
-230.590276666 0.000000000000 (0.001) CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590276666 Eh DE= -0.000004209
--- Energy gap subspaces: Ext-Act = 0.244 Act-Int = 0.056
--- current l-shift: Up(Ext-Act) = 0.36 Dn(Act-Int) = 0.54
N(occ)= 1.96136 1.90268 1.90268 0.03
||g|| = 0.003412624 Max(G)= 0.000966040 Rot=31,13
--- Orbital Update [NR]
AUGHESS-ITER 0: E= -0.000000953 <r|r>= 0.000004426
AUGHESS-ITER 1: E= -0.000001591 <r|r>= 0.000006161
AUGHESS-ITER 2: E= -0.000001707 <r|r>= 0.000000905
AUGHESS-ITER 3: E= -0.000001721 <r|r>= 0.000000118
AUGHESS-ITER 4: E= -0.000001725 <r|r>= 0.00000063 => CONVERGED
DE(predicted)= -0.000000862 First Element= 0.999999751
<X(rot)|X(rot)>= 0.000000498
--- SFit(Active Orbitals)

MACRO-ITERATION 5:
--- Inactive Energy E0 = -224.07767304 Eh
CI-ITERATION 0:
-230.590271531 0.000000000000 (0.001) CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590271531 Eh DE= -0.000000865
--- Energy gap subspaces: Ext-Act = 0.244 Act-Int = 0.056
--- current l-shift: Up(Ext-Act) = 0.36 Dn(Act-Int) = 0.54
N(occ)= 1.96135 1.90266 1.90266 0.098671 0.098670 0.0599
||g|| = 0.000057975 Max(G)= 0.0000151393329989,16
---- THE CAS-SCF GRADIENT HAS CONVERGED ----
--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- Forming Natural Orbitals
--- Canonicalize Internal Space
--- Canonicalize External Space

MACRO-ITERATION 6:
--- Inactive Energy E0 = -224.07767304 Eh
--- All densities will be recomputed
CI-ITERATION 0:
-230.590271527 0.000000000000 (0.001) CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590271527 Eh DE= 0.0000000004
--- Energy gap subspaces: Ext-Act = -0.242 Act-Int = -0.002
--- current l-shift: Up(Ext-Act) = 0.84 Dn(Act-Int) = 0.60
N(occ)= 1.96135 1.90266 1.90266 0.098671 0.098670 0.0599
||g|| = 0.000057984 Max(G)= 0.000014776 Rot=87,44------------
CASSCF RESULTS

Final CASSCF energy : -230.590271527 Eh -6274.6803 eV

First of all you can see how the program cycles between CI-vector optimization and orbital optimization steps (so-called unfolded two-step procedure). After 4 iterations, the program switches to the Newton-Raphson solver which then converges very rapidly. In the CASSCF program this produces lengthy integrals and Hessian files and therefore the size of molecule that can be treated is somewhat limited.

8.1.7.4 CASSCF and Symmetry

The CASSCF program can make some use of symmetry. Thus, it is possible to do the CI calculations separated by irreducible representations. This allows one to calculate electronic states in a more controlled fashion.

Let us look at a simple example: C_2H_4. We first generate symmetry adapted MP2 natural orbitals. Since we opt for initial guess orbitals, the computationally cheaper unrelaxed density suffices:

```plaintext
! def2-TZVP def2-TZVP/C UseSym RI-MP2 conv
# conventional is faster for small molecules
%mp2
density unrelaxed
natorbs true
end
* int 0 1
```
The program does the following. It first identifies the group correctly as \(D_{2h}\) and sets up its irreducible representations. The process detects symmetry within \(\text{SymThresh}\ (10^{-4})\) and purifies the geometry thereafter:
(Re)building abelian point group:
Creating Character Table ... done
Making direct product table ... done

ASYMMETRIC UNIT IN D2h

<table>
<thead>
<tr>
<th>#</th>
<th>AT</th>
<th>MASS</th>
<th>COORDS (A.U.)</th>
<th>BAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C</td>
<td>12.0110</td>
<td>1.27556514</td>
<td>0.00000000 0.00000000 0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1.0080</td>
<td>2.31491451</td>
<td>1.80020592 0.00000000 0</td>
</tr>
</tbody>
</table>

SYMMETRY ADOPTED BASIS

The coefficients for the symmetry adopted linear combinations (SALCS) of basis functions will now be computed:
Number of basis functions ... 86
Preparing memory ... done
Constructing Gamma(red) ... done
Reducing Gamma(red) ... done
Constructing SALCs ... done
Checking SALC integrity ... nothing suspicious
Normalizing SALCs ... done

Storing the symmetry object:
Symmetry file ... Test-SYM-CAS-C2H4-1.sym.tmp
Writing symmetry information ... done

It then performs the SCF calculation and keeps the symmetry in the molecular orbitals.

<table>
<thead>
<tr>
<th>NO</th>
<th>OCC</th>
<th>E(Eh)</th>
<th>E(eV)</th>
<th>Irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0000</td>
<td>-11.236728</td>
<td>-385.7669</td>
<td>1-Ag</td>
</tr>
<tr>
<td>1</td>
<td>2.0000</td>
<td>-11.235157</td>
<td>-385.7242</td>
<td>1-B3u</td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
<td>-1.027144</td>
<td>-27.9500</td>
<td>2-Ag</td>
</tr>
<tr>
<td>3</td>
<td>2.0000</td>
<td>-0.784021</td>
<td>-21.3343</td>
<td>2-B3u</td>
</tr>
<tr>
<td>4</td>
<td>2.0000</td>
<td>-0.641566</td>
<td>-17.4579</td>
<td>1-B2u</td>
</tr>
<tr>
<td>5</td>
<td>2.0000</td>
<td>-0.575842</td>
<td>-15.6694</td>
<td>3-Ag</td>
</tr>
<tr>
<td>6</td>
<td>2.0000</td>
<td>-0.508313</td>
<td>-13.8319</td>
<td>1-B1g</td>
</tr>
<tr>
<td>7</td>
<td>2.0000</td>
<td>-0.373406</td>
<td>-10.1609</td>
<td>1-B1u</td>
</tr>
<tr>
<td>8</td>
<td>0.0000</td>
<td>0.139580</td>
<td>3.7982</td>
<td>1-B2g</td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>0.171382</td>
<td>4.6799</td>
<td>4-Ag</td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
<td>0.195186</td>
<td>5.3113</td>
<td>3-B3u</td>
</tr>
<tr>
<td>11</td>
<td>0.0000</td>
<td>0.198766</td>
<td>5.3548</td>
<td>2-B2u</td>
</tr>
<tr>
<td>12</td>
<td>0.0000</td>
<td>0.242832</td>
<td>6.6078</td>
<td>2-B1g</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>0.300191</td>
<td>8.1686</td>
<td>5-Ag</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>0.326339</td>
<td>8.8801</td>
<td>4-B3u</td>
</tr>
</tbody>
</table>
... etc

The MP2 module does not take any advantage of this information but produces natural orbitals that are symmetry adapted:
8.1 Single Point Energies and Gradients

From this information and visual inspection you will know what orbitals you will have in the active space:

These natural orbitals can then be fed into the CASSCF calculation. We perform a simple calculation in which we keep the ground state singlet (A_{1g} symmetry, irrep=0) and the first excited triplet state (B_{3u} symmetry, irrep=7). In general the ordering of irreps follows standard conventions and in case of doubt you will find the relevant number for each irrep in the output.

For example, here (using LargePrint):

\begin{verbatim}
N[0](B3u) = 2.00000360
N[1](Ag) = 2.00000219
N[2](Ag) = 1.98056435
N[3](B3u) = 1.97195041
N[4](B2u) = 1.96746753
N[5](B1g) = 1.96578954
N[6](Ag) = 1.95864726
N[7](B1u) = 1.93167098
N[8](B2g) = 0.04702701
N[9](B3u) = 0.02071784
N[10](B2u) = 0.01727252
N[11](Ag) = 0.01651489
N[12](B1g) = 0.01682695
N[13](B3u) = 0.01443373
N[14](B1u) = 0.01164204
N[15](Ag) = 0.01068617
N[16](B2u) = 0.00999302
N[17](Ag) = 0.00840326
N[18](B3g) = 0.00795053
N[19](B3u) = 0.00532044
N[20](Au) = 0.00450556
etc.
\end{verbatim}
We use the following input for CASSCF, where we tightened the integral cut-offs and the convergence criteria using `!VeryTightSCF`.

```
! def2-TZVP Conv NormalPrint UseSym
! moread
%moinp "Test-SYM-CAS-C2H4-1.mp2nat"
%casscf nel 4
  nob 4
  # This is only here to show that NR can also be used from
  # the start with orbstep
  orbstep nr
  switchstep nr
  # the lowest singlet and triplet states. The new feature
  # is the array "irrep" that lets you give the irrep for
  # a given block. Thus, now you can have several blocks of
  # the same multiplicity but different spatial symmetry
  irrep 0,7
  mult 1,3
  nroots 1,1
end

* int 0 1
 C 0 0 0 0 0 0
 C 1 0 0 1.35 0 0
 H 1 2 0 1.1 120 0
 H 1 2 3 1.1 120 180
 H 2 1 3 1.1 120 0
 H 2 1 3 1.1 120 180
*
```

And gives:

```
---------
SCF SETTINGS
---------
Hamiltonian:
  Ab initio Hamiltonian Method .... Hartree-Fock(GTOs)

General Settings:
  Integral files IntName .... Test-SYM-CAS-C2H4-1
  Hartree-Fock type HFTyp .... CASSCF
```
Total Charge	Charge	0
Multiplicity | Mult | | 1
Number of Electrons | NEL | | 16
Basis Dimension | Dim | | 86
Nuclear Repulsion | ENuc | | 32.9609050695 Eh

Symmetry handling | UseSym | | ON
Point group | | D2h
Used point group | | D2h
Number of irreps | | 8
Irrep Ag has | 19 symmetry adapted basis functions (ofs= 0)
Irrep B1g has | 12 symmetry adapted basis functions (ofs= 19)
Irrep B2g has | 8 symmetry adapted basis functions (ofs= 31)
Irrep B3g has | 4 symmetry adapted basis functions (ofs= 39)
Irrep Au has | 4 symmetry adapted basis functions (ofs= 43)
Irrep B1u has | 8 symmetry adapted basis functions (ofs= 47)
Irrep B2u has | 12 symmetry adapted basis functions (ofs= 55)
Irrep B3u has | 19 symmetry adapted basis functions (ofs= 67)

And further in the CASCSF program:

Symmetry handling | UseSym | | ON
Point group | | D2h
Used point group | | D2h
Number of irreps | | 8
Irrep Ag has | 19 SALCs (ofs= 0) #(closed)= 2 #(active)= 1
Irrep B1g has | 12 SALCs (ofs= 19) #(closed)= 1 #(active)= 0
Irrep B2g has | 8 SALCs (ofs= 31) #(closed)= 0 #(active)= 1
Irrep B3g has | 4 SALCs (ofs= 39) #(closed)= 0 #(active)= 0
Irrep Au has | 4 SALCs (ofs= 43) #(closed)= 0 #(active)= 0
Irrep B1u has | 8 SALCs (ofs= 47) #(closed)= 0 #(active)= 1
Irrep B2u has | 12 SALCs (ofs= 55) #(closed)= 1 #(active)= 0
Irrep B3u has | 19 SALCs (ofs= 67) #(closed)= 2 #(active)= 1

Symmetries of active orbitals:
MO = 6 IRREP= 0 (Ag)
MO = 7 IRREP= 5 (B1u)
MO = 8 IRREP= 2 (B2g)
MO = 9 IRREP= 7 (B3u)

Setting up the integral package | | done
Building the CAS space | | done (7 configurations for Mult=1 Irrep=0)
Building the CAS space | | done (4 configurations for Mult=3 Irrep=7)

Note that the irrep occupations and active space irreps will be frozen to what they are upon entering the CASSCF program. This helps to avoid flipping electronic states or active orbitals in and out of the active space.

After which it smoothly converges to give:

6: 1.986258 -0.753012 -20.4905 3-Ag
7: 1.457849 -0.291201 -7.9240 1-B1u
8: 0.541977 0.100890 2.7454 1-B2g
9: 0.013915 0.964186 26.2368 3-B3u
As well as:

<table>
<thead>
<tr>
<th>STATE</th>
<th>ROOT</th>
<th>MULT</th>
<th>IRREP</th>
<th>DE/a.u.</th>
<th>DE/eV</th>
<th>DE/cm**-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>B3u</td>
<td>0.163741</td>
<td>4.456</td>
<td>35937.1</td>
</tr>
</tbody>
</table>

8.1.7.5 RI, RIJCOSX and RIJK approximations for CASSCF

A significant speedup of CASSCF calculations on larger molecules can be achieved with the RI and RIJCOSX approximation. For CASSCF calculations, we the keyword `trafostep RI` and specify an additional auxiliary basis (/c or the more accurate /jk auxiliary basis).

```plaintext
! RHF SV(P) def2-svp/C
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"
%casscf nel 6
  norb 6
  nroots 1
  mult 1
  switchstep nr
  trafostep ri
  end
```

The energy of this calculation is \(-230.590328\) Eh compared to the previous result \(-230.590271\) Eh. Thus, the RI error is only 0.06 mEh which is certainly negligible for all intents and purposes. With the larger /jk auxiliary basis the error is typically much smaller (0.02 mEh in this example). Even if more accurate results are necessary, it is a good idea to pre-converge the CASSCF with RI. The resulting orbitals should be a much better guess for the subsequent calculation without RI and thus save computation time.

The `TrafosStep ri` only affects the integral transformation in CASSCF calculations while the Fock operators are still calculated in the standard way using four index integrals. In order to fully avoid any four-index integral evaluation you can significantly speed up the time needed in each iteration by specifying `RIJCOSX`. The keyword implies `TrafosStep rimo`. The COSX approximation is used for the construction of the Fock matrices. In this case, the /jk auxiliary basis is mandatory.

```plaintext
! RHF SV(P) RIJCOSX def2/jk
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"
```
The speedup and accuracy is similar to what is observed in RHF and UHF calculations. In this example the RIJCOSX leads to an error of 1 mEh. The methodology performs better for the computation of energy differences, where it profits from error cancellation. The RIJCOSX is ideally suited to converge large-scale systems. Note that for large calculations the integral cut-offs and numerical grids should be tightened. See section 9.2.2.6 for details. With a floppy numerical grid setting the accuracy as well as the convergence behavior of CASSCF deteriorate. For systems that are large but still feasible for a conventional calculation it is recommended to use the RIJK approximations instead (!RIJK conv).

The RIJK methodology is more accurate and robust for CASSCF e.g. here the error is just 0.5 mEH. Organic molecules with nearly double occupied orbitals can be challenge for the orbital optimization process. We compare to a calculation done without the NR solver:

This calculation takes 8 cycles to converge. The default orbital optimization uses a first order method (SuperCI PT), which might take more iterations compared to the NR method. However, first order methods are much cheaper than the NR and therefore it may pay off to do a few iterations more rather than switching to the expensive second order methods. On top of that, second order methods are also less robust and may diverge in certain circumstances. When playing with the convergence settings, there is always a trade-off between speed versus robustness. The default settings are slightly more aggressive (faster). When facing convergence problems, it can be useful to use a more robust scheme (orbstep SuperCI and switchstep DIIS).

8.1.7.6 Breaking Chemical Bonds

Let us turn to the breaking of chemical bonds. As a first example we study the dissociation of the H$_2$ molecule. Scanning a bond, we have two potential setups for the calculation: a) scan from the inside to the outside or
b) from the outside to inside. Of course both setups yield identical results, but they differ in practical aspects i.e. convergence properties. In general, **scanning from the outside to the inside is the recommended procedure**. Using the default guess (PModel), starting orbitals are much easier identified than at shorter distances, where the antibonding orbitals are probably ‘impure’ and hence would require some additional preparation. To ensure a smooth potential energy surface, in all subsequent geometry steps, ORCA reads the converged CASSCF orbitals from the previous geometry step. In the following, **TightSCF** is used to tighten the convergence settings of CASSCF.

```plaintext
# Starting from default guess= PModel
!SVP TightSCF
%casscf nel 2
  norb 2
  mult 1
  nroots 1
end

# Scanning from the outside to the inside
%paras R [4.1 3.8 3.5 3.2 2.9 2.6 2.4 2.2
  2 1.7 1.5 1.3 1.1 1 0.9 0.8
  0.75 0.7 0.65 0.6]
end

* xyz 0 1
  h 0 0 0
  h 0 0 {R}
*
```

The resulting potential energy surface (PES) is depicted in 8.10 together with PESs obtained from RHF and broken-symmetry UHF calculations (input below).

```plaintext
! RHF SVP TightSCF
# etc...
```

And

```plaintext
! UHF SVP TightSCF
%scf FlipSpin 1 FinalMs 0.0
end
```
It is obvious, that the CASSCF surface is concise and yields the correct dissociation behavior. The RHF surface is roughly parallel to the CASSCF surface in the vicinity of the minimum but then starts to fail badly as the H-H bond starts to break. The broken-symmetry UHF solution is identical to RHF in the vicinity of the minimum and dissociates correctly. It is, however, of rather mediocre quality in the intermediate region where it follows the RHF surface too long too closely.

A more challenging case is to dissociate the N-N bond of the N₂ molecule correctly. Using CASSCF with the six p-orbitals we get a nice potential energy curve (The depth of the minimum is still too shallow compared to experiment by some 1 eV or so. A good dissociation energy requires a dynamic correlation treatment on top of CASSCF and a larger basis set).
One can use the H\textsubscript{2} example to illustrate the state-averaging feature. Since we have two active electrons we have two singlets and one triplet. Let us average the orbitals over these three states (we take equal weights for all multiplicity blocks):

```plaintext
!SVP TightSCF
%casscf nel 2
  norb 2
  mult 1,3
  nroots 2,1
  bweight = 1,1 #equal weights per multiplicity blocks.
  weights[0] = 1,1 #equal weights within a given multiplicity block
  weights[1] = 1
end
```

which gives:

![Graph showing state-averaged CASSCF(2,2) calculations on H\textsubscript{2} (two singlets, one triplet; SVP basis). The grey curve is the ground state CASSCF(2,2) curve.](image_url)

Figure 8.12: State averaged CASSCF(2,2) calculations on H\textsubscript{2} (two singlets, one triplet; SVP basis). The grey curve is the ground state CASSCF(2,2) curve.

One observes, that the singlet and triplet ground states become degenerate for large distances (as required) while the second singlet becomes the ionic singlet state which is high in energy. If one compares the lowest root of the state-averaged calculation (in green) with the dedicated ground state calculation (in grey) one gets an idea of the energetic penalty that is associated with averaged as opposed to dedicated orbitals.

A more involved example is the rotation around the double bond in C\textsubscript{2}H\textsubscript{4}. Here, the π-bond is broken as one twists the molecule. The means the proper active space consists of two active electron in two orbitals.

The input is (for fun, we average over the lowest two singlets and the triplet):
8.1 Single Point Energies and Gradients

Figure 8.13: State averaged CASSCF(2,2) calculations on C\textsubscript{2}H\textsubscript{4} (two singlets, one triplet; SV(P) basis). The grey curve is the state averaged energy and the purple curve corresponds to RHF.

We can see from this plot, that the CASSCF method produces a nice ground state surface with the correct
periodicity and degeneracy at the end points, which represent the planar ethylene molecule. At 90° one has a weakly coupled diradical and the singlet and triplet states become nearly degenerate, again as expected. Calculations with larger basis sets and inclusion of dynamic correlation would give nice quantitative results. We have also plotted the RHF energy (in purple) which gives a qualitatively wrong surface and does not return to the correct solution for planar ethylene. It is evident that even high quality dynamic correlation treatments like CC or CI would hardly be able to repair the shortcomings of the poor RHF reference state. In all these cases, CASSCF is the proper starting point for higher accuracy.

8.1.7.7 Excited States

As a final example, we do a state-average calculation on H₂CO in order to illustrate excited state treatments. We expect from the ground state (basically closed-shell) a n → π* and a π → π* excited state which we want to describe. For the n→ π* we also want to calculate the triplet since it is well known experimentally. First we take DFT orbitals as starting guess.

We get:
8.1 Single Point Energies and Gradients

SA-CASSCF TRANSITION ENERGIES

LOWEST ROOT = -113.736217779 Eh -3094.842 eV

<table>
<thead>
<tr>
<th>STATE</th>
<th>ROOT</th>
<th>MULT</th>
<th>DE/a.u.</th>
<th>DE/eV</th>
<th>DE/cm**-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>0</td>
<td>3</td>
<td>0.056271</td>
<td>1.531</td>
<td>12349.9</td>
</tr>
<tr>
<td>2:</td>
<td>1</td>
<td>1</td>
<td>0.075355</td>
<td>2.050</td>
<td>16538.5</td>
</tr>
<tr>
<td>3:</td>
<td>2</td>
<td>1</td>
<td>0.272589</td>
<td>7.417</td>
<td>59826.3</td>
</tr>
</tbody>
</table>

Which is very poor. So, here the treatment based on average orbitals does not work at all. So let us do the states one after the other by adjusting the weights:

Ground state:
%casscf nel 4
norb 3
switchstep nr
mult 1,3
nroots 3,1
bweight = 1,0
weights[0] = 1,0,0
weights[1] = 0
end

First-Singlet:
%casscf nel 4
norb 3
mult 1,3
nroots 3,1
bweight = 1,0
weights[0] = 0,1,0
weights[1] = 0
end

Second-Singlet:
%casscf nel 4
norb 3
mult 1,3
nroots 3,1
bweight = 1,0
weights[0] = 0,0,1
weights[1] = 0
end

First-Triplet
%casscf nel 4
The total energies are:

<table>
<thead>
<tr>
<th>State</th>
<th>Energy</th>
<th>eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground State</td>
<td>-113.825085148</td>
<td></td>
</tr>
<tr>
<td>First-Singlet</td>
<td>-113.671020811</td>
<td>4.19</td>
</tr>
<tr>
<td>Second-Singlet</td>
<td>-113.479355179</td>
<td>9.41</td>
</tr>
<tr>
<td>First Triplet</td>
<td>-113.684545957</td>
<td>3.82</td>
</tr>
</tbody>
</table>

These results are much better and as soon as we include dynamic correlation one would have good transition energies (future releases will include state specific perturbation corrections to achieve this). This calculation shows the limits of state averaging – if the orbitals strongly change (as in the present case, since n → π* orbitals are very different from π → π* orbitals) the state averaging does not lead to good transition energies. In this case, one should follow SA-CASSCF by NEVPT2/MRCI/SORCI (see below) or alternatively use state specific procedures to optimize each state in turn and then calculate its correlation energy. However, converging CASSCF to an excited state can be a challenge with the two-step orbital optimization procedures implemented in ORCA.

8.1.7.8 CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations

Consider the possibility that you are not sure about the orbital occupancy of your system. Hence you carry out some CASSCF calculation for various states of the system in an effort to decide on the ground state. You can of course follow the CASSCF by MR-MP2 or MR-ACPF or SORCI calculations to get a true multireference result for the state ordering. Yet, in some cases you may also want to obtain a coupled-cluster estimate for the state energy difference. Converging coupled-cluster calculation on alternative states in a controlled manner is anything but trivial. Here a feature of ORCA might be helpful. The best single configuration that resembles a given CASSCF state is built from the natural orbitals of this state. These orbitals are also ordered in the right way to be input into the MDCI program. The convergence to excited states is, of course, not without pitfalls and limitations as will become evident in the two examples below.

As a negative example consider first the following interesting dicarbene.

For this molecule we expect that we should use four active orbitals and four active electrons and that singlet, triplet and quintet states might be accessible. We start with a simple CASSCF(4,4) optimization on the lowest singlet state.
Of course, one should also do optimizations on the the other two spin states (and with larger basis sets) but for the sake of the argument, we stick to the singlet structure. Next, the natural orbitals for each state are generated with the help of the MRCI module. To this end we run a state averaged CASSCF for the lowest four singlet, two triplets and the quintet and pass that information on to the MRCI module that does a CASCI only (e.g. no excitations):

This produces the files: BaseName.b\text{m}.\text{sn}\.nat where “m” is the number of the block (m=0,1,2 correspond to
singlet, triplet and quintet respectively) and “n” stands for the relevant state (n=0,1,2,3 for singlet, n=0,1 for triplet and n=0 for quintet).

These natural orbitals are then fed into unrestricted QCISD(T) calculations:

```plaintext
! UHF ano-pVDZ Conv TightSCF AOX-QCISD(T)
! moread noiter
%moinp "C05S01_101.b0_s0.nat"

* int 0 1
  C 0 0 0 0.000000000000 0.00000000 0.00000000
  C 1 0 0 1.494834528132 0.00000000 0.00000000
  C 2 1 0 1.494834528211 105.15548921 0.00000000
  H 1 2 3 1.083843964350 129.42964540 0.00000000
  H 3 2 1 1.083843964327 129.42964555 0.00000000
  H 2 1 3 1.094075308221 111.18220523 239.57277074
  H 2 1 3 1.094075308221 111.18220523 120.42722926
*
```

This produces the energies:

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (Eh)</th>
<th>Relative Energy (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>-116.190768</td>
<td>0</td>
</tr>
<tr>
<td>S1</td>
<td>-116.067138</td>
<td>27133.0</td>
</tr>
<tr>
<td>S2</td>
<td>-116.067138</td>
<td>27133.0</td>
</tr>
<tr>
<td>S3</td>
<td>-116.067138</td>
<td>27133.0</td>
</tr>
<tr>
<td>T0</td>
<td>-116.155421</td>
<td>7757.6</td>
</tr>
<tr>
<td>T1</td>
<td>-116.113969</td>
<td>16855.1</td>
</tr>
<tr>
<td>Q0</td>
<td>-116.134575</td>
<td>12332.6</td>
</tr>
</tbody>
</table>

It is found that the calculations indeed converge to different states. The excited singlets all fall down to the same state that is approximately 27,000 cm⁻¹ above the lowest solution. The triplets are distinct and the quintet is unique anyways. Inspection of the coupled-cluster wavefunctions indicate that the singlet converged to the closed-shell solution and the first doubly excited state respectively.

These energies can be compared with the genuine multireference calculation obtained from the SORCI method:

```plaintext
! ano-pVDZ Conv TightSCF SORCI
%casscf nel 4
norb 4
mult 1,3,5
nroots 4,2,1
end
```
8.1 Single Point Energies and Gradients

* int 0 1
 C 0 0 0 0.000000000000 0.00000000 0.00000000
 C 1 0 0 1.494834528132 0.00000000 0.00000000
 C 2 1 0 1.494834528211 105.15548921 0.00000000
 H 1 2 3 1.083843964350 129.42964540 0.00000000
 H 3 2 1 1.083843964327 129.42964555 0.00000000
 H 2 1 3 1.094075308221 111.18220523 120.42722926

Which produces:

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>1/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1.355</td>
<td>0.037</td>
<td>297.3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>26.113</td>
<td>0.711</td>
<td>5731.1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>41.126</td>
<td>1.119</td>
<td>9026.1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>79.540</td>
<td>2.164</td>
<td>17457.0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>84.407</td>
<td>2.297</td>
<td>18525.3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>2</td>
<td>86.175</td>
<td>2.345</td>
<td>18913.3</td>
</tr>
</tbody>
</table>

With the description of the wavefunctions:

Singlets:
STATE 0:
 Energy= -115.944916420 Eh RefWeight= 0.9224 0.00 eV 0.0 cm**-1
 0.3547 : h---h---[2020]
 0.3298 : h---h---[2002]
 0.1834 : h---h---[1111]
 0.0681 : h---h---[0220]
 0.0663 : h---h---[0202]

STATE 1:
 Energy= -115.860508938 Eh RefWeight= 0.9140 2.30 eV 18525.3 cm**-1
 0.6769 : h---h---[2200]
 0.6638 : h---h---[2202]
 0.7109 : h---h---[2002]
 0.0877 : h---h---[1111]
 0.0039 : h---h---[0220]
 0.0051 : h---h---[0202]
 0.0055 : h---h---[0022]

STATE 2:
 Energy= -115.865376460 Eh RefWeight= 0.8969 2.16 eV 17457.0 cm**-1
 0.7789 : h---h---[2110]
 0.9209 : h---h---[1201]
 0.0149 : h---h---[1021]
 0.0112 : h---h---[0112]
 0.0038 : h---h---[0120]
 0.0049 : h---h---[2100]p14
 0.0036 : h---h---[1110]p13

STATE 3:
 Energy= -115.8587416420 Eh RefWeight= 0.8988 2.34 eV 18913.3 cm**-1
 0.7589 : h---h---[2101]
 0.1069 : h---h---[1210]
 0.0221 : h---h---[0121]
 0.0098 : h---h---[0121]
Thus, the singlet ground state is heavily multiconfigurational, the lowest triplet state is moderately multiconfigurational and the lowest quintet state is of course a single configuration. Interestingly, the lowest singlet, triplet and quintet do not form a regular spin ladder which might have been expected if one considers the system of being composed of two interacting $S=1$ systems. Rather, the lowest singlet and triplet states are close in energy while the lowest quintet is far away.

The energies are completely different from the QCISD(T) results. However, this is not unexpected based on the composition of these wavefunctions. These are the limitations of single reference methods. Nevertheless, this shows how such results can be obtained in principle.

As a more positive example, consider some ionized states of the water cation:

First the natural orbital generation:
Then the SORCI reference calculation:

```
! ano-pVDZ Conv TightSCF SORCI
% casscf
  nel  7
  norb  6
  nroots  3
end
* int 1 2
  O  0  0  0  0.000000  0.000  0.000
  H  1  0  0  1.012277  0.000  0.000
  H  1  2  0  1.012177  109.288  0.000
*  
```

Then the three QCISD(T) calculations

```
! UHF ano-pVDZ Conv TightSCF QCISD(T)
! moread noiter
% moinp  "H2O+-02.b0_s0.nat"
* int 1 2
  O  0  0  0  0.000000  0.000  0.000
  H  1  0  0  1.012277  0.000  0.000
  H  1  2  0  1.012177  109.288  0.000
*  
```

we obtain the transition energies:

```
<table>
<thead>
<tr>
<th></th>
<th>SORCI</th>
<th>QCISD(T) (in cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D₀</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D₁</td>
<td>16269  18283</td>
</tr>
<tr>
<td></td>
<td>D₂</td>
<td>50403  50509</td>
</tr>
</tbody>
</table>
```
Thus, in this example the agreement between single- and multireference methods is good and the unrestricted QCISD(T) method is able to describe these excited doublet states. The natural orbitals have been a reliable way to guide the CC equations into the desired solutions. This will work in many cases.

8.1.8 N-Electron Valence State Perturbation Theory (NEVPT2)

NEVPT2 is an internally contracted multireference perturbation theory, which applies to CASSCF type wavefunctions. The NEVPT2 method as described in the original papers of Angeli et al comes in two flavor the strongly contracted NEVPT2 (SC-NEVPT2) and the so called partially contracted NEVPT2 (PC-NEVPT2). [116–118] In fact, the latter employs a fully internally contracted wavefunction and should more appropriately called FIC-NEVPT2. Both methods produces energies of similar quality as the CASPT2 approach. [119,120]

The SC-NEVPT2 and FIC-NEVPT2 are implemented in ORCA together with a number of approximations that makes the methodology very attractive for large scale applications. In conjunction with the RI approximation systems with active space of to 16 active orbitals and 2000 basis functions can be computed. With the newly developed DLPNO version of the FIC-NEVPT2 the size of the molecules does not matter anymore. [121] For a more complete list of keywords and features we refer to detailed documentation section 9.12.

Besides corrections to the correlation energy, ORCA features UV, IR, CD and MCD spectra as well as EPR parameters for NEVPT2. These properties are computed using the “quasi-degenerate perturbation theory” that is described in section 9.11.2. The NEVPT2 corrections enter as “improved diagonal energies” in this formalism. ORCA also features the multi-state extension (QD-NEVPT2) for the strongly contracted NEVPT2 variant.

As a simple example consider the ground state of the nitrogen molecule \(\text{N}_2 \). After defining the computational details of our CASSCF calculation, we insert “!NEVPT2” as simple input or specify “NEVPT2 SC” in the \%casscf block. The SC-NEVPT2 has been the workhorse of our own group for a long time and is thus the program default.

```plaintext
!def2-svp nofrozencore
%casscf nel 6
  norb 6
  mult 1
  NEVPT2 SC # SC for the strongly contracted NEVPT2
    # FIC for the fully internally contracted NEVPT2
    # DLPNO for the FIC-NEVPT2 with DLPNO.
    # DLPNO requires: trafostep RI and an aux basis
end

* xyz 0 1
N  0.0  0.0  0.0
N  0.0  0.0  1.09768
*
```
For better control of the program flow it is advised to split the calculation into two parts. First converge the CASSCF calculation and then in a second step read the converged orbitals and execute the actual NEVPT2.

--- ORCA-CASSCF ---

... NEVPT2-SETTINGS:
A NEVPT2 calculation will be performed on top of the CASSCF wavefunction!
...

--- < NEVPT2 > ---

--- NEVPT2 Results ---

MULT 1, ROOT 0

Class V0_ij,ab : dE = -0.017748
Class Vm1_iab : dE = -0.023171
Class Vm2_ab : dE = -0.042194
Class V1_ija : dE = -0.006806
Class V2_ij : dE = -0.005056
Class V0_ia : dE = -0.054000
Class Vm1_a : dE = -0.007091
Class V1_i : dE = -0.001963

Total Energy Correction : dE = -0.15802909

Zero Order Energy : E0 = -108.98888640

Total Energy (E0+dE) : E = -109.14691549

Introducing dynamic correlation with NEVPT2 lowers the energy by 150 mEh. ORCA also prints the contribution of each “excitation class V” to the NEVPT2 correction. We note that in the case of a single reference wavefunction the V0_ij,ab excitation class produces the exact MP2 correlation energy. Different from the ORCA 3.0, the default setting of NEVPT2 calculation uses the frozen core approximation. If one need to reproduce the NEVPT2 energies of ORCA 3.0 calculation, the keyword "nofrozencore” should be
added. In our opinion, the frozen core should be avoided. The savings in computation time are fairly small and do not justify the loss in accuracy.

In chapter 8.1.7.6 the dissociation of the N₂ molecule has been investigated with the CASSCF method. Inserting `NEVPT2 SC` into the `%casscf` block we obtain the NEVPT2 correction as additional information.

```plaintext
!def2-svp nofrozencore
%casscf nel 6
    norb 6
    mult 1
    nevpt2 sc
end

# scanning from the outside to the inside
%paras
    R = 2.5, 0.7, 30
end

*xyz 0 1
N 0.0 0.0 0.0
N 0.0 0.0 {R}
*
```

Figure 8.14: Potential Energy Surface of the N₂ molecule from CASSCF(6,6) and NEVPT2 calculations (def2-SVP).

All of the options available in CASSCF can in principle be applied to NEVPT2. Since NEVPT2 is implemented as a submodule of CASSCF, it will inherit all settings from CASSCF (`!tightscf`, `!UseSym`, `!RIJC0SX`, ...).

NOTE

- NEVPT2 analytic gradients are not available, but numerical gradients are!
8.1.9 Full Configuration Interaction Energies and Properties

The MRCI and CASSCF modules may be used to produce energies and properties (g-tensors, zero-field splitting, etc) at the level of full configuration interaction (FCI). Larger molecular systems naturally require more computational resources and time. For the CASSCF module, the limit of still feasible calculations is around 14 electrons in 14 orbitals using configuration state functions (CSF) for the CI expansion. Larger active spaces may be computed in the framework of the Density Matrix Renormalization Group (DMRG), which may be selected by **CIStep** in the CASSCF module. Similarly, the iterative configuration expansion CI (ICE-CI) can be selected as CIStep in CASSCF or called directly using the ICE block as described in 9.15. The ICE-CI offers a more traditional approach to get approximate full CI results. These options and modules have their own sections in the manual with a detailed documentation on their usage and the available properties.

Moreover, ORCA interfaces a determinant-based FCI toy-code, which is described here. Besides energies, the program can compute dipole moments, g-tensors, hyperfine and quadrupole splittings in the framework of linear response theory. For response properties, it is assumed that the basis set does not depend on the given perturbation. To call the program prepare a simple SCF input and add the keyword **!FCI** on top.

```
!def2-svp extremescf nofrozencore FCI
*xyz 0 2
Li 0 0 0
*
```

By default, energies and properties are computed for the ground state. For the g-tensor computation, the origin is chosen as the center of electronic charge, while for dipoles it is the center of mass. The default settings may be edited in the FCI block:

```
ETol 1e-10 # Energy convergence threshold
RTol 1e-8 # Residual convergence threshold
RespTol 1e-8 # Convergence threshold for the response equations

NRoots 1 # Number of states to be computed
DoGTensor true # SOC contribution to the g-tensor
SOCG true # SOC contribution to the HFS
DoHFC true
SOCHFC false # SOC contribution to the HFS
DoQuad true
DoDipole true
PrintLevel 3 # PrintLevel
ORIGIN -3 # (see EPRMR-module)
```
The input and output resembles the ORCA standard format from the EPRNMR module and should thus be familiar. However, it is much more limited in the number of available options and the size of molecules that can be treated. Currently it can only be used in serial mode and in combination with the nofrozencore option.

8.1.10 Scalar Relativistic SCF

Scalar relativistic all-electron calculations can be performed with a variety of relativistic approximations. However, these need to be combined with a suitable basis set since relativity changes the shapes of orbitals considerably. We have defined scalar relativistic contracted versions of the QZV, TZV and SV basis sets up to Hg for HF and DFT computations (but not yet for RI-MP2). They are requested by putting "DKH-" or "ZORA-" in front of the usual basis set name. For other basis sets you have to take care of the recontraction yourself but note that this is an expert issue. All scalar relativistic models can be used for geometry optimization as well.

CAUTION:

- For geometry optimizations we apply a one-center relativistic correction. This slightly changes the energies – so DO NOT MIX single-point calculations without the one-center approximation with geometry optimization energies that DO make use of this feature. The impact of the one-center approximation on the geometries is very small.

8.1.10.1 Douglas-Kroll-Hess

ORCA has implemented the standard second-order DKH procedure that is normally satisfactory for all intents and purposes. The scalar relativistic DKH treatment is compatible with any of the SCF methods and will also be transferred over to the correlation treatments.

We rather strongly recommend the use of the SV, TZV and QZV basis sets with or without “def2” and appropriate polarization functions. For these basis sets we have developed segmented relativistic all electron basis sets for almost the entire periodic table. The basis sets are tested and perform very well in an acceptably economic fashion.

The use of the code is very simple:

```
! UHF DKH-TZV DKH
```

NOTE: You should have the basis set and ZORA or DKH commands in the same input line!
8.1.10.2 ZORA and IORA

In addition to the DKH method the 0th order regular approximation (ZORA; pioneered by van Lenthe et al., see Ref. [122] and many follow up papers by the Amsterdam group) is implemented into ORCA in an approximate way (section 9.14) which facilitates the calculation of analytical gradients. Our ZORA implementation essentially follows van Wülten [123] and solves the ZORA equations with a suitable model potential which is derived from accurate atomic ZORA calculations. At this point the elements up to atomic number 86 are available with more to come. The ZORA method is highly dependent on numerical integration and it is very important to pay attention to the subject of radial integration accuracy (vide infra)! If the relevant precautions are taken, the use of the ZORA or IORA methods is as easy as in the DKH case. For example:

```
! UHF ZORA-TZVP ZORA
# for more detail use
%rel method ZORA # or IORA
  modelpot 1,1,1,1
  modeldens rhoZORA
  velit 137.0359895 # speed of light used
end
```

ATTENTION

- The scalar relativistic module has many options which allow you to considerably finetune the calculations. Details are in section 9.14.

- The scalar relativistic treatment requires flexible basis sets, in particular in the core region. Only SV, TZV and QZV basis sets have been retracted in the ZORA and DKH models (and the attached polarization functions of course). Alternatively, one choice that you have is to uncontract your basis set using the Decontract keyword but it is likely that you also need additional steep primitives.

- Scalar relativistic calculations may need larger integration grids in the radial part. Consider to use a higher IntAcc parameter or at least to increase the radial integration accuracy around the heavy atoms using SpecialGridAtoms and SpecialGridIntAcc.

- The calculation of properties in relativistic treatments is not straightforward since the influence of the “small component” in the Dirac equation is neglected in the calculation of expectation values. ORCA takes these “picture change” effects to some extent into account. Please refer to individual sections.

8.1.11 Efficient Calculations with Atomic Natural Orbitals

Atomic natural orbitals are a special class of basis sets. They are represented by the orthonormal set of orbitals that diagonalizes a spherically symmetric, correlated atomic density. The idea is to put as much information as possible into each basis functions such that one obtains the best possible result with the given number of basis functions. This is particularly important for correlated calculations where the number of primitives is less an issue than the number of basis functions.
Usually, ANO basis sets are “generally contracted” which means that for any given angular momentum all primitives contribute to all basis functions. Since the concept of ANOs only makes sense if the underlying set of primitives is large, the calculations readily become very expensive unless special precaution is taken in the integral evaluation algorithms. ORCA features special algorithms for ANO basis sets together with accurate ANO basis sets for non-relativistic calculations. However, even then the integral evaluation is so expensive that efficiency can only be realized if all integrals are stored on disk and are re-used as needed.

In the first implementation, the use of ANOs is restricted to the built-in ANO basis sets (ano-pVnZ, saug-ano-pVnZ, aug-ano-pVnZ, \(n = D, T, Q, 5 \)). These are built upon the cc-pV6Z primitives and hence, the calculations take significant time.

NOTE:

- There are no relativistic ANOs so far.
- Geometry optimizations with ANOs are discouraged; they will be very inefficient.

The use of ANOs is recommended in the following way:

```plaintext
! ano-pVTZ Conv TightSCF CCSD(T)
%maxcore 2000
* int 0 1
C 0 0 0 0 0 0
O 1 0 0 1.2 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
*
```

This yields:

```plaintext
ano-pVTZ:
E(SCF) = -113.920388785
E(corr)= -0.427730189
```

Compare to the cc-pVTZ value of:

```plaintext
cc-pVTZ:
E(SCF) = -113.911870901
E(corr)= -0.421354947
```

Thus, the ANO-based SCF energy is ca. 8–9 mEh lower and the correlation energy almost 2 mEh lower than with the cc-basis set of the same size. Usually, the ANO results are much closer to the basis set limit than the cc-results. Also, ANO values extrapolate very well (see section 8.1.3.5)
Importantly, the integrals are all stored in this job. Depending on your system and your patience, this may be possible up to 300–500 basis functions. The ORCA correlation modules have been rewritten such that they deal efficiently with these stored integrals. Thus, we might as well have used pure AO-CCSD(T) or pure MO-CCSD(T), both of which would perform well.

Yet, the burden of generating and storing all four-index integrals quickly becomes rather heavy. Hence, the combination of ANO basis sets with the RI-JK technique is particularly powerful and efficient. For example:

```
! ano-pVTZ cc-pVTZ/JK RI-JK Conv TightSCF RI-CCSD(T)
```

For the SCF, this works very well and allows for much larger ANO based calculations to be done efficiently. Also, RI-MP2 can be done very efficiently in this way. However, for higher order correlation methods such as CCSD(T) the logical choice would be RI-CCSD(T) which is distinctly less efficient than the AO or MO based CCSD(T) (roughly a factor of two slower). Hence, ORCA implements a hybrid method where the RI approximation is used to generate all four index integrals. This is done via the “RI-AO” keyword:

```
! ano-pVTZ cc-pVTZ/JK RI-AO Conv TightSCF AO-CCSD(T)
```

In this case either AO-CCSD(T) or MO-CCSD(T) would both work well. This does not solve the storage bottleneck with respect to the four index integrals of course. If this becomes a real issue, then RI-CCSD(T) is mandatory. The error in the total energy is less than 0.1 mEh in the present example.

NOTE:

- With conventional RI calculations the use of a second fit basis set is not possible and inconsistent results will be obtained. Hence, stick to one auxiliary basis!

8.2 Geometry Optimizations, Surface Scans, Transition States, MECPs

The usage of analytic gradients is necessary for efficient geometry optimization. In ORCA 4.0, the following methods provide analytic first derivatives:

- Hartree-Fock (HF) and DFT (including the RI approximation)

- MP2 (only canonical)

- TD-DFT for excited states

- CAS-SCF
When the analytic gradients are not available, it is possible to evaluate the first derivatives numerically by finite displacements. This is available for all methods.

The coordinate system chosen for geometry optimization affects the convergence rate, with redundant internal coordinates being usually the best choice.

The optimization of transition state (TS) require second derivative matrix (Hessian), implemented analytically for HF, DFT and MP2. Additionally several approaches to construct an initial approximate Hessian for TS optimization are available. Another interesting feature are MECP (Minimum Energy Crossing Point) optimizations.

8.2.1 Geometry Optimizations

Optimizations are fairly easy as in the following example:

```plaintext
! RKS B3LYP/G SV(P) TightSCF Opt
* int 0 1
  C 0 0 0 0.0000 0.000 0.00
  O 1 0 0 1.2029 0.000 0.00
  H 1 2 0 1.1075 122.016 0.00
  H 1 2 3 1.1075 122.016 180.00
*
```

An optimization with the RI method (the BP functional is recommend) would simply look like:

```plaintext
! RKS BP RI SV(P) def2/J TightSCF Opt
* int 0 1
  C 0 0 0 0.0000 0.000 0.00
  O 1 0 0 1.2029 0.000 0.00
  H 1 2 0 1.1075 122.016 0.00
  H 1 2 3 1.1075 122.016 180.00
*
```

An optimization of the first excited state of ethylene:

```plaintext
! BLYP SVP OPT
%	ddft
  IRoot 1
end
```
8.2.2 Numerical Gradients

If the analytic gradient is not available, the numerical gradient can simply be requested via:

```!
NumGrad
```

as in the following example:

```!
RHF CCSD(T) TZVPP
Opt NumGrad
* int 0 1
C 0 0 0 0 0 0
O 1 0 0 1.2 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
* 
```

NOTE

- Be aware that the numerical gradient is quite expensive. The time for one gradient calculation is equal to $6 \times (\text{number of atoms}) \times (\text{time for one single point calculation})$.

- The numerical gradient can be calculated in a multi-process run, using a maximum of three times the number of atoms (see section 5.2).

More details on various options, geometry convergence criteria and the like are found in section 9.17.
8.2.3 Some Notes and Tricks

NOTE

- **TightSCF** in the SCF part is set as default to avoid the buildup of too much numerical noise in the gradients.

TIP

- If you want to be on the safe side with DFT it is probably advisable to use the settings `Grid4 NoFinalGrid` although the defaults should also be o.k.

- In rare cases the redundant internal coordinate optimization fails. In this case, you may try to use `COPT` (optimization in Cartesian coordinates). If this optimization does not converge, you may try the desperate choice to use `ZOPT, GDIIS-COPT` or `GDIIS-ZOPT`. This will likely take many more steps to converge but should be stable.

- For optimizations in Cartesian coordinates the initial guess Hessian is constructed in internal coordinates and thus these optimizations should converge only slightly slower than those in internal coordinates. Nevertheless, if you observe a slow convergence behaviour, it may be a good idea to compute a Hessian initially (perhaps at a lower level of theory) and use `InHess read` in order to improve convergence.

- At the beginning of a TS optimization more information on the curvature of the PES is needed than a model Hessian can give. The best choice is analytic Hessian, avialable for HF, DFT and MP2. In other cases (e.g. CAS-SCF), the numerical evaluation is necessary. Nevertheless you do not need to calculate the full Hessian when starting such a calculation. With ORCA we have good experience with approximations to the exact Hessian. Here it is recommended to either directly combine the TS optimization with the results of a relaxed surface scan or to use the Hybrid Hessian as the initial Hessian, depending on the nature of the TS mode. Note that these approximate Hessians do never replace the exact Hessian at the end of the optimization, which is always needed to verify the minimum or first order saddle point nature of the obtained structure.

8.2.4 Initial Hessian for Minimization

The convergence of a geometry optimization crucially depends on the quality of the initial Hessian. In the simplest case it is taken as a unit matrix (in redundant internal coordinates we use 0.5 for bonds, 0.2 for angles and 0.1 for dihedrals and improper torsions). However, simple model force-fields like the ones proposed by Schlegel, Lindh or Almlöf are available and lead to much better convergence. The different guess Hessians can be set via the `InHess` option which can be either `unit, Almloef, Lindh` or `Schlegel` in redundant internal coordinates. Since version 2.5.30, these model force-fields (built up in internal coordinates) can also be used in optimizations in Cartesian coordinates.

For minimizations we recommend the **Almloef** Hessian, which is the default for minimizations. The **Lindh** and **Schlegel** Hessian yield a similar convergence behaviour. Of course the best Hessian is the exact one. **Read** may be used to input an exact Hessian or one that has been calculated at a lower level of theory (or a “faster” level of theory). From version 2.5.30 on this option is also available in redundant internal coordinates. But we have to point out that the use of the exact Hessian as initial one is only of little help, since in these
cases the convergence is usually only slightly faster, while at the same time much more time is spent in the calculation of the initial Hessian.

To sum it up: we advise to use one of the simple model force-fields for minimizations.

8.2.5 Coordinate Systems for Optimizations

The coordinate system for the optimization can be chosen by the `coordsys` variable that can be set to `cartesian`, or `redundant_new`, or `redundant`, or `redundant_old`) `%geom` block. The default is the redundant internal coordinate system. (redundant_old is the coordinate set that was used as default redundant internal coordinates before version 2.4.30). If the optimization with redundant fails, redundant_old can still be used as an alternative, and in cases where the internal coordinate systems lead to problems, you can still try cartesian. If the optimization is then carried out in Cartesian displacement coordinates with a simple model force-field Hessian, the convergence will be only slightly slower. With a unit matrix initial Hessian very slow convergence will result.

A job that starts from a semi-empirical Hessian is shown below:

```plaintext
# First calculate the frequencies at the input geometry which is deliberately chosen poorly

! RHF AM1 NumFreq
%base "FirstJob"
* int 0 1
  C 0 0 0 0 0 0
  O 1 0 0 1.3 0 0
  H 1 2 0 1.1 110 0
  H 1 2 3 1.1 110 180
*
$new_job

# Now the real job

! B3LYP SVP TightSCF PModel!
! Opt
%base "SecondJob"
%geom GDIISMaxEq 20
  UseGDIIS false
  InHess Read
  InHessName "FirstJob.hess"
  # this file must be either a .hess file from a
  # frequency run or a .opt file left over from a
  # previous geometry optimization
end

* int 0 1
```
NOTE:

- The guess P_{Model} is chosen for the second job since DFT or HF calculations cannot be started from semi-empirical orbitals

- GDIIS has been turned off and the number of gradients used in the quasi-Newton method has been enhanced. This is advisable if a good starting Hessian is available.

TIP

- For transition metal complexes MNDO, AM1 or PM3 Hessians are not available. You can use ZINDO/1 or NDDO/1 Hessians instead. They are of lower quality than MNDO, AM1 or PM3 for organic molecules but they are still far better than the standard unit matrix choice.

- If the quality of the initial semi-empirical Hessian is not sufficient you may use a “quick” RI-DFT job (e.g. BP Def-1 NoFinalGrid)

- In semi-empirical geometry optimizations on larger molecules or in general when the molecules become larger the redundant internal space may become large and the relaxation step may take a significant fraction of the total computing time. In this case you may revert to delocalized internal coordinates which only keep the non-redundant degrees of freedom and leads to more efficient update steps. It is slightly less robust though.

8.2.6 Constrained Optimizations

You can perform constrained optimizations which can, at times, be extremely helpful. This works as shown in the following example:

```plaintext
! RKS B3LYP/G SV(P) TightSCF Opt
%geom
Constraints
   { B 0 1 1.25 C }  
   { A 2 0 3 120.0 C }  
end
end

* int 0 1
  C 0 0 0 0.0000 0.000 0.00
  O 1 0 0 1.2500 0.000 0.00
```
8.2 Geometry Optimizations, Surface Scans, Transition States, MECPs

Constraining Bond Distances

- `{ B N1 N2 value C }`

Constraining Bond Angles

- `{ A N1 N2 N1 value C }`

Constraining Dihedral Angles

- `{ D N1 N2 N3 N4 value C }`

Constraining Cartesian Coordinates

- `{ C N1 C }`

NOTE:

- Like for normal optimizations you can use numerical gradients (see 8.2.2.) for constrained optimizations. In this case the numerical gradient will be evaluated only for non-constrained coordinates, saving a lot of computational effort, if a large part of the structure is constrained.

- "value" in the constraint input is optional. If you do not give a value, the present value in the structure is constrained. For cartesian constraints you can’t give a value, but always the initial position is constrained.

- It is recommended to use a value not too far away from your initial structure.

- It is possible to constrain whole sets of coordinates:

 - All bond lengths where N1 is involved: `{ B N1 * C }
 - All bond lengths: `{ B * * C }
 - All bond angles where N2 is the central atom: `{ A * N2 * C }
 - All bond angles: `{ A * * * C }
 - All dihedral angles with central bond N2-N3: `{ D * N2 N3 * C }
 - All dihedral angles: `{ D * * * * C }

- If there are only a few coordinates that have to be optimized you can use the invertConstraints option:

  ```
  %geom Constraints
  { B 0 1 C }
  end
  invertConstraints true # only the C-O distance is optimized
  # does not affect Cartesian coordinates
  end
  ```

- In some cases it is advantageous to optimize only the positions of the hydrogen atoms and let the remaining molecule skeleton fixed:

  ```
  %geom optimizehydrogens true
  end
  ```

NOTE:

- In the special case of a fragment optimization (see next point) the optimizehydrogens keyword does not fix the heteroatoms, but ensures that all hydrogen positions are relaxed.
8.2.7 Constrained Optimizations for Molecular Clusters (Fragment Optimization)

If you want to study systems, which consist of several molecules (e.g. the active site of a protein) with constraints, then you can either use cartesian constraints (see above) or use ORCA’s fragment constraint option. ORCA allows the user to define fragments in the system. For each fragment one can then choose separately whether it should be optimized or constrained. Furthermore it is possible to choose fragment pairs whose distance and orientation with respect to each other should be constrained. Here, the user can either define the atoms which make up the connection between the fragments, or the program chooses the atom pair automatically via a closest distance criterion. ORCA then chooses the respective constrained coordinates automatically. An example for this procedure is shown below.

The coordinates are taken from a crystal structure [PDB-code 2FRJ]. In our gas phase model we choose only a small part of the protein, which is important for its spectroscopic properties. Our selection consists of a heme-group (fragment 1), important residues around the reaction site (lysine (fragment 2) and histidine (fragment 3)), an important water molecule (fragment 4), the NO-ligand (fragment 5) and part of a histidine (fragment 6) coordinated to the heme-iron. In this constrained optimization we want to maintain the position of the heteroatoms of the heme group. Since the protein backbone is missing, we have to constrain the orientation of lysine and histidine (fragments 2 and 3) side chains to the heme group. All other fragments (the ones which are directly bound to the heme-iron and the water molecule) are fully optimized internally and with respect to the other fragments. Since the crystal structure does not reliably resolve the hydrogen positions, we relax also the hydrogen positions of the heme group.

```
# !! If you want to run this optimization: be aware
# !! that it will take some time!
! UKS BP86 RI SV(P) Opt TightSCF Grid4 NoFinalGrid
%geom
    ConstrainFragments { 1 } end # constrain all internal
    # coordinates of fragment 1
    ConnectFragments
    {1 2 C 12 28} # connect the fragments via the atom pair 12/28 and 15/28 and
    {1 3 C 15 28} # constrain the internal coordinates connecting
        # fragments 1/2 and 1/3
    {1 5 O}
```
8.2 Geometry Optimizations, Surface Scans, Transition States, MECPs

```
[1 6 0]
[2 4 0]
[3 4 0]
end

  optimizeHydrogens true  # do not constrain any hydrogen position
end

* xyz 1 2

Fe(1)  -0.847213  -1.548312  -1.216237  newgto "TZVP" end
N(5)   -0.712253  -2.291076   0.352054  newgto "TZVP" end
O(5)   -0.521243  -3.342329   0.855804  newgto "TZVP" end
N(6)   -0.953604  -0.686422  -3.215231  newgto "TZVP" end
N(3)   -0.338154  -0.678533   3.030265  newgto "TZVP" end
N(3)   -0.868050   0.768738   4.695152  newgto "TZVP" end
N(6)   -1.770675   0.099480  -5.112455  newgto "TZVP" end
N(1)   -2.216029  -0.133298  -0.614782  newgto "TZVP" end
N(1)   -2.371465  -2.775999  -1.706931  newgto "TZVP" end
N(1)   0.489683   -2.865714  -1.944343  newgto "TZVP" end
N(1)   0.690468  -0.243375  -0.860813  newgto "TZVP" end
N(2)   1.284320   3.558259   6.254287
C(2)   5.049207   2.620412   6.377683
C(2)   3.776069   3.471320   6.499073
C(2)   2.526618   2.691959   6.084652
C(3)   -0.599599  -0.564699   6.760567
C(3)   -0.526122  -0.406630   5.274274
C(3)   -0.194880  -1.277967   4.253789
C(3)   -0.746348   0.566081   3.234394
C(6)   0.292699   0.510431  -6.539061
C(6)  -0.388964   0.079551  -5.279555
C(6)   0.092848   -0.416283  -4.078708
C(6)  -2.067764  -0.368729  -3.863111
C(1)  -0.663232   1.693332  -0.100834
C(1)  -4.293109  -1.414165  -0.956846
C(1)  -1.966190  -4.647587  -2.644424
C(1)   2.597468  -1.667470  -1.451465
C(1)  -1.953033   1.169088  -0.235289
C(1)  -3.187993   1.886468   0.015415
C(1)  -4.209486   0.988964  -0.187584
C(1)  -3.589675  -0.259849  -0.590758
C(1)  -3.721903  -2.580894  -1.476315
C(1)  -4.480129  -3.742821  -1.990939
C(1)  -3.573258  -4.645939  -2.395341
C(1)  -2.264047  -4.035699  -2.263491
C(1)   0.211734  -4.103525  -2.488426
C(1)   1.439292  -4.787113  -2.850669
C(1)   2.470888  -3.954284  -2.499593
C(1)   1.869913  -2.761303  -1.932055
C(1)   2.037681  -0.489452  -0.943105
C(1)   2.779195   0.652885  -0.459645
```
Running Typical Calculations

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>1.856237</td>
<td>1.597800</td>
<td>-0.084165</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)</td>
<td>0.535175</td>
<td>1.024425</td>
<td>-0.348298</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.208602</td>
<td>2.657534</td>
<td>6.962748</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>-0.347830</td>
<td>-1.611062</td>
<td>7.033565</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>-1.627274</td>
<td>-0.387020</td>
<td>7.166806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>0.121698</td>
<td>0.079621</td>
<td>7.324626</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>0.134234</td>
<td>-2.323398</td>
<td>4.336293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>-1.286646</td>
<td>1.590976</td>
<td>5.066768</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(3)</td>
<td>-0.990234</td>
<td>1.312025</td>
<td>2.466155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(4)</td>
<td>-2.043444</td>
<td>3.171674</td>
<td>7.047572</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>1.364935</td>
<td>4.120133</td>
<td>7.126900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>0.354760</td>
<td>3.035674</td>
<td>6.348933</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>1.194599</td>
<td>4.240746</td>
<td>5.475280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>2.545448</td>
<td>2.356268</td>
<td>5.027434</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>2.371622</td>
<td>1.797317</td>
<td>6.723020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>3.874433</td>
<td>4.385720</td>
<td>5.867972</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>3.657837</td>
<td>3.815973</td>
<td>7.554224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>5.217429</td>
<td>2.283681</td>
<td>5.331496</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>5.001815</td>
<td>1.718797</td>
<td>7.026983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>-3.086380</td>
<td>-0.461543</td>
<td>-3.469767</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>-2.456569</td>
<td>0.406212</td>
<td>-5.813597</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>1.132150</td>
<td>-0.595619</td>
<td>-3.782287</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>0.040799</td>
<td>1.559730</td>
<td>-6.816417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>0.026444</td>
<td>-0.139572</td>
<td>-7.404468</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6)</td>
<td>1.392925</td>
<td>0.454387</td>
<td>-6.407850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>2.033677</td>
<td>2.608809</td>
<td>0.310182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>3.875944</td>
<td>0.716790</td>
<td>-0.424466</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>3.695978</td>
<td>-1.736841</td>
<td>-1.485681</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>3.551716</td>
<td>-4.118236</td>
<td>-2.668239</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>1.487995</td>
<td>-5.784645</td>
<td>-3.308145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-1.133703</td>
<td>-5.654603</td>
<td>-3.084826</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-3.758074</td>
<td>-5.644867</td>
<td>-2.813441</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-5.572112</td>
<td>-3.838210</td>
<td>-1.826943</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-0.580615</td>
<td>2.741869</td>
<td>0.231737</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-3.255623</td>
<td>2.942818</td>
<td>0.312598</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-5.292444</td>
<td>1.151326</td>
<td>-0.096157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>-5.390011</td>
<td>-1.391441</td>
<td>-0.858996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(4)</td>
<td>-1.370815</td>
<td>1.780473</td>
<td>7.384747</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2)</td>
<td>5.936602</td>
<td>3.211249</td>
<td>6.686961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- You have to connect the fragments in such a way that the whole system is connected.
- You can divide a molecule into several fragments.
• Since the initial Hessian for the optimization is based upon the internal coordinates: Connect the fragments in a way that their real interaction is reflected.

• This option can be combined with the definition of constraints, scan coordinates and the optimizeHydrogens option (but: its meaning in this context is different to its meaning in a normal optimization run, relatively straightforward see section 9.17).

• Can be helpful in the location of complicated transition states (with relaxed surface scans).

8.2.8 Relaxed Surface Scans

A final thing that comes in really handy are relaxed surface scans, i.e. you can scan through one variable while all others are relaxed. It works as shown in the following example:

```plaintext
! RKS B3LYP/G SV(P) TightSCF Opt
%geom Scan
   B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned
   end
   end
* int 0 1
   C 0 0 0 0.0000 0.000 0.00
   O 1 0 0 1.3500 0.000 0.00
   H 1 2 0 1.1075 122.016 0.00
   H 1 2 3 1.1075 122.016 180.00
* 
```

In the example above the value of the bond length between C and O will be changed in 12 equidistant steps from 1.35 down to 1.10 Ångströms and at each point a constrained geometry optimization will be carried out.

NOTE:

• If you want to perform a geometry optimization at a series of values with non-equidistant steps you can give this series in square brackets, []. The general syntax is as follows:

```plaintext
B N1 N2 = initial-value, final-value, NSteps
or:
B N1 N2 [value1 value2 value3 ... valueN]
```

• In addition to bond lengths you can also scan bond angles and dihedral angles:

```plaintext
B N1 N2 = ...  # bond length
A N1 N2 N3 = ...  # bond angle
D N1 N2 N3 N4 = ...  # dihedral angle
```
TIP

- As in constrained geometry optimization it is possible to start the relaxed surface scan with a different scan parameter than the value present in your molecule. But keep in mind that this value should not be too far away from your initial structure.

A more challenging example is shown below. Here, the H-atom abstraction step from CH$_4$ to OH-radical is computed with a relaxed surface scan (vide supra). The job was run as follows:

```
! UKS B3LYP SV(P) TightSCF Opt SlowConv
%geom scan B 1 0 = 2.0, 1.0, 15 end end
* int 0 2
  C  0  0  0     0.000000  0.000  0.000
  H  1  0  0     1.999962  0.000  0.000
  H  1  2  0     1.095870  100.445  0.000
  H  1  2  3     1.095971   90.180  119.467
  H  1  2  3     1.095530   95.161  238.880
  O  2  1  3     0.984205   164.404   27.073
  H  6  2  1     0.972562   103.807   10.843
*```

It is obvious that the reaction is exothermic and passes through an early transition state in which the hydrogen jumps from the carbon to the oxygen. The structure at the maximum of the curve is probably a very good guess for the true transition state that might be located by a transition state finder.

You will probably find that such relaxed surface scans are incredibly useful but also time consuming. Even the simple job shown below required several hundred single point and gradient evaluations (convergence problems appear for the SCF close to the transition state and for the geometry once the reaction partners actually dissociate – this is to be expected). Yet, when you search for a transition state or you want to get insight into the shapes of the potential energy surfaces involved in a reaction it might be a good idea to use this feature. One possibility to ease the burden somewhat is to perform the relaxed surface scan with a “fast” method and a smaller basis set and then do single point calculations on all optimized geometries with a larger basis set and/or higher level of theory. At least you can hope that this should give a reasonable approximation to the desired surface at the higher level of theory – this is the case if the geometries at the lower level are reasonable.

### 8.2.9 Multiple XYZ File Scans

A different type of scan is implemented in ORCA in conjunction with relaxed surface scans. Such scans produce a series of structures that are typically calculated using some ground state method. Afterwards one may want to do additional or different calculations along the generated pathway such as excited state calculations or special property calculations. In this instance, the “multiple XYZ scan” feature is useful. If you request reading from a XYZ file via:
8.2 Geometry Optimizations, Surface Scans, Transition States, MECPs

Figure 8.15: Relaxed surface scan for the H-atom abstraction from CH₄ by OH-radical (B3LYP/SV(P)).

* xyzfile Charge Multiplicity FileName

this file could contain a number of structures. The format of the file is:

```
Number of atoms M
Comment line
AtomName1 X Y Z
AtomName2 X Y Z
...
AtomNameM X Y Z
>
Number of atoms M
Comment line
AtomName1 X Y Z
...
```

Thus, the structures are simply of the standard XYZ format, separated by a “>” sign. After the last structure no “>” should be given but a blank line instead. The program then automatically recognizes that a multiple XYZ scan run is to be performed. Thus, single point calculations are performed on each structure in sequence and the results are collected at the end of the run in the same kind of trajectory.dat files as produced from trajectory calculations.

In order to aid in using this feature, the relaxed surface scans produce a file called MyJob.allxyz that is of the correct format to be re-read in a subsequent run.
8.2.10 Transition States

8.2.10.1 Introduction to Transition State Searches

If you provide a good estimate for the structure of the transition state (TS) structure, then you can find the respective transition state with the following keywords (in this example we take the structure with highest energy of the above relaxed surface scan):

```plaintext
! UKS B3LYP SV(P) TightSCF SlowConv OptTS
performs a TS optimization with the EF-algorithm
Transition state: H-atom abstraction from CH4 to OH-radical

%geom
Calc_Hess true # calculation of the exact Hessian
 # before the first optimization step
end

* int 0 2
 C 0 0 0 0.000000 0.000 0.000
 H 1 0 0 1.285714 0.000 0.000
 H 1 2 0 1.100174 107.375 0.000
 H 1 2 3 1.100975 103.353 119.612
 O 2 1 3 1.244156 105.481 238.889
 H 6 2 1 0.980342 100.836 10.515
*
```

**NOTE:**

- You need a good guess of the TS structure. Relaxed surface scans can help in almost all cases (see also example above).
- For TS optimization (in contrast to geometry optimization) an exact Hessian, a Hybrid Hessian or a modification of selected second derivatives is necessary.
- Analytic Hessian evaluation is available for HF and SCF methods, including the RI and RIJCOSX approximations and canonical MP2.
- Check the eigenmodes of the optimized structure for the eigenmode with a single imaginary frequency. You can also visualize this eigenmode with `orcapltvib` (section 8.12.3.5) or any other visualization program that reads ORCA output files.
- If the Hessian is calculated during the TS optimization, it is stored as basename.001.hess, if it is recalculated several times, then the subsequently calculated Hessians are stored as basename.002.hess, basename.003.hess, ...
• If you are using the Hybrid Hessian, then you have to check carefully at the beginning of the TS optimization (after the first three to five cycles) whether the algorithm is following the correct mode (see TIP below). If this is not the case you can use the same Hybrid Hessian again via the inhess read keyword and try to target a different mode (via the TS_Mode keyword, see below).

In the example above the TS mode is of local nature. In such a case you can directly combine the relaxed surface scan with the TS optimization with the

`! ScanTS`

command, as used in the following example:

```
! UKS B3LYP SV(P) TightSCF SlowConv
! ScanTS # perform a relaxed surface scan and TS optimization
in one calculation
%geom scan B 1 0 = 2.0, 1.0, 15 end end
* int 0 2
 C 0 0 0 0.000000 0.000 0.000
 H 1 0 0 1.999962 0.000 0.000
 H 1 2 0 1.095870 100.445 0.000
 H 1 2 3 1.095971 90.180 119.467
 H 1 2 3 1.095530 95.161 238.880
 O 2 1 3 0.984205 164.404 27.073
 H 6 2 1 0.972562 103.807 10.843
*
```

NOTE:

• The algorithm performs the relaxed surface scan, aborts the Scan after the maximum is surmounted, chooses the optimized structure with highest energy, calculates the second derivative of the scanned coordinate and finally performs a TS optimization.

• If you do not want the scan to be aborted after the highest point has been reached but be carried out up to the last point, then you have to type:

```
%geom fullScan true # do not abort the scan with !ScanTS
```

As transition state finder we implemented the quasi-Newton like hessian mode following algorithm. [124–132] This algorithm maximizes the energy with respect to one (usually the lowest) eigenmode and minimizes with respect to the remaining $3N - 7(6)$ eigenmodes of the Hessian.

TIP
• You can check at an early stage if the optimization will lead to the “correct” transition state. After
the first optimization step you find the following output for the redundant internal coordinates:

<table>
<thead>
<tr>
<th>Definition</th>
<th>Value</th>
<th>dE/dq</th>
<th>Step</th>
<th>New-Value</th>
<th>frac.(TS mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B(H 1,C 0)</td>
<td>1.2857</td>
<td>0.013136</td>
<td>0.0286</td>
<td>1.3143</td>
<td>0.58</td>
</tr>
<tr>
<td>2. B(H 2,C 0)</td>
<td>1.1002</td>
<td>0.014201</td>
<td>-0.0220</td>
<td>1.0782</td>
<td></td>
</tr>
<tr>
<td>3. B(H 3,C 0)</td>
<td>1.1010</td>
<td>0.014753</td>
<td>-0.0230</td>
<td>1.0779</td>
<td></td>
</tr>
<tr>
<td>4. B(H 4,C 0)</td>
<td>1.1008</td>
<td>0.014842</td>
<td>-0.0229</td>
<td>1.0779</td>
<td></td>
</tr>
<tr>
<td>5. B(O 5,H 1)</td>
<td>1.2442</td>
<td>-0.015421</td>
<td>-0.0488</td>
<td>1.1954</td>
<td>0.80</td>
</tr>
<tr>
<td>6. B(H 6,O 5)</td>
<td>0.9803</td>
<td>0.025828</td>
<td>-0.0289</td>
<td>0.9514</td>
<td></td>
</tr>
<tr>
<td>7. A(H 1,C 0,H 2)</td>
<td>107.38</td>
<td>-0.001418</td>
<td>-0.88</td>
<td>106.49</td>
<td></td>
</tr>
<tr>
<td>8. A(H 1,C 0,H 4)</td>
<td>105.48</td>
<td>-0.002209</td>
<td>-0.46</td>
<td>105.02</td>
<td></td>
</tr>
<tr>
<td>9. A(H 1,C 0,H 3)</td>
<td>103.35</td>
<td>-0.003406</td>
<td>0.08</td>
<td>103.43</td>
<td></td>
</tr>
<tr>
<td>10. A(H 2,C 0,H 4)</td>
<td>113.30</td>
<td>0.001833</td>
<td>0.35</td>
<td>113.65</td>
<td></td>
</tr>
<tr>
<td>11. A(H 3,C 0,H 4)</td>
<td>113.38</td>
<td>0.002116</td>
<td>0.26</td>
<td>113.64</td>
<td></td>
</tr>
<tr>
<td>12. A(H 2,C 0,H 3)</td>
<td>112.95</td>
<td>0.001923</td>
<td>0.45</td>
<td>113.40</td>
<td></td>
</tr>
<tr>
<td>13. A(C 0,H 1,O 5)</td>
<td>169.26</td>
<td>-0.002089</td>
<td>4.30</td>
<td>173.56</td>
<td></td>
</tr>
<tr>
<td>14. A(H 1,O 5,H 6)</td>
<td>100.84</td>
<td>0.003907</td>
<td>-1.41</td>
<td>99.43</td>
<td></td>
</tr>
<tr>
<td>15. D(O 5,H 1,C 0,H 2)</td>
<td>17.02</td>
<td>0.006135</td>
<td>0.24</td>
<td>17.26</td>
<td></td>
</tr>
<tr>
<td>16. D(O 5,H 1,C 0,H 4)</td>
<td>-104.09</td>
<td>-0.000100</td>
<td>0.52</td>
<td>-103.57</td>
<td></td>
</tr>
<tr>
<td>17. D(O 5,H 1,C 0,H 3)</td>
<td>136.64</td>
<td>0.000004</td>
<td>0.39</td>
<td>137.03</td>
<td></td>
</tr>
<tr>
<td>18. D(H 6,O 5,H 1,C 0)</td>
<td>10.52</td>
<td>0.000078</td>
<td>-0.72</td>
<td>9.79</td>
<td></td>
</tr>
</tbody>
</table>

Every Hessian eigenmode can be represented by a linear combination of the redundant internal coordinates.
In the last column of this list the internal coordinates, that represent a big part of the mode which is followed
uphill, are labelled. The numbers reflect their magnitude in the TS eigenvector (fraction of this internal
coordinate in the linear combination of the eigenvector of the TS mode). Thus at this point you can already
check whether your TS optimization is following the right mode (which is the case in our example, since we
are interested in the abstraction of H1 from C0 by O5.

• If you want the algorithm to follow a different mode than the one with lowest eigenvalue, you can
either choose the number of the mode:

```plaintext
%geom
TS_Mode {M 1} # {M 1} mode with second lowest eigenvalue
end
(default: {M 0}, mode with lowest eigenvalue)
end
```
or you can give an internal coordinate that should be strongly involved in this mode:

```plaintext
%geom
TS_Mode {B 1 5} # bond between atoms 1 and 5,
end
you can also choose an angle: {A N1 N2 N1}
or a dihedral: {D N1 N2 N3 N4}
end
```


8.2.10.2 Hessians for Transition State Calculations

For transition state (TS) optimization a simple initial Hessian, which is used for minimization, is not sufficient. In a TS optimization we are looking for a first order saddle point, and thus for a point on the PES where the curvature is negative in the direction of the TS mode (the TS mode is also called transition state vector, the only eigenvector of the Hessian at the TS geometry with a negative eigenvalue). Starting from an initial guess structure the algorithm used in the ORCA TS optimization has to climb uphill with respect to the TS mode, which means that the starting structure has to be near the TS and the initial Hessian has to account for the negative curvature of the PES at that point. The simple force-field Hessians cannot account for this, since they only know harmonic potentials and thus positive curvature.

The most straightforward option in this case would be (after having looked for a promising initial guess structure with the help of a relaxed surface scan) to calculate the exact Hessian before starting the TS optimization. With this Hessian (depending on the quality of the initial guess structure) we know the TS eigenvector with its negative eigenvalue and we have also calculated the exact force constants for all other eigenmodes (which should have positive force constants). For the HF, DFT methods and MP2, the analytic Hessian evaluation is available and is the best choice, for details see section Frequencies (8.3).

When only the gradients are available (most notably the CASSCF), the numerical calculation of the exact Hessian is very time consuming, and one could ask if it is really necessary to calculate the full exact Hessian since the only special thing (compared to the simple force-field Hessians) that we need is the TS mode with a negative eigenvalue.

Here ORCA provides two different possibilities to speed up the Hessian calculation, depending on the nature of the TS mode: the Hybrid Hessian and the calculation of the Hessian value of an internal coordinate. For both possibilities the initial Hessian is based on a force-field Hessian and only parts of it are calculated exactly. If the TS mode is of very local nature, which would be the case when e.g. cleaving or forming a bond, then the exactly calculated part of the Hessian can be the second derivative of only one internal coordinate, the one which is supposed to make up the TS mode (the formed or cleaved bond). If the TS mode is more complicated and more delocalized, as e.g. in a concerted proton transfer reaction, then the hybrid Hessian, a Hessian matrix in which the numerical second derivatives are calculated only for those atoms, which are involved in the TS mode (for more details, see section 9.17), should be sufficient. If you are dealing with more complicated cases where these two approaches do not succeed, then you still have the possibility to start the TS optimization with a full exact Hessian.

Numerical Frequency calculations are quite expensive. You can first calculate the Hessian at a lower level of theory or with a smaller basis set and use this Hessian as input for a subsequent TS optimization:

```
%geom inhess
In HessName "yourHessian.hess"
this command comes with:
end
```

Another possibility to save computational time is to calculate exact Hessian values only for those atoms which are crucial for the TS optimization and to use approximate Hessian values for the rest. This option is very useful for big systems, where only a small part of the molecule changes its geometry during the transition and hence the information of the full exact Hessian is not necessary. With this option the coupling of the selected atoms are calculated exactly and the remaining Hessian matrix is filled up with a model initial Hessian:
For some molecules the PES near the TS can be very far from ideal for a Newton-Raphson step. In such a case ORCA can recalculate the Hessian after a number of steps:

\`
%geom
Recalc_Hess 5 # calculate the Hessian at the beginning
# and recalculate it after 5, 10, 15, … steps
end
\`

Another solution in that case is to switch on the trust radius update, which reduces the step size if the Newton-Raphson steps behave unexpected and ensures bigger step size if the PES seems to be quite quadratic:

\`
%geom
Trust 0.3 # Trust <0 - use fixed trust radius (default: -0.3 au)
# Trust >0 - use trust radius update, i.e. 0.3 means:
# start with trust radius 0.3 and use trust radius update
end
\`

### 8.2.10.3 Special Coordinates for Transition State Optimizations

- If you look for a TS of a breaking bond the respective internal coordinate might not be included in the list of redundant internal coordinates (but this would accelerate the convergence). In such a case (and of course in others) you can add coordinates to or remove them from the set of autogenerated redundant internal coordinates:

\`
# add ( A ) or remove ( R ) internal coordinates
%geom
modify_internal
    { B 10 0 A } # add a bond between atoms 0 and 10
    { A 8 9 10 R } # remove the angle defined
    # by atoms 8, 9 and 10
    { D 7 8 9 10 R } # remove the dihedral angle defined
    # by atoms 7, 8, 9 and 10
end
\`
8.2.11 MECP Optimization

There are reactions where the analysis of only one spin state of a system is not sufficient, but where the reactivity is determined by two or more different spin states (Two- or Multi-state reactivity). The analysis of such reactions reveals that the different PESs cross each other while moving from one stationary point to the other. In such a case you might want to use the ORCA optimizer to locate the point of lowest energy of the crossing surfaces (called the minimum energy crossing point, MECP).

As an example for such an analysis we show the MECP optimization of the quartet and sextet state of [FeO]+.

```
!B3LYP TZVP Opt SurfCrossOpt SlowConv
%mecp
 Mult 4
end
* xyz +1 6
Fe 0.000000 0.000000 1.000000
O 0.000000 0.000000 1.670000
*
```

- For further options for the MECP calculation, see section 9.17.3.

**TIP:** You can often use a minimum or TS structure of one of the two spin states as initial guess for your MECP-optimization. If this doesn’t work, you might try a scan to get a better initial guess.

The results of the MECP optimization are given in the following output. The distance where both surfaces cross is at 1.994 Å. In this simple example there is only one degree of freedom and we can also locate the MECP via a parameter scan. The results of the scan are given in Figure for comparison. Here we see that the crossing occurs at a Fe-O-distance of around 2 Å.

For systems with more than two atoms a scan is not sufficient any more and you have to use the MECP optimization.

```
**
HURRAY
*** THE OPTIMIZATION HAS CONVERGED ***
**

Redundant Internal Coordinates
--- Optimized Parameters ---
(Angstroem and degrees)

<table>
<thead>
<tr>
<th>Definition</th>
<th>OldVal</th>
<th>dE/dq</th>
<th>Step</th>
<th>FinalVal</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(0, Fe 1, O)</td>
<td>1.9942</td>
<td>-0.000001</td>
<td>0.0000</td>
<td>1.9942</td>
</tr>
</tbody>
</table>

**
*** FINAL ENERGY EVALUATION AT THE STATIONARY POINT ***
```

***
Running Typical Calculations

Figure 8.16: Parameter scan for the quartet and sextet state of [FeO]$^+$ (B3LYP/SV(P)).

| Energy difference between both states | -0.000002398 |

A more realistic example with more than one degree of freedom is the MECP optimization of a structure along the reaction path of the CH$_3$O $\leftrightarrow$ CH$_2$OH isomerization.

```plaintext
!B3LYP SV SurfCrossOpt SurfCrossNumFreq
%mecp Mult 1
end
*xyz 1 3
C 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.300000
H 1.026719 0.000000 -0.363000
O -0.879955 0.000000 -1.088889
H -0.119662 -0.866667 0.961546
*
```

NOTE:
• To verify that a stationary point in a MECP optimization is a minimum, you have to use an adapted frequency analysis, called by SurfCrossNumFreq (see section 9.17.3).

8.2.12 Constant External Force - Mechanochemistry

Constant external force can be applied on the molecule within the EFEI formalism [133] by pulling on the two defined atoms. To apply the external force, use the POTENTIALS in the geom block. The potential type is C for Constant force, indexes of two atoms (zero-based) and the value of force in nN.

```plaintext
! def2-svp OPT
%geom
 POTENTIALS
 { 2 3 4.0 }
end
end
* xyz 0 1
O 0.73020 -0.07940 -0.00000
O -0.73020 0.07940 -0.00000
H 1.21670 0.75630 0.00000
H -1.21670 -0.75630 0.00000
*
```

The results are seen in the output of the SCF procedure, where the total energy already contains the force term.

```

TOTAL SCF ENERGY

Total Energy : -150.89704913 Eh -4106.11746 eV

Components:
 Nuclear Repulsion : 36.90074715 Eh 1004.12038 eV
 External potential : -0.25613618 Eh -6.96982 eV
 Electronic Energy : -187.54166010 Eh -5103.26802 eV
```

8.3 Vibrational Frequencies

Vibrational frequency calculations are available through analytical differentiation of the SCF energy as well as one- or two-sided numerical differentiation of analytical gradients, i.e. for Hartree-Fock and DFT models. For methods without analytical gradient a numerically calculated gradient can be used (keyword NumGrad) for numerical frequencies. Please note, that this will be a very time consuming calculation.

The use of vibrational frequency calculations is fairly simple:
# any Hartree-Fock or DFT model can be used here
! RKS BP def2-TZVP RI def2/J

# Tight SCF convergence and larger integration grids are advisable
# in order to minimize the numerical noise in the frequencies.
! TightSCF Grid5 NoFinalGrid

# perform a geometry optimization first
! Opt

# Run an analytical or numerical frequency calculation afterwards
! AnFreq # or just "! Freq"
# numerical:
! NumFreq

# details of the analytical frequency calculation
%freq Hess2ElFlags 1,2,2,1 # use the RIJCOSX approximation
    # (this is the new default for RIJCOSX Hessian)
end

# details of the numerical frequency calculation
%freq CentralDiff true # use central-differences (this is the default)
    Increment 0.005 # increment in bohr for the
    # differentiation (default 0.005)
end

! bohrs
* xyz 0 1
  O  -1.396288 -0.075107  0.052125
  O   1.396289 -0.016261 -0.089970
  H  -1.775703  1.309756 -1.111179
  H   1.775687  0.140443  1.711854
*

The user has full control over approximations involved in the Hessian calculation. Hess2ElFlags(i_1, i_2, i_3, i_4), where i_k (i_k = 0 to 2) adjust the use of the RI and COSX approximations. In case i_k = 0 no approximation in the 2-electron integrals is introduced. i_k = 1 means the RI approximation in the Coulomb part is in use. i_k = 2 corresponds to COSX algorithm in the HF exchange. i_1 corresponds to explicit Fock matrix derivatives, i_2 - Fock matrix depended on pseudo density, i_3 - solution of the CP-SCF equations, i_4 - explicit integral second derivative.

In the introduced notation the RIJDX default flags are (1, 1, 1, 1), the RIJCOSX are (1, 2, 2, 1). Analytical frequency calculations are also implemented at MP2 level. Please note, that the Hess2ElFlags are ignored by the MP2 module. Furthermore, MP2 frequency calculations are very time-consuming and need a lot of disk space.

At the end of the frequency job you get an output like this:
This output consists of the calculated vibrational frequencies, the vibrational modes and the thermochemical properties at 298.15 K. In the example above there are six frequencies which are identically zero. These frequencies correspond to the rotations and translations of the molecule. They have been projected out of the Hessian before the calculation of the frequencies and thus, the zero values do not tell you anything about the quality of the Hessian that has been diagonalized. The reliability of the calculated frequencies has to be judged by comparison of calculations with different convergence criteria, increments, integration grids etc. The numerical error in the frequencies may reach 50 cm\(^{-1}\) but should be considerably smaller in most cases. Significant negative frequencies indicate saddle points of the energy hypersurface and prove that the optimization has not resulted in an energy minimum.

**Mass dependencies:** Of course the calculated frequencies depend on the masses used for each atom. While this can be influenced later through the `orca_vib` routine (see Section 8.12.3.6 for more detail) and individually for each atom in the geometry input, one might prefer using a set of precise atomic masses rather than the set of atomic weights (which are set as default). This can be achieved through the `!Mass2016` keyword, which triggers Orca to use those atomic masses representing either the most abundant isotope or the most stable isotope (if all isotopes are unstable) of a certain element (e.g. the mass of \(^{35}\)Cl for chlorine or the mass of \(^{98}\)Tc).

**NOTE:** The calculation of numerical frequencies puts rather high demands on both computer time and accuracy. In order to get reliable frequencies make sure that:

- Your SCF is tightly converged. A convergence accuracy of at least \(10^{-7}\) Eh in the total energy and \(10^{-6}\) in the density is desirable.
- Grids of at least `Grid4` or preferably larger are recommended.
- The use of two-sided (i.e. central) differences increases the computation time by a factor of two but gives more accurate and reliable results.

<table>
<thead>
<tr>
<th>Order</th>
<th>Frequency (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>311.78</td>
</tr>
<tr>
<td>7</td>
<td>887.65</td>
</tr>
<tr>
<td>8</td>
<td>1225.38</td>
</tr>
<tr>
<td>9</td>
<td>1394.81</td>
</tr>
<tr>
<td>10</td>
<td>3624.88</td>
</tr>
<tr>
<td>11</td>
<td>3635.73</td>
</tr>
</tbody>
</table>
• Small auxiliary basis sets like DGauss/J or DeMon/J may not result in fully converged frequencies (up to 40 cm\(^{-1}\) difference compared to frequencies calculated without RI). The def2/J universal auxiliary basis sets of Weigend that are now the default in ORCA (or the SARC/J for scalar relativistic calculations) are thought to give sufficiently reliable results.

• Possibly, the convergence criteria of the geometry optimization need to be tightened in order to get fully converged results.

• If you can afford it, decrease the numerical increment to 0.001 Bohr or so. This puts even higher demands on the convergence characteristics of the SCF calculation but should also give more accurate numerical second derivatives. If the increment is too small or too high inaccurate results are expected.

The calculation of analytical frequencies is memory consuming. To control memory consumption the \texttt{%maxcore} parameter must be set. For example \texttt{%maxcore 8192} - use 8 Gb of memory per processor for the calculation. The user should provide the value according to the computer available memory. The batching based on \texttt{%maxcore} parameter will be introduced automatically to overcome probable memory shortage.

Numerical frequency calculations are restartable (but analytical frequency calculations are not). If the numerical frequencies job died for one reason or another you can simply continue from where it stopped as in the following example:

```
! RHF STO-3G
! NumFreq
%freq Restart true # restart an old calculation
 # this requires a .hess file to be present
end
* int 0 1
 C 0 0 0 0.0000 0 0
 C 1 0 0 1.2160 0 0
 H 1 2 0 1.083 180 0
 H 2 1 3 1.083 180 0
*
```

NOTE

• You must not change the level of theory, basis set or any other detail of the calculation. Any change will produce an inconsistent, essentially meaningless Hessian.

• The geometry at which the Hessian is calculated must be identical. If you followed a geometry optimization by a frequency run then you must restart the numerical frequency calculation from the optimized geometry.

• Numerical frequencies can be performed in multi-process mode. Please see section 5.2 ("Hints on the use of parallel ORCA") for more information.
• In multi-process mode the restart will take off from the locally calculated Hessians (procmyid.hess, e.g. proc0.hess, proc1.hess) where myid is the process id of some local process. Please make sure that all these local Hessians get copied to your compute directory. If restart is set and no local files to be found, ORCA will try to restart on the global Hessian file.

• The Hessian file will contain a joblist, showing which displacements have been performed. You can recalculate a single (or more) displacements by changing the 1 (“done”) entry to 0 (“to-be-done”).

8.4 Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT

ORCA features a module to perform TD-DFT, single-excitation CI (CIS) and RPA. The module works with either closed-shell (RHF or RKS) or unrestricted (UHF or UKS) reference wavefunctions. For DFT models the module automatically chooses TD-DFT and for HF wavefunctions the CIS model. If the RI approximation is used in the SCF part it will also be used in the excited states calculation. A detailed documentation is provided in section 9.19.

8.4.1 General Use

In its simplest form it is only necessary to provide the number of roots sought:

```plaintext
! RKS B3LYP/G SV(P) TightSCF
%tddft nroots 8
 maxdim 2 #Davidson expansion space = MaxDim * NRoots
 triplets true
end

* int 0 1
 C(1) 0 0 0 0.00 0.0 0.00
 O(2) 1 0 0 1.20 0.0 0.00
 H(3) 1 2 0 1.08 120 0.00
 H(3) 1 2 3 1.08 120 180.00
*
```

The MaxDim parameter controls the maximum number of expansion vectors in the iterative solution of the CI equations. The default is the smallest possible choice. The triplets parameter is only valid for closed-shell references. If chosen as true the program will also determine the triplet excitation energies in addition to the singlets.
8.4.2 Use of TD-DFT for the Calculation of X-ray Absorption Spectra

In principle X-ray absorption spectra are “normal” absorption spectra that are just taken in a special high-energy wavelength range. Due to the high energy of the radiation employed (several thousand eV), core-electrons rather than valence electrons are excited. This has two consequences: a) the method becomes element specific because the core-level energies divide rather cleanly into regions that are specific for a given element. b) the wavelength of the radiation is so short that higher-order terms in the expansion of the light-matter interaction become important. Most noticeably, quadrupole intensity becomes important.

X-ray absorption spectra can be generally divided into three regions: a) the pre-edge that corresponds to transitions of core electrons into low lying virtual orbitals that lead to bound states. b) the rising edge that corresponds to excitations to high-lying states that are barely bound, and c) the extended X-ray absorption fine structure region (EXAFS) that corresponds to electrons being ejected from the absorber atom and scattered at neighbouring atoms.

With the simple TD-DFT calculations described here, one focuses the attention on the pre-edge region. Neither the rising edge nor the EXAFS region are reasonably described with standard electronic structure methods and no comparison should be attempted. In addition, these calculations are restricted to K-edges as the calculation of L-edges is much more laborious and requires a detailed treatment of the core hole spin orbit coupling.

It is clearly hopeless to try to calculate enough states to cover all transitions from the valence to the pre-edge region. Hence, instead one hand-selects the appropriate donor core orbitals and only allows excitations out of these orbitals into the entire virtual space. This approximation has been shown to be justified. [134] One should distinguish two situations: First, the core orbital in question may be well isolated and unambiguously defined. This is usually the case for metal 1s orbitals if there is only one metal of the given type in the molecule. Secondly, there may be several atoms of the same kind in the molecule and their core orbitals form the appropriate symmetry adapted linear combinations dictated by group theory. In this latter case special treatment is necessary: The sudden approximation dictates that the excitations occur from a local core orbital. In previous versions of the program you had to manually localize the core holes. In the present version there is an automatic procedure that is described below.

A typical example is TiCl₄. If we want to calculate the titanium K-edge, the following input is appropriate:

```
! BP86 ZORA ZORA-def2-TZVP(-f) SARC/J TightSCF
%maxcore 1024
%tddft
 OrbWin[0] = 0,0,-1,-1
 NRoots 25
 DoQuad true
end
* int 0 1
 Ti 0 0 0 0 0 0
 Cl 1 2 3 2.15 0 0
 Cl 1 2 3 2.15 109.4712 0
 Cl 1 2 3 2.15 109.4712 120
```
NOTE:

- The absolute transition energies from such calculations are off by a few hundred electron volts due to the shortcomings of DFT. The shift is constant and very systematic for a given element. Hence, calibration is possible and has been done for a number of edges already. Calibration depends on the basis set!

- Quadrupole contributions (and magnetic dipole contributions) have been invoked with DoQuad true, which is essential for metal edges. For ligand edges, the contributions are much smaller.

- OrbWin is used to select the single donor orbital (in this case the metal 1s). The LUMO (45) and last orbital in the set (174) are selected automatically if “-1” is given. This is different from previous program versions where the numbers had to be given manually.

The output contains standard TD-DFT output but also:

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>D2 (*1e6)</th>
<th>m2 (*1e6)</th>
<th>Q2 (*1e6)</th>
<th>D2+m2+Q2 (*1e6)</th>
<th>D2/TOT</th>
<th>m2/TOT</th>
<th>Q2/TOT</th>
</tr>
</thead>
</table>

This section contains the relevant output since it combines electric dipole, electric quadrupole and magnetic dipole transition intensities into the final spectrum. Importantly, there is a gauge issue with the quadrupole intensity: the results depend on the where the origin is placed. We have proposed a minimization procedure that guarantees the fastest possible convergence of the multipole expansion. [135]

The spectra are plotted by calling

```
orca_mapspc MyOutput.out ABSQ -eV -x04890 -x14915 -w1.3
```

Starting from ORCA version 4.0 one may obtain nearly origin independent intensities by evaluating in addition to the electric dipole (D), electric quadrupole (Q) and magnetic dipole (m) intensities the corresponding electric dipole - magnetic quadrupole (DM) and the electric dipole - electric octupole (DO) intensities. [136] [137]
These spectra are plotted by calling

```
orca_mapspc MyOutput.out ABSOI -eV -x04890 -x14915 -wl.3
```

- Approximate origin independence is achieved by using the length approximation for distances from the excited atom up to about 5 Angstrom.

- Negative intensities may be found which can be partly cured by using larger basis sets.

- In the cases where negative intensities appear in the spectrum it is presently recommended to use the origin adjusted method

Now, let us turn to the Cl K-edge. Looking at the output of the first calculation, we have:

```
```

<table>
<thead>
<tr>
<th>NO</th>
<th>OCC</th>
<th>E(Eh)</th>
<th>E(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0000</td>
<td>-180.182806</td>
<td>-4903.0234</td>
</tr>
<tr>
<td>1</td>
<td>2.0000</td>
<td>-101.517692</td>
<td>-2762.4368</td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
<td>-101.517681</td>
<td>-2762.4365</td>
</tr>
<tr>
<td>3</td>
<td>2.0000</td>
<td>-101.517442</td>
<td>-2762.4300</td>
</tr>
<tr>
<td>4</td>
<td>2.0000</td>
<td>-19.814042</td>
<td>-539.1675</td>
</tr>
<tr>
<td>5</td>
<td>2.0000</td>
<td>-16.394212</td>
<td>-446.1092</td>
</tr>
<tr>
<td>6</td>
<td>2.0000</td>
<td>-16.394210</td>
<td>-446.1091</td>
</tr>
<tr>
<td>7</td>
<td>2.0000</td>
<td>-16.394203</td>
<td>-446.1089</td>
</tr>
<tr>
<td>8</td>
<td>2.0000</td>
<td>-9.281040</td>
<td>-252.5499</td>
</tr>
<tr>
<td>9</td>
<td>2.0000</td>
<td>-9.281011</td>
<td>-252.5491</td>
</tr>
<tr>
<td>10</td>
<td>2.0000</td>
<td>-9.280892</td>
<td>-252.5459</td>
</tr>
<tr>
<td>11</td>
<td>2.0000</td>
<td>-9.280892</td>
<td>-252.5459</td>
</tr>
<tr>
<td>12</td>
<td>2.0000</td>
<td>-7.834911</td>
<td>-191.4297</td>
</tr>
<tr>
<td>18</td>
<td>2.0000</td>
<td>-7.834911</td>
<td>-191.4297</td>
</tr>
</tbody>
</table>

And looking at the energy range or the orbital composition, we find that orbitals 1 through 4 are Cl 1s-orbitals. They all have the same energy since they are essentially non-interacting. Hence, we can localize them without invalidating the calculation. To this end, you can invoke the automatic localization for XAS which modifies the input to:

```
! BP86 ZORA ZORA-def2-TZVP(-f) SARC/J TightSCF
%maxcore 1024
%tddft
 XASLoc[0] = 1,4
 OrbWin[0] = 1,1,-1,-1
 NRroots 25
 DoQuad true
end
```
• This localizes the orbitals 1 through 4 of operator 0 (the closed-shell) and then allows excitations (arbitrarily) from core hole 1 only. You could choose any of the three other localized 1s orbitals instead without changing the result. You could even do all four core holes simultaneously (they produce identical spectra) in which case you have the entire ligand K-edge intensity and not just the one normalized to a single chlorine (this would be achieved with \texttt{OrbWin[0]} = 1,4,-1,-1).

• If you have a spin unrestricted calculation, you need to give the same \texttt{XASLoc} and \texttt{OrbWin} information for the spin-down orbitals as well.

Quite nice results have been obtained for a number of systems in this way. [138]

8.4.3 Excited State Geometry Optimization

For RPA, CIS, TDA and TD-DFT the program can calculate analytic gradients. With the help of the \texttt{IRoot} keyword, a given state can be selected for geometry optimization. Note however, that if two states cross during the optimization it may fail to converge or fail to converge to the desired excited state!

Note that this example converges to a saddle point as can be verified through a numerical frequency calculation (which is also possible with the methods mentioned above). The excited state relaxed density matrix is available from such gradient runs (\texttt{MyJob.cisp} when using the \texttt{KeepDens} keyword) and can be used for various types of analysis. Note that the frozen core option is available starting from version 2.8.0.
8.4.4 Doubles Correction

For CIS (and also for perturbatively corrected double-xhybrid functionals) the program can calculate a doubles correction to the singles-only excited states. The theory is due to Head-Gordon and co-workers.

%cis dcorr n  # n=1,2,3,4 are four different algorithms that
              # lead to (essentially) the same result but differ
              # in the way the rate-limiting steps are handled

NOTE:

- CIS(D) is often a quite big improvement over CIS.
- The cost of the (D) correction is $O(N^5)$ and therefore comparable to RI-MP2. Since there are quite a few things more to be done for (D) compared to RI-MP2, expect the calculations to take longer. In the most elementary implementation the cost is about two times the time for RI-MP2 for each root.
- The (D) correction is compatible with the philosophy of the double-hybrid density functionals and should be used if these functionals are combined with TD-DFT. The program takes this as the default but will not enforce it.
- In our implementation it is only implemented together with the RI approximation and therefore you need to supply an appropriate (“/C”) fitting basis.
- The program will automatically put the RI-MP2 module into operation together with the (D) correction. This will result in the necessary integrals becoming available to the CIS module.

8.4.5 Restricted Open-shell CIS

In addition to the CIS/TD-DFT description of excited states, ORCA features the orca_rocis module to perform configuration interaction with single excitations calculations using a restricted open-shell Hartree–Fock (ROHF) reference. It can be used to calculate excitation energies, absorption intensities and CD intensities. In general, ROCIS calculations work on restricted open-shell HF reference functions but in this implementation it is possible to enter the calculations with RHF (only for closed-shell molecules) or UHF reference functions as well. If the calculation starts with an UHF/UKS calculation, it will automatically produce the quasi-restricted orbitals which will then be used for the subsequent ROCIS calculations. Note that if the reference function is a RHF/RKS function the method produces the CIS results. The module is invoked by providing the number of roots sought in the %rocis block of the input file:

! SVP TightSCF

%rocis NRoots 2
MaxDim 5 #Davidson expansion space = MaxDim * NRoots
end
In this example the MaxDim parameter is given in addition to the number of roots to be calculated. It controls the maximum dimension of the expansion space in the Davidson procedure that is used to solve the CI problem.

The use of ROCIS is explained in greater detail in section 9.20.

8.5 SCF Stability Analysis

The SCF stability will give an indication whether the SCF solution is at a local minimum or a saddle point. [139, 140] It is available for RHF/RKS and UHF/UKS. In the latter case, the SCF is restarted by default using new unrestricted start orbitals if an instability was detected. For a demonstration, consider the following input:

```
! BLYP def2-SVP NORI

%scf
 guess hcore
 HFTyp UHF
 STABPerform true
end

* xyz 0 1
 h 0.0 0.0 0.0
 h 0.0 0.0 1.4
*
```

The HCORE guess leads to a symmetric/restricted guess, which does not yield the unrestricted solution. The same is often true for other guess options. For more details on the stability analysis, see section 9.7.

8.6 Excited States with EOM-CCSD

The methods described in the previous section are all based on the single excitation framework. For a more accurate treatment, double excitations should also be considered. The equation of motion (EOM)
CCSD method (and the closely related family of linear response CC methods) provides an accurate way of describing excited, ionized and electron attached states based on singles and doubles excitations within the coupled-cluster framework. In this chapter, the typical usage of the EOM-CCSD routine will be described, along with a short list of its present capabilities. A detailed description will be given in 9.21.

### 8.6.1 General Use

The simplest way to perform an EOM calculation is via the usage of the EOM-CCSD keyword, together with the specification of the desired number of roots:

```plaintext
! RHF EOM-CCSD cc-pVDZ TightSCF

%mdci
 nroots 9
end

*xyz 0 1
 C 0.016227 -0.000000 0.000000
 O 1.236847 0.000000 -0.000000
 H -0.576537 0.951580 -0.000000
 H -0.576537 -0.951580 -0.000000
*
```

The above input will call the EOM routine with default settings. The main output is a list of excitation energies, augmented with some further state specific data. For the above input, the following output is obtained:

```

| EOM-CCSD RESULTS (RHF) |

| IROOT= 1: | 0.147818 au | 4.022 eV | 32442.3 cm⁻¹ |
| Amplitude Excitation |
| 0.107929 4 -> 8 |
| 0.665498 7 -> 8 |
| 0.194696 7 -> 8 6 -> 8 |
| Ground state amplitude: 0.000000 |

| IROOT= 2: | 0.314137 au | 8.548 eV | 68945.2 cm⁻¹ |
| Amplitude Excitation |
| -0.671249 7 -> 9 |
| Ground state amplitude: 0.000000 |

| IROOT= 3: | 0.343838 au | 9.356 eV | 75463.7 cm⁻¹ |
| Amplitude Excitation |
| -0.670757 5 -> 8 |
| -0.112213 6 -> 8 5 -> 8 |
| Ground state amplitude: 0.000000 |

| IROOT= 4: | 0.364197 au | 9.910 eV | 79931.9 cm⁻¹ |
```
The IP and EA versions can be called using the keywords IP-EOM-CCSD and EA-EOM-CCSD respectively.

### 8.6.2 Capabilities

At present, the EOM routine is able to perform excited, ionized and electron attached state calculations, for closed-shell systems, using an RHF reference function. It can be used for serial and parallel calculations. A lower scaling version can be invoked by setting the CCSD2 keyword to true in the %mdci section. For the time being, the most useful information provided is the list of the excitation energies, the ionization potentials or the electron affinities. The ground to excited state transition moments are also available for EE-EOM-CCSD.

A UHF EE-EOM-CCSD code is also available for the calculation of excitation energies in open-shell systems. The usage is the same as the RHF implementation described above, once the RHF keyword has been replaced by UHF. The IP- and EA- variants are not yet available in the current release. Also, the UHF EE-EOM-CCSD implementation, in its current form, can only be used for serial calculations.
8.7 Excited States with STEOM-CCSD

The STEOM-CCSD method provides an efficient way to calculate excitation energies, with an accuracy comparable to the EOM-CCSD approach, at a nominal cost. A detailed description will be given in 9.22.

8.7.1 General Use

The simplest way to perform a STEOM calculation is via the usage of the STEOM-CCSD keyword, together with the specification of the desired number of roots:

```plaintext
! RHF STEOM-CCSD cc-pVDZ TightSCF

%mdci

 nroots 9
 Dodbfilter true

end

*xyz 0 1

C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000
*
```

The above input will call the STEOM routine with default settings. The main output is a list of excitation energies, augmented with some further state specific data. The STEOMCC approach in ORCA uses state-averaged CIS natural transition orbitals (NTO) for the selection of the active space. For the above input, the following output is obtained:

```

STEOM-CCSD RESULTS

IROOT= 1: 0.146552 au 3.988 eV 32164.5 cm**-1
 Amplitude Excitation
 0.196225 4 -> 8
 -0.979974 7 -> 8

 Amplitude Excitation in Canonical Basis
 -0.153212 4 -> 8
 0.977931 7 -> 8
 -0.121980 7 -> 13

IROOT= 2: 0.308608 au 8.398 eV 67731.7 cm**-1
 Amplitude Excitation
 -0.141414 4 -> 9
 0.988498 7 -> 9
```
### Amplitude Excitation in Canonical Basis

<table>
<thead>
<tr>
<th>IROOT</th>
<th>Energy (eV)</th>
<th>Wavenumber (cm⁻¹)</th>
<th>Amplitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9.170</td>
<td>73958.3</td>
<td>-0.989700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 -&gt; 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amplitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excitation</td>
</tr>
<tr>
<td>4</td>
<td>9.877</td>
<td>79663.6</td>
<td>0.983934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 -&gt; 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amplitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.177265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 -&gt; 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amplitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.586045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 -&gt; 8</td>
</tr>
<tr>
<td>5</td>
<td>10.942</td>
<td>88249.9</td>
<td>0.100684</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 -&gt; 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amplitude</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.165095</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 -&gt; 11</td>
</tr>
<tr>
<td>6</td>
<td>11.456</td>
<td>92399.1</td>
<td>0.121348</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 -&gt; 11</td>
</tr>
<tr>
<td>7</td>
<td>12.114</td>
<td>97705.3</td>
<td>0.105471</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 -&gt; 9</td>
</tr>
<tr>
<td>8</td>
<td>12.595</td>
<td>101584.3</td>
<td>0.975461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 -&gt; 8</td>
</tr>
</tbody>
</table>

### Notes
- STEOM-CCSD Amplitude Excitation results for excited states in the canonical basis.
- IROOT values indicate the root index.
- Energy and wavenumber values are provided for each state.
- Amplitudes are given for transitions between different states.
The first set of excitation amplitudes, printed for each root, have been calculated in the CIS NTO (Natural Transition Orbitals) basis. The second set of amplitudes have been evaluated in the RHF canonical basis.

### 8.7.2 Capabilities

At present, the STEOM routine is able to calculate excitation energies, for closed-shell systems, using an RHF reference function. It can be used for both serial and parallel calculations. A lower scaling version can be invoked by setting the CCSD2 keyword to true in the %mdci section. The transition moments can also be obtained.

### 8.8 Excited States with PNO based coupled cluster methods

The methods described in the previous section are performed over a canonical CCSD or MP2 ground state. The use of canonical CCSD amplitudes restricts the use of EOM-CC and STEOM-CC methods to small molecules. The use of MP2 amplitudes is possible (e.g. the EOM-CCSD(2) or STEOM-CCSD(2) approaches), but it seriously compromises the accuracy of the method.

The bt-PNO-EOM-CCSD methods gives an economical compromise between accuracy and computational cost by replacing the most expensive ground state CCSD calculation with a DLPNO based CCSD calculation. The typical deviation of the results from the canonical EOM-CCSD results is around 0.01 eV. A detailed description will be given in 9.23.

### 8.8.1 General Use

The simplest way to perform a PNO based EOM calculation is via the usage of the bt-PNO-EOM-CCSD keyword, together with the specification of the desired number of roots. The specification of an auxiliary basis set is also required, just as for ground state DLPNO-CCSD calculations.
Excited States with PNO based coupled cluster methods

```
! RHF bt-PNO-EOM-CCSD def2-TZVP def2-TZVP/C def2/J TightSCF

!mdci
 nroots 9
end

*xyz 0 1
 C 0.016227 -0.000000 0.000000
 O 1.236847 0.000000 -0.000000
 H -0.576537 0.951580 -0.000000
 H -0.576537 -0.951580 -0.000000
*
```

The output is similar to that from a canonical EOM-CCSD calculation:

```

EOM-CCSD RESULTS (RHS)

IROOT= 1: 0.145339 au 3.955 eV 31898.3 cm**-1
Amplitude Excitation
-0.402736 2 -> 8
-0.101455 2 -> 13
 0.402595 3 -> 8
 0.101420 3 -> 13
 0.231140 6 -> 8
-0.231142 7 -> 8
Ground state amplitude: 0.000000
IROOT= 2: 0.311159 au 8.467 eV 68291.5 cm**-1
Amplitude Excitation
-0.382967 2 -> 9
 0.382816 3 -> 9
 0.257265 6 -> 9
-0.257276 7 -> 9
Ground state amplitude: 0.000000
IROOT= 3: 0.337350 au 9.180 eV 74039.8 cm**-1
Amplitude Excitation
 0.342418 2 -> 8
 0.342586 3 -> 8
-0.257991 4 -> 8
 0.257936 5 -> 8
 0.172202 6 -> 8
 0.172230 7 -> 8
Ground state amplitude: 0.000010
IROOT= 4: 0.348181 au 9.474 eV 76416.9 cm**-1
Amplitude Excitation
 0.393166 2 -> 11
-0.393020 3 -> 11
-0.246227 6 -> 11
 0.246232 7 -> 11
Ground state amplitude: 0.000010
IROOT= 5: 0.354611 au 9.649 eV 77828.2 cm**-1
```
<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.226219</td>
<td>2 -&gt; 10</td>
</tr>
<tr>
<td>-0.226139</td>
<td>3 -&gt; 10</td>
</tr>
<tr>
<td>-0.385817</td>
<td>4 -&gt; 8</td>
</tr>
<tr>
<td>-0.385755</td>
<td>5 -&gt; 8</td>
</tr>
<tr>
<td>-0.100298</td>
<td>6 -&gt; 10</td>
</tr>
<tr>
<td>0.100300</td>
<td>7 -&gt; 10</td>
</tr>
</tbody>
</table>

Ground state amplitude: 0.032619

IROOT= 6: 0.379574 au 10.329 eV 83307.0 cm⁻¹

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.214487</td>
<td>2 -&gt; 8</td>
</tr>
<tr>
<td>-0.214423</td>
<td>3 -&gt; 8</td>
</tr>
<tr>
<td>0.402942</td>
<td>6 -&gt; 8</td>
</tr>
<tr>
<td>-0.402947</td>
<td>7 -&gt; 8</td>
</tr>
</tbody>
</table>

Ground state amplitude: -0.000001

IROOT= 7: 0.386805 au 10.525 eV 84893.8 cm⁻¹

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.337735</td>
<td>2 -&gt; 10</td>
</tr>
<tr>
<td>-0.113836</td>
<td>2 -&gt; 14</td>
</tr>
<tr>
<td>0.337611</td>
<td>3 -&gt; 10</td>
</tr>
<tr>
<td>0.113798</td>
<td>3 -&gt; 14</td>
</tr>
<tr>
<td>-0.182472</td>
<td>4 -&gt; 8</td>
</tr>
<tr>
<td>-0.182457</td>
<td>5 -&gt; 8</td>
</tr>
<tr>
<td>0.239131</td>
<td>6 -&gt; 10</td>
</tr>
<tr>
<td>-0.239136</td>
<td>7 -&gt; 10</td>
</tr>
</tbody>
</table>

Ground state amplitude: 0.038944

IROOT= 8: 0.440569 au 11.989 eV 96693.8 cm⁻¹

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.463727</td>
<td>4 -&gt; 9</td>
</tr>
<tr>
<td>-0.463700</td>
<td>5 -&gt; 9</td>
</tr>
</tbody>
</table>

Ground state amplitude: -0.000004

IROOT= 9: 0.447197 au 12.169 eV 98148.3 cm⁻¹

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.107379</td>
<td>2 -&gt; 8</td>
</tr>
<tr>
<td>0.385138</td>
<td>2 -&gt; 13</td>
</tr>
<tr>
<td>0.107343</td>
<td>3 -&gt; 8</td>
</tr>
<tr>
<td>-0.385819</td>
<td>3 -&gt; 13</td>
</tr>
<tr>
<td>-0.254544</td>
<td>6 -&gt; 13</td>
</tr>
<tr>
<td>0.254548</td>
<td>7 -&gt; 13</td>
</tr>
</tbody>
</table>

Ground state amplitude: 0.000000

The IP and EA versions can be called by using the keywords bt-PNO-IP-EOM-CCSD and bt-PNO-EA-EOM-CCSD, respectively. Furthermore, the STEOM version can be invoked by using the keywords bt-PNO-STEOM-CCSD

### 8.8.2 Capabilities

All of the features of canonical EOM-CC and STEOM-CC are available in the PNO based approaches.
8.9 Multireference Configuration Interaction and Perturbation Theory

8.9.1 Introductory Remarks

ORCA contains a multireference correlation module designed for traditional (uncontracted) approaches (configuration interaction, MR-CI, and perturbation theory, MR-PT). For clarification, these approaches have in common that they consider excitations from each and every configuration state function (CSF) of the reference wavefunction. Hence, the computational cost of such approaches grows rapidly with the size of the reference space (e.g. CAS-CI). Internally contracted on the other hand define excitations with respect to the entire reference wavefunction and hence do not share the same bottlenecks. ORCA also features internally contracted approaches (perturbation theory, NEVPT2 and configuration interaction, FIC-MRCI), which are described elsewhere in the manual. The following chapter focuses on the traditional multi-reference approaches as part of the orca_mrci module.

Although there has been quite a bit of experience with it, this part of the program is still somewhat hard to use and requires patience and careful testing before the results should be accepted. While we try to make your life as easy as possible, you have to be aware that ultimately any meaningful multireference ab initio calculation requires more insight and planning from the user side than standard SCF or DFT calculation or single reference correlation approaches like MP2 – so don’t be fainthearted! You should also be aware that with multireference methods it is very easy to let a large computer run for a long time and still to not produce a meaningful result – your insight is a key ingredient to a successful application! Below a few examples illustrate some basic uses of the orca_mrci module.

RI-approximation

First of all, it is important to understand that the default mode of the MR-CI module in its present implementation performs a full integral transformation from the AO to the MO basis. This becomes very laborious and extremely memory intensive beyond approximately 200 MOs that are included in the CI. Alternatively, one can construct molecular electron-electron repulsion integrals from the resolution of the identity (RI) approximation. Thus a meaningful auxiliary basis set must be provided if this option is chosen. We recommend the fitting bases developed by the TurboMole developers for MP2 calculations. These give accurate transition energies; however, the error in the total energies is somewhat higher and may be on the order of 1 mEh or so. Check IntMode to change the default mode for the integral transformation. Note that in either way, the individually selecting MRCI module requires to have all integrals in memory which sets a limit on the size of the molecule that can be studied.

Individual Selection

Secondly, it is important to understand that the MR-CI module is of the individually selecting type. Thus, only those excited configuration state functions (CSFs) which interact more strongly than a given threshold ($T_{sel}$) with the $0^{th}$ order approximations to the target states will be included in the variational procedure. The effect of the rejected CSFs is estimated using second order perturbation theory. The $0^{th}$ order approximations to the target states are obtained from the diagonalization of the reference space configurations. A further approximation is to reduce the size of this reference space through another selection – all initial references
which contribute less than a second threshold ($T_{\text{pre}}$) to the 0\textsuperscript{th} order states are rejected from the reference space.

**Single excitations**

One important aspect concerns the single excitations. If the reference orbitals come from a CASSCF calculation the matrix elements between the reference state and the single excitations vanishes and the singles will not be selected. However, they contribute to fourth and higher orders in perturbation theory and may be important for obtaining smooth potential energy surfaces and accurate molecular properties. Hence, the default mode of the MRCI module requires to include all of the single excitations via the flag `AllSingles =true`. This may lead to lengthy computations if the reference spaces becomes large!

**Reference Spaces**

Third, the reference spaces in the MR-CI module can be of the complete active space (CAS(n-electrons,m-orbitals)) or restricted active space (RAS, explained later) type. It is important to understand that the program uses the orbitals around the HOMO-LUMO gap as provided by the user to build up the reference space! Thus, if the orbitals that you want to put in the active space are not coming “naturally” from your SCF calculation in the right place you have to reorder them using the “moread” and “rotate” features together with the `NoIter` directive. To select the most meaningful and economic reference space is the most important step in a multireference calculation. It *always* requires insight from the user side and also care and, perhaps, a little trial and error.

**Size Consistency**

Fourth, it is important to understand that CI type methods are *not* size consistent. Practically speaking the energy of the supermolecule A-B with noninteracting A and B fragments is not equal to the energies of isolated A and isolated B. There are approximate ways to account for this (ACPF, AQCC and CEPA methods) but the effect will be present in the energies, the more so the more electrons are included in the treatment. The same is *not* true for the perturbation theory based methods which are size consistent as long as the reference wavefunction is.

**Performance**

There are many flags that control the performance of the MR-CI program. Please refer to chapter 0 for a description of possible flags, thresholds and cut-offs. The most important thresholds are $T_{\text{sel}}$ and $T_{\text{pre}}$, and for SORCI also $T_{\text{nat}}$.

For some methods, like ACPF, it is possible to compare the performance of the MRCI module with the performance of the MDCI module. The MDCI module has been written to provide optimum performance if no approximations are introduced. The MRCI module has been written more with the idea of flexibility rather than the idea of performance. Let us compare the performance of the two programs in a slightly nontrivial calculation – the zwitter-ionic form of serine. We compare the selecting MRCI approach with the
approximation free MDCI module. The molecular size is such that still all four index integrals can be stored in memory.

Table 8.11: Comparison of the performance of the MRCI and MDCI modules for a single reference calculation with the bn-ANO-DZP basis set on the zwitter-ionic form of serine (14 atoms, 133 basis functions).

<table>
<thead>
<tr>
<th>Module</th>
<th>Method</th>
<th>$T_{sel}$(Eh)</th>
<th>Time (sec)</th>
<th>Energy (Eh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRCI</td>
<td>ACPF</td>
<td>$10^{-6}$</td>
<td>3277</td>
<td>-397.943250</td>
</tr>
<tr>
<td>MDCI</td>
<td>ACPF</td>
<td>0</td>
<td>1530</td>
<td>-397.946429</td>
</tr>
<tr>
<td>MDCI</td>
<td>CCSD</td>
<td>0</td>
<td>2995</td>
<td>-397.934824</td>
</tr>
<tr>
<td>MDCI</td>
<td>CCSD(T)</td>
<td>0</td>
<td>5146</td>
<td>-397.974239</td>
</tr>
</tbody>
</table>

The selecting ACPF calculation selects about 15% of the possible double excitations and solves a secular problem of size $\approx 360,000$ CSFs. The MDCI module ACPF calculation optimizes approximately 2.5 million wavefunction amplitudes — and this is not a large molecule or a large basis set! Despite the fact that the MDCI module makes no approximation, it runs twice as fast as the selected MRCI module and an estimated 50 times faster than the unselected MRCI module! This will become even more pronounced for the larger and more accurate basis sets that one should use in such calculations anyways. The error of the selection is on the order of 3 mEh or 2 kcal/mol in the total energy. One can hope that at least part of this error cancels upon taking energy differences. The more rigorous CCSD calculation takes about a factor of two longer than the ACPF calculation which seems reasonable. The triples add another factor of roughly 2 in this example but this will increase for larger calculations since it has a steeper scaling with the system size. The ACPF energy is intermediate between CCSD and CCSD(T) which is typical — ACPF overshoots the effects of disconnected quadruples which partially compensates for the neglect of triples.

These timings will strongly depend on the system that you run the calculation on. Nevertheless, what you should take from this example are the message that if you can use the MDCI module, do it.

The MDCI module can avoid a full integral transformation for larger systems while the MRCI module can use selection and the RI approximation for larger systems. Both types of calculation will become very expensive very quickly! Approximate MDCI calculations are under development.

**Symmetry**

The MRCI program really takes advantage of symmetry adapted orbitals. In this case the MRCI matrix can be blocked according to irreducible representations and be diagonalized irrep by irrep. This is a big computational advantage and allows one to converge on specific excited states much more readily than if symmetry is not taken into account.

The syntax is relatively easy. If you specify:
Then the "*" indicates that this is to be repeated in each irrep of the point group. Thus, in \(C_{2v}\) the program would calculate 8 singlet roots in each of the four irreps of the \(C_{2v}\) point group thus leading to a total of 32 states.

Alternatively, you can calculate just a few roots in the desired irreps:

```plaintext
newblock 1 0
 nroots 3
 refs cas(4,4) end
end
newblock 1 2
 nroots 5
 refs cas(4,4) end
end
newblock 3 1
 nroots 1
 refs cas(4,4) end
end
```

In this example, we would calculate 3 singlet roots in the irrep "0" (which is \(A_1\)), then five roots in irrep "2" (which is \(B_1\)) and then 1 triplet root in irrep 1 (which is \(B_2\)).

Obviously, the results with and without symmetry will differ slightly. This is due to the fact that without symmetry the reference space will contain references that belong to "wrong" symmetry but will carry with them excited configurations of "right" symmetry. Hence, the calculation without use of symmetry will have more selected CSFs and hence a slightly lower energy. This appears to be unavoidable. However, the effects should not be very large for well designed reference spaces since the additional CSFs do not belong to the first order interacting space.

### 8.9.2 A Tutorial Type Example of a MR Calculation

Perhaps, the most important use of the MR-CI module is for the calculation of transition energies and optical spectra. Let us first calculate the first excited singlet and triplet state of the formaldehyde molecule using the MR-CI method together with the Davidson correction to approximately account for the effect of unlinked quadruple substitutions. We deliberately choose a somewhat small basis set for this calculation which is already reasonable since we only look at a valence excited state and want to demonstrate the principle.

Suppose that we already know from a ground state calculation that the HOMO of \(H_2CO\) is an oxygen lone pair orbitals and the LUMO the \(\pi^*\) MO. Thus, we want to calculate the singlet and triplet \(n \rightarrow \pi^*\) transitions
and nothing else. Consequently, we only need to correlate two electrons in two orbitals suggesting a CAS(2,2) reference space.

```
A simple MRCI example
! def2-SVP def2-SVP/C UseSym

%method frozencore fc_ewin
end

%mrci ewin -3,1000
 CIType MRCI
 EUUnSelOpt FullMP2
 DavidsonOpt Davidson1
 UseIVOs true
 tsel 1e-6
 tpre 1e-2
 MaxMemInt 256
 MaxMemVec 32
 IntMode FullTrafo
 AllSingles true
 Solver Diag
 # ground state 1A1
 NewBlock 1 0
 NRoots 1
 Excitations cisd
 Refs CAS(2,2) end
 End

 # HOMO LUMO transition 1A2
 NewBlock 1 1
 NRoots 1
 Excitations cisd
 Refs CAS(2,2) end
 End

 # HOMO LUMO triplet transition 3A2
 NewBlock 3 1
 NRoots 1
 Excitations cisd
 Refs CAS(2,2) end
 end

* int 0 1
 C 0 0 0 0.000000 0.000 0.000
 O 1 0 0 1.200371 0.000 0.000
 H 1 2 0 1.107372 121.941 0.000
 H 1 2 3 1.107372 121.941 180.000
*
```
This input – which is much more than what is really required - needs some explanations: First of all, we choose a standard RHF calculation with the SVP basis set and we assign the SV/C fitting basis although it is not used in the SCF procedure at all. In the `%mrci` block all details of the MR-CI procedure are specified. First, `EWin (%method frozencore fc_ein)` selects the MOs within the given orbital energy range to be included in the correlation treatment. The `CIType` variable selects the type of multireference treatment. Numerous choices are possible and MRCI is just the one selected for this application.

- **NOTE:** The `CIType` statement selects several default values for other variables. So it is a very good idea to place this statement at the beginning of the MR-CI block and possibly overwrite the program selected defaults later. If you place the `CIType` statement after one of the values which it selects by default your input will simply be overwritten!

The variables `EUnselOpt` and `DavidsonOpt` control the corrections to the MR-CI energies. `EUnselOpt` specifies the way in which the MR-CI energies are extrapolated to zero threshold $T_{\text{Sel}}$. Here we choose a full MR-MP2 calculation of the missing contributions to be done after the variational step, i.e. using the relaxed part of the reference wavefunction as a $0^\text{th}$ order state for MR-PT. The `DavidsonOpt` controls the type of estimate made for the effect of higher substitutions. Again, multiple choices are possible but the most commonly used one (despite some real shortcomings) is certainly the choice `Davidson1`. The flag `UseIVOs` instructs the program to use “improved virtual orbitals”. These are virtual orbitals obtained from a diagonalization of the Fock operator from which one electron has been removed in an averaged way from the valence orbitals. Thus, these orbitals “see” only a $N-1$ electron potential (as required) and are not as diffuse as the standard virtual orbitals from Hartree-Fock calculations. If you input DFT orbitals in the MR-CI moldule (which is perfectly admissible and also recommened in some cases, for example for transition metal complexes) then it is recommended to turn that flag off since the DFT orbitals are already o.k. in this respect. The two thresholds $T_{\text{sel}}$ and $T_{\text{pre}}$ are already explained above and represent the selection criteria for the first order interacting space and the reference space respectively. $T_{\text{sel}}$ is given in units of Eh and refers to the second order MR-MP2 energy contribution from a given excited CSF. $10^{-6}$ Eh is a pretty good value. Reliable results for transition energies start with $\approx 10^{-5}$; however, the total energy is converging pretty slowly with this parameter and this is one of the greatest drawbacks of individually selecting CI procedures! (see below). $T_{\text{pre}}$ is dimensionless and refers to the weight of a given initial reference after diagonalization of the the given initial reference space ($10^{-4}$ is a pretty good value and there is little need to go much lower. Aggressive values such as $10^{-2}$ only select the truly leading configurations for a given target state which can be time saving. Intermediate values are not really recommended). The parameters `MaxMemInt` and `MaxMemVec` tell the program how much memory (in MB) it is allowed to allocate for integrals and for trial and sigma-vectors respectively.

The flag `IntMode` tells the program to perform a full integral transformation. This is possible for small cases with less than, say, 100–200 MOs. In this case that it is possible it speeds up the calculations considerably. For larger molecules you have to set this flag to `RITrafo` which means that integrals are recomputed on the fly using the RI approximation which is more expensive but the only way to do the calculation. To switch between the possible modes use:

```
%mrci IntMode FullTrafo # exact 4 index transformation
RITrafo # use auxiliary basis sets
```
For small molecules or if high accuracy in the total energies is required it is much better to use the exact four index transformation. The limitations are that you will run out of disk space or main memory with more than ca. 200–300 MOs.

The variable Solver can be diag (for Davidson type diagonalization) or DIIS for multirrot DIIS type treatments.

```
%mrcri Solver Diag # Davidson solver
 DIIS # Multiroot DIIS
```

For CI methods, the diag solver is usually preferable. For methods like ACPF that contain nonlinear terms, DIIS is imperative.

Next in the input comes the definition of what CI matrices are to be constructed and diagonalized. Each multiplicity defines a block of the CI matrix which is separately specified. Here we ask for two blocks – singlet and triplet. The general syntax is:

```
NewBlock Multiplicity Irrep
 NRoots 1 # Number of roots to determine
 Excitations cisd # Type of excitations
 Refs CAS(NEl,NOrb) end # Reference space def.
 end # Finalize the block
```

Now that all input is understood let us look at the outcome of this calculation:

The first thing that happens after the SCF calculation is the preparation of the frozen core Fock matrix and the improved virtual orbitals by the program orca.ciprep. From the output the energies of the IVOs can be seen. In this case the LUMO comes down to \(-8.2\) eV which is much more reasonable than the SCF value of \(+3\ldots\) eV. Concomitantly, the shape of this MO will be much more realistic and this important since this orbital is in the reference space!
First MO ... 2
Last MO ... 7
Number of electrons in the range ... 12
Scaling factor ... 0.917

done
Forming internal density ... done
Forming Fock matrix/matrices ...
Nuclear repulsion ... 31.371502
Core repulsion ... 31.371502
One-electron energy ... -114.942082
Fock-energy ... -94.993430
Final value ... -73.596255
done
Modifying virtual orbitals ...
Last occupied MO ... 7
Total number of MOs ... 38
Number of virtual MOs ... 30
Doing diagonalization with symmetry

The improved virtual eigenvalues:
0: -0.2955 au -8.041 eV 2- B1
1: -0.0701 au -1.908 eV 6- A1
2: -0.0176 au -0.480 eV 3- B2
3: 0.0064 au 0.175 eV 7- A1
4: 0.2922 au 7.951 eV 8- A1
5: 0.2948 au 8.021 eV 3- B1
6: 0.3836 au 10.439 eV 4- B2
7: 0.4333 au 11.790 eV 9- A1
8: 0.4824 au 13.128 eV 5- B2
9: 0.5027 au 13.680 eV 10- A1
10: 0.7219 au 19.643 eV 11- A1
11: 0.8351 au 22.724 eV 4- B1
12: 0.9372 au 25.501 eV 6- B2
13: 1.0265 au 27.932 eV 1- A2
14: 1.1141 au 30.317 eV 12- A1
15: 1.2869 au 35.017 eV 5- B1
16: 1.4605 au 39.743 eV 7- B2
...

done
Transforming integrals ... done
Storing passive energy ... done ( -73.59625452 Eh)
Transforming internal FI ... done

.... done with the Frozen Core Fock matrices

The next step is to transform the electron-electron repulsion integrals into the MO basis:

-------------
PARTIAL COULOMB TRANSFORMATION
-------------

Dimension of the basis ... 38
Number of internal MOs ... 36 (2-37)
Pair cutoff ... 1.000e-11 Eh
Number of AO pairs included in the trafo ... 741
Total Number of distinct AO pairs ... 741
Memory devoted for trafo ... 256.0 MB
Max. Number of MO pairs treated together ... 45282
Max. Number of MOs treated per batch ... 36
Number Format for Storage ... Double (8 Byte)
Integral package used ... LIBINT

--->> The Coulomb operators \((i,j|mue,nue)\) will be calculated

Starting integral evaluation:

<table>
<thead>
<tr>
<th>Integral</th>
<th>Size (b)</th>
<th>Skipped (b)</th>
<th>Time (s)</th>
<th>Time (ms/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ssi**&gt;</td>
<td>9404</td>
<td>1</td>
<td>0.023</td>
<td>0.002</td>
</tr>
<tr>
<td>&lt;spi**&gt;</td>
<td>10260</td>
<td>0</td>
<td>0.030</td>
<td>0.003</td>
</tr>
<tr>
<td>&lt;sdi**&gt;</td>
<td>3420</td>
<td>0</td>
<td>0.016</td>
<td>0.005</td>
</tr>
<tr>
<td>&lt;ppi**&gt;</td>
<td>3591</td>
<td>0</td>
<td>0.026</td>
<td>0.007</td>
</tr>
<tr>
<td>&lt;pdi**&gt;</td>
<td>2052</td>
<td>0</td>
<td>0.025</td>
<td>0.012</td>
</tr>
<tr>
<td>&lt;ddi**&gt;</td>
<td>513</td>
<td>0</td>
<td>0.009</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Collecting buffer AOJ
... done with AO integral generation
Closing buffer AOJ (0.00 GB; CompressionRatio=4.22)
Number of MO pairs included in the trafo ... 666
... Now sorting integrals
IBATCH = 1 of 2
IBATCH = 2 of 2
Closing buffer JAO (0.00 GB; CompressionRatio=5.20)
TOTAL TIME for half transformation ... 0.324 sec
AO-integral generation ... 0.118 sec
Half transformation ... 0.059 sec
J-integral sorting ... 0.146 sec
Collecting buffer JAO

-----------
FULL TRANSFORMATION
-----------
Processing MO 10
Processing MO 20
Processing MO 30
full transformation done
Number of integrals made ... 222111
Number of integrals stored ... 59970
Timings:
Time for first half transformation ... 0.326 sec
Time for second half transformation ... 0.160 sec
Total time ... 0.516 sec

This will result in a few additional disk files required by orca.mrci. The program then tells you which multiplicities will be treated in this MRCI run:

-----------
CI-BLOCK STRUCTURE
-----------

Number of CI-blocks ... 3
Now that all the setup tasks have been accomplished the MRCI calculation itself begins.
In the first step, the reference space is diagonalized. From this CI, the most important configurations are selected with $T_{\text{pre}}$.
In this case, the CAS space only has 2 correctly symmetry adapted CSFs one of which (the closed-shell determinant) is selected. In general, larger CAS spaces usually carry around a lot of unnecessary CSFs which are not needed for anything and then the selection is important to reduce the computational effort. The result of the second reference space CI is printed:

---

**CI-RESULTS**
---

The threshold for printing is 0.3 percent
The weights of configurations will be printed. The weights are summed over all CSF’s that belong to a given configuration before printing

**STATE 0:** Energy = -113.77881002020 Eh RefWeight = 1.0000 0.00 eV 0.0 cm**−1

1.0000 : h---h---[20]p---p---

Energy is the total energy in Eh. In the present case we can compare to the SCF energy -113.778810021 Eh and find that the reference space CI energy is identical, as it has to be since the lowest state coincides with the reference space. RefWeight gives the weight of the reference configurations in a CI state. This is 1.0 in the present case since there were only reference configurations. The number 1.000 is the weight of the following configuration in the CI vector. The description of the configuration h---h---[20]p---p--- is understood as follows: The occupation of the active orbitals is explicitly given in square brackets. Since the HOMO orbitals is number 7 from the SCF procedure, this refers to MOs 7 and 8 in the present example since we have two active orbitals. The 2 means doubly occupied, the 0 means empty. Any number (instead of ---) appearing after an h gives the index of an internal orbital in which a hole is located. Similarly, any number after a p gives the index of an virtual (external) MO where a particle is located. Thus h---h---[20] is a closed shell configuration and it coincides with the SCF configuration—this was of course to be expected. The second root (in CI-Block 2) h---h---[11] by comparison refers to the configuration in which one electron has been promoted from the HOMO to the LUMO and is therefore the desired state that we wanted to calculate. Things are happy therefore and we can proceed to look at the output.

The next step is the generation of excited configurations and their selection based on Tsel:

---

**MR-PT SELECTION Tsel= 1.00e-06**
---

Setting reference configurations WITH use of symmetry
Building active patterns WITH use of symmetry

Note that for printing we always sum over all linearly independent spin couplings of a given spatial configuration and only print the summed up weight for the configuration rather than for each individual CSF of the configuration.
8.9 Multireference Configuration Interaction and Perturbation Theory

Selection will be done from 1 spatial configurations
Selection will make use of spatial symmetry

<table>
<thead>
<tr>
<th>Refs</th>
<th>Sel: 1CFGs/1CSFs</th>
<th>Gen: 1CFGs/1CSFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1CFGs</td>
<td>1CSFs</td>
</tr>
<tr>
<td>1</td>
<td>1CFGs</td>
<td>1CSFs</td>
</tr>
<tr>
<td>2</td>
<td>1CFGs</td>
<td>1CSFs</td>
</tr>
<tr>
<td>3</td>
<td>8CFGs</td>
<td>8CSFs</td>
</tr>
<tr>
<td>4</td>
<td>0CFGs</td>
<td>0CSFs</td>
</tr>
<tr>
<td>5</td>
<td>8CFGs</td>
<td>8CSFs</td>
</tr>
<tr>
<td>6</td>
<td>52CFGs</td>
<td>52CSFs</td>
</tr>
<tr>
<td>7</td>
<td>95CFGs</td>
<td>166CSFs</td>
</tr>
<tr>
<td>8</td>
<td>21CFGs</td>
<td>42CSFs</td>
</tr>
<tr>
<td>9</td>
<td>3CFGs</td>
<td>3CSFs</td>
</tr>
<tr>
<td>10</td>
<td>555CFGs</td>
<td>1082CSFs</td>
</tr>
<tr>
<td>11</td>
<td>124CFGs</td>
<td>124CSFs</td>
</tr>
<tr>
<td>12</td>
<td>1688CFGs</td>
<td>2685CSFs</td>
</tr>
</tbody>
</table>

Building active space densities ... done
Building active space Fock operators ... done

Building configuration densities ... done
Building configuration single excitations ... done
Building configuration double excitations ... done

Selection results:
Total number of generated configurations: 2814
Total number of generated CSFs: 4522
Number of selected configurations : 2557 (90.9%)
Number of selected CSFs: 4173 (92.3%)

The selected tree structure:
Number of selected Internal Portions : 11
Number of selected Singly External Portions: 27
average number of VMOs/Portion : 6.39
percentage of selected singly externals : 22.83
Number of selected Doubly External Portions: 21
average number of VMOs/Portion : 107.59
percentage of selected doubly externals : 27.76

Here, the program loops through classes of excitations. For each excitation it produces the excited configurations (CFGs) and from it the linearly independent spin functions (CSFs) which are possible within the configuration. It then calculates the interaction with the contracted 0th order roots and includes all CSFs belonging to a given CFG in the variational space if the largest second order perturbation energy is larger or equal to $T_{sel}$. In the present case $\approx$136,000 CSFs are produced of which 25% are selected. For larger molecules and basis sets it is not uncommon to produce $10^9$–$10^{10}$ configurations and then there is no choice but to select a much smaller fraction than 20%. For your enjoyment, the program also prints the total energies of each state after selection:

<table>
<thead>
<tr>
<th>State</th>
<th>$E_{(tot)}$</th>
<th>$E_0+E_1$</th>
<th>$E_{(sel)}$</th>
<th>$E_{(unsel)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eh</td>
<td>Eh</td>
<td>Eh</td>
<td>Eh</td>
</tr>
</tbody>
</table>
| 0     | -114.108347273 | -113.778810020 | -0.329439 | -0.996167

You can ignore this output if you want. In cases that the perturbation procedure is divergent (not that uncommon!) the total energies look strange—don’t worry—the following variational calculation is still OK. The second order perturbation energy is here divided into a selected part $E_{(sel)}$ and the part procedure by
the unselected configurations $E_2(\text{unsel})$. Depending on the mode of $E_{\text{UnselOpt}}$ this value may already be used later as an estimate of the energetic contribution of the unselected CSFs.\(^{12}\)

Now we have $\approx 4.200$ CSFs in the variational space of CI block 1 and proceed to diagonalize the Hamiltonian over these CSFs using a Davidson or DIIS type procedure:

```

DAVIDSON-DIAGONALIZATION

Dimension of the eigenvalue problem ... 4173
Number of roots to be determined ... 1
Maximum size of the expansion space ... 15
Convergence tolerance for the residual ... 1.000e-06
Convergence tolerance for the energies ... 1.000e-06
Orthogonality tolerance ... 1.000e-14
Level Shift ... 0.000e+00
Constructing the preconditioner ... o.k.
Building the initial guess ... o.k.
Number of trial vectors determined ... 2

****Iteration 0****
Size of expansion space: 2
Lowest Energy : -113.854262408162
Maximum Energy change : 113.854262408162 (vector 0)
Maximum residual norm : 1.004640962238

****Iteration 1****
Size of expansion space: 3
Lowest Energy : -114.076119460817
Maximum Energy change : 0.221857052655 (vector 0)
Maximum residual norm : 0.028974632398

****Iteration 2****
Size of expansion space: 4
Lowest Energy : -114.085249547769
Maximum Energy change : 0.009130086952 (vector 0)
Maximum residual norm : 0.001957827970

****Iteration 3****
Size of expansion space: 5
Lowest Energy : -114.086014164840
Maximum Energy change : 0.000764617071 (vector 0)
Maximum residual norm : 0.000167800384

****Iteration 4****
Size of expansion space: 6
Lowest Energy : -114.086071121272
Maximum Energy change : 0.00056956432 (vector 0)
Maximum residual norm : 0.000011388989
```

\(^{12}\)In this case the maximum overlap of the 0\(^{th}\) order states with the final CI vectors is computed and the perturbation energy is added to the “most similar root”. This is of course a rather crude approximation and a better choice is to recomputed the second order energy of the unselected configurations rigorously as is done with $E_{\text{UnselOpt}} = \text{FullMP2}$.\)
The procedure converges on all roots simultaneously and finishes after six iterations which is reasonable. Now the program calculates the Davidson correction (DavidsonOpt) which is printed for each root.

Already in this small example the correction is pretty large, ca. 27 mEh for the ground state (and \( \approx 36 \) mEh for the excited state, later in the output). Thus, a contribution of \( \approx 9 \) mEh = 0.25 eV is obtained for the transition energy which is certainly significant. Unfortunately, the correction becomes unreliable as the reference space weight drops or the number of correlated electrons becomes large. Here 0.912 and 0.888 are still OK and the system is small enough to expect good results from the Davidson correction.

The next step is to estimate the correction for the unselected configurations:

In the present case this is below 1 mEh and also very similar for all three states such that it is not important for the transition energy.
The final ground state energy is \(-114.113097002\) eV which is an estimate of the full CI energy in this basis set. The leading configuration is still the closed-shell configuration with a weight of \(\approx 91\%\). However, a double excitation outside the reference space contributes some 1\%. This is the excitation MO6,MO6 \(\rightarrow\) LUMO,LUMO. This indicates that more accurate results are expected once MO6 is also included in the reference space (this is the HOMO-1). The excited state is dominated by the HOMO-LUMO transition (as desired) but a few other single- and double- excitations also show up in the final CI vector.

Now that all CI vectors are known we can order the states according to increasing energy and print (vertical) transition energies:

This result is already pretty good and the transition energies are within \(\approx 0.1\) eV of their experimental gas phase values (\(\approx 3.50\) and \(\approx 4.00\) eV) and may be compared to the CIS values of 3.8 and 4.6 eV which are considerably in error.

In the next step the densities and transition densities are evaluated and the absorption and CD spectra are calculated (in the dipole length formalism) for the spin-allowed transitions together with state dipole moments:

---

**ABSORPTION SPECTRUM**

<table>
<thead>
<tr>
<th>States</th>
<th>Energy (cm(^{-1}))</th>
<th>Wavelength (nm)</th>
<th>fosc</th>
<th>T2 (D(^{**2}))</th>
<th>TX (D)</th>
<th>TY (D)</th>
<th>TZ (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(0)</td>
<td>32589.8</td>
<td>366.8</td>
<td>0.0000000000</td>
<td>0.000000</td>
<td>-0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
---

**CD SPECTRUM**
Here the transition is symmetry forbidden and therefore has no oscillator strength. The state dipole moment for the ground state is 2.33 Debye which is somewhat lower than 2.87 Debye from the SCF calculation. Thus, the effect of correlation is to reduce the polarity consistent with the interpretation that the ionicity of the bonds, which is always overestimated by HF theory, is reduced by the correlation. Finally, you also get a detailed population analysis for each generated state density which may be compared to the corresponding SCF analysis in the preceding part of the output.

This concludes the initial example on the use of the MR-CI module. The module leaves several files on disk most of which are not yet needed but in the future will allow more analysis and restart and the like. The .ivo file is a standard .gbw type file and the orbitals therein can be used for visualization. This is important in order to figure out the identity of the generated IVOs. Perhaps they are not the ones you wanted and then you need to re-run the MR-CI with the IVOs as input, NoIter and the IVO feature in the new run turned off! We could use the IVOs as input for a state averaged CASSCF calculation:

```plaintext
! moread UseSym KDIIS
%moinp "Test-SYM-MRCI-H2CO.ivo"
%casscf nel 2
 norb 2
 irrep 0,1,1
 mult 1,1,3
 nroots 1,1,1
end
```

If we based a MR-ACPF calculation on this reference space we will find that the calculated transition energies are slightly poorer than in the MRCI+Q calculation. This is typical of approximate cluster methods that usually require somewhat larger reference spaces for accurate results. A similar result is obtained with SORCI.
This gives:

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>1/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>A1</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>A2</td>
<td>0</td>
<td>2</td>
<td>146.507</td>
<td>3.987</td>
<td>32154.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A2</td>
<td>0</td>
<td>1</td>
<td>161.801</td>
<td>4.403</td>
<td>35511.3</td>
</tr>
</tbody>
</table>

This is systematically 0.4 eV too high. But let us look at the approximate average natural orbital (AANOs) occupation numbers:

---

**AVERAGE NATURAL ORBITALS**

---

Trace of the density to be diagonalized = 12.000000

Sum of eigenvalues = 12.000000

Natural Orbital Occupation Numbers:

N[ 2] ( A1)=  1.99832583
N[ 3] ( A1)=  1.99760289
N[ 4] ( A1)=  1.99481021
This shows that there is a low-occupancy orbital (MO6) that has not been part of the reference space. Thus, we try the same calculation again but now with one more active orbital and two more active electrons:

```plaintext
! moread
%moinp "Test-SYM-MRCI-H2CO.gbw"

%casscf nel 4
 norb 3
 irrep 0,1,1
 mult 1,1,3
 nroots 1,1,1
end

%mrci CIType SORCI
tsel 1e-6
tpre 1e-4
tnat 1e-5
AllSingles true
doNatOrbs true
IntMode FullTrafo
ground state 1A1
NewBlock 1 0
 NRoots 1
 Excitations cisd
 Refs CAS(4,3) end
End

HOMO LUMO transition 1A2
NewBlock 1 1
 NRoots 1
 Excitations cisd
 Refs CAS(4,3) end
End

HOMO LUMO triplet transition 3A2
NewBlock 3 1
 NRoots 1
 Excitations cisd
 Refs CAS(4,3) end
end
```
This gives:

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>eh</th>
<th>eV</th>
<th>l/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>A1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 3</td>
<td>A2</td>
<td>0</td>
<td>2</td>
<td>137.652</td>
<td>3.746</td>
<td>30211.1</td>
<td></td>
</tr>
<tr>
<td>2 1</td>
<td>A2</td>
<td>0</td>
<td>1</td>
<td>153.128</td>
<td>4.167</td>
<td>33607.7</td>
<td></td>
</tr>
</tbody>
</table>

Which is now fine since all essential physics has been in the reference space. Inspection of the occupation numbers show that there is no suspicious orbital any more. Note that this is still a much more compact calculation that the MRCI+Q.

Likewise, we get an accurate result from MRACPF with the extended reference space.

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>eh</th>
<th>eV</th>
<th>l/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>A1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 3</td>
<td>A2</td>
<td>0</td>
<td>2</td>
<td>134.985</td>
<td>3.673</td>
<td>29625.8</td>
<td></td>
</tr>
<tr>
<td>2 1</td>
<td>A2</td>
<td>0</td>
<td>1</td>
<td>148.330</td>
<td>4.036</td>
<td>32554.6</td>
<td></td>
</tr>
</tbody>
</table>

However, the SORCI calculation is much more compact. For larger molecules the difference becomes more and more pronounced and SORCI or even MRDDCI2 (with or without +Q) maybe the only feasible methods—if at all.

### 8.9.3 Excitation Energies between Different Multiplicities

As an example for a relatively accurate MRCI+Q calculation consider the following job which calculates the triplet- ground and as the first excited singlet states of O$_2$.
Note that the linear molecule is run in $D_{2h}$. This creates a slight problem as the CASSCF procedure necessarily breaks the symmetry of the $^1\Delta$ state.

The result of the MRCI+Q is:

\[\text{LOWEST ROOT (ROOT 0, MULT 3, IRREP B1g)} = -149.765383866 \text{ Eh} - 4075.323 \text{ eV}\]

<table>
<thead>
<tr>
<th>STATE</th>
<th>ROOT</th>
<th>MULT</th>
<th>IRREP</th>
<th>DE/a.u.</th>
<th>DE/eV</th>
<th>DE/cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>0</td>
<td>1</td>
<td>B1g</td>
<td>0.033334</td>
<td>0.907</td>
<td>7316.0</td>
</tr>
<tr>
<td>2:</td>
<td>0</td>
<td>1</td>
<td>Ag</td>
<td>0.033650</td>
<td>0.916</td>
<td>7385.3</td>
</tr>
<tr>
<td>3:</td>
<td>1</td>
<td>1</td>
<td>Ag</td>
<td>0.062381</td>
<td>1.697</td>
<td>13691.1</td>
</tr>
</tbody>
</table>

These excitation energies are accurate to within a few hundred wavenumbers. Note that the $\approx 200$ wavenumber splitting in the degenerate $^1\Delta$ state is due to the symmetry breaking of the CAS and the individual selection. Repeating the calculation with the MP2 natural orbitals gives an almost indistinguishable result and a ground state energy that is even lower than what was found with the CASSCF orbitals. Thus, such natural orbitals (that might often be easier to get) are a good substitute for CASSCF orbitals and at the same time the symmetry breaking due to the use of symmetry appears to be difficult to avoid.
TRANSITION ENERGIES

The lowest energy is -150.177743426 Eh

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>1/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>B1g</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>B1g</td>
<td>0</td>
<td>2</td>
<td>37.369</td>
<td>1.017</td>
<td>8201.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Ag</td>
<td>0</td>
<td>1</td>
<td>38.237</td>
<td>1.040</td>
<td>8392.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Ag</td>
<td>1</td>
<td>1</td>
<td>62.731</td>
<td>1.707</td>
<td>13767.9</td>
</tr>
</tbody>
</table>

8.9.4 Correlation Energies

The logic we are following here is the following: CID minus SCF gives the effect of the doubles; going to CISD gives the effect of the singles; QCISD(=CCD) minus CID gives the effect of the disconnected quadruples. QCISD minus QCID gives simultaneously the effect of the singles and the disconnected triples. They are a bit difficult to separate but if one looks at the singles alone and compares with singles + disconnected triples, a fair estimate is probably obtained. Finally, QCISD(T) minus QCISD gives the effect of the connected triples. One could of course also use CCSD instead of QCISD but I felt that the higher powers of T obscure the picture a little bit—but this is open to discussion of course.

First H₂O/TZVPP at its MP2/TZVPP equilibrium geometry (T_{pre} = 10^{-6} and T_{sel} = 10^{-9} Eh for the MRCI and MRACPF calculations):

<table>
<thead>
<tr>
<th>Excitation class</th>
<th>Energy (Eh)</th>
<th>Delta-Energy (mEh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (RHF)</td>
<td>-76.0624</td>
<td></td>
</tr>
<tr>
<td>Doubles (CID)</td>
<td>-76.3174</td>
<td>255</td>
</tr>
<tr>
<td>+Singles (CISD)</td>
<td>-76.3186</td>
<td>1</td>
</tr>
<tr>
<td>+Disconnected Quadruples (QCID)</td>
<td>-76.3282</td>
<td>11</td>
</tr>
<tr>
<td>+Disconnected Triples (QCISD)</td>
<td>-76.3298</td>
<td>2</td>
</tr>
<tr>
<td>+Connected Triples (QCISD(T))</td>
<td>-76.3372</td>
<td>7</td>
</tr>
<tr>
<td>CASSCF(8,6)</td>
<td>-76.1160</td>
<td></td>
</tr>
<tr>
<td>CASSCF(8,6) + MRCI</td>
<td>-76.3264</td>
<td>210</td>
</tr>
<tr>
<td>CASSCF(8,6) + MRCI+Q</td>
<td>-76.3359</td>
<td>10</td>
</tr>
<tr>
<td>CASSCF(8,6) + MRACPF</td>
<td>-76.3341</td>
<td>218</td>
</tr>
</tbody>
</table>

One observes quite good agreement between single- and multireference approaches. In particular, the contribution of the disconnected triples and singles is very small. The estimate for the disconnected quadruples is fairly good from either the multireference Davidson correction or the ACPF and the agreement between CCSD(T) and these MR methods is 2-3 mEh in the total energy which is roughly within chemical accuracy.

In order to also have an open-shell molecule let us look at NH with a N-H distance of 1.0 Å using the TZVPP basis set.

<table>
<thead>
<tr>
<th>Excitation class</th>
<th>Energy (Eh)</th>
<th>Delta-Energy (mEh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (RHF)</td>
<td>-76.0624</td>
<td></td>
</tr>
<tr>
<td>Doubles (CID)</td>
<td>-76.3174</td>
<td>255</td>
</tr>
<tr>
<td>+Singles (CISD)</td>
<td>-76.3186</td>
<td>1</td>
</tr>
<tr>
<td>+Disconnected Quadruples (QCID)</td>
<td>-76.3282</td>
<td>11</td>
</tr>
<tr>
<td>+Disconnected Triples (QCISD)</td>
<td>-76.3298</td>
<td>2</td>
</tr>
<tr>
<td>+Connected Triples (QCISD(T))</td>
<td>-76.3372</td>
<td>7</td>
</tr>
<tr>
<td>CASSCF(8,6)</td>
<td>-76.1160</td>
<td></td>
</tr>
<tr>
<td>CASSCF(8,6) + MRCI</td>
<td>-76.3264</td>
<td>210</td>
</tr>
<tr>
<td>CASSCF(8,6) + MRCI+Q</td>
<td>-76.3359</td>
<td>10</td>
</tr>
<tr>
<td>CASSCF(8,6) + MRACPF</td>
<td>-76.3341</td>
<td>218</td>
</tr>
</tbody>
</table>
Again, the agreement is fairly good and show that both single- and multiple reference approaches converge to the same limit.

### 8.9.5 Thresholds

Now we choose the CO molecule (1.128 Ångström) with the SVP basis set and study the convergence of the results with respect to the selection threshold. Comparison to high level single-reference approaches is feasible (The SCF energy is $-112.645\,946\,\text{Eh}$).

#### 8.9.5.1 Reference Values for Total Energies

The single-reference values are:

<table>
<thead>
<tr>
<th>Method</th>
<th>Energy</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD:</td>
<td>-112.938 48002</td>
<td></td>
</tr>
<tr>
<td>CCSD:</td>
<td>-112.939 79145</td>
<td></td>
</tr>
<tr>
<td>QCISD:</td>
<td>-112.941 95700</td>
<td></td>
</tr>
<tr>
<td>BD(T):</td>
<td>-112.950 17278</td>
<td></td>
</tr>
<tr>
<td>CCSD(T):</td>
<td>-112.950 63889</td>
<td></td>
</tr>
<tr>
<td>QCISD(T):</td>
<td>-112.951 37425</td>
<td></td>
</tr>
<tr>
<td>MP4(SDTQ):</td>
<td>-112.954 80113</td>
<td></td>
</tr>
</tbody>
</table>

The calculations without connected triples (BD, CCSD, QCISD) are about the best what can be achieved without explicitly considering triple excitations. The CCSD is probably the best in this class. As soon as connected triples are included the CCSD(T), QCISD(T) and BD(T) values are close and from experience they are also close to the full CI values which is then expected somewhere between $-112.950$ and $-112.952\,\text{Eh}$.  

<table>
<thead>
<tr>
<th>Method</th>
<th>Energy</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (UHF)</td>
<td>-54.9835</td>
<td></td>
</tr>
<tr>
<td>Doubles (CID)</td>
<td>-55.1333</td>
<td>150</td>
</tr>
<tr>
<td>+Singles (CISD)</td>
<td>-55.1344</td>
<td>1</td>
</tr>
<tr>
<td>+Disconnected Quadruples (QCID)</td>
<td>-55.1366</td>
<td>3</td>
</tr>
<tr>
<td>+Disconnected Triples (QCISD)</td>
<td>-55.1378</td>
<td>1</td>
</tr>
<tr>
<td>+Connected Triples (QCISD(T))</td>
<td><strong>-55.1414</strong></td>
<td>4</td>
</tr>
<tr>
<td>CASSCF(6,5)</td>
<td>-55.0004</td>
<td></td>
</tr>
<tr>
<td>CASSCF(6,5) + MRCI</td>
<td>-55.1373</td>
<td>137</td>
</tr>
<tr>
<td>CASSCF(6,5) + MRCI+Q</td>
<td><strong>-55.1429</strong></td>
<td>6</td>
</tr>
<tr>
<td>CASSCF(6,5) + MRACPF</td>
<td><strong>-55.1413</strong></td>
<td>141</td>
</tr>
</tbody>
</table>
8.9.5.2 Convergence of Single Reference Approaches with Respect to $T_{\text{sel}}$

Next it is studied how these single reference methods converge with $T_{\text{sel}}$:

<table>
<thead>
<tr>
<th>$T_{\text{sel}}$</th>
<th>Energy (Eh)</th>
<th>Energy (Eh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{sel}}=0$</td>
<td>-112.943 387 (5671)</td>
<td>-112.943 387 (5671)</td>
</tr>
<tr>
<td>$T_{\text{sel}}=1e^{-14}$</td>
<td>-112.943 387 (2543)</td>
<td>-112.941 023 (2453)</td>
</tr>
<tr>
<td>$T_{\text{sel}}=1e^{-10}$</td>
<td>-112.943 387 (2543)</td>
<td>-112.937 087 (2346)</td>
</tr>
<tr>
<td>$T_{\text{sel}}=1e^{-8}$</td>
<td>-112.943 350 (2283)</td>
<td>-112.937 046 (2178)</td>
</tr>
<tr>
<td>$T_{\text{sel}}=1e^{-6}$</td>
<td>-112.944 039 (782)</td>
<td>-112.938 381 (677)</td>
</tr>
</tbody>
</table>

It is clear that the convergence is erratic if the singles are not automatically included. This is the reason for making this the default from release 2.6.35 on. In the present case singles will only be selected due to round-off errors since by Brillouin’s theorem the singles have zero-interaction with the ground state determinant. Thus, for individually selecting single-reference methods it is a good idea to automatically include all single-excitations in order to get converged results. The alternative would be a different singles selection procedure which has not yet been developed however. The selection of doubles appear to converge the total energies reasonably well. It is seen that the selection selects most CSFs between $10^{-5}$ and $10^{-7}$ Eh. Already a threshold of $10^{-6}$ Eh yields an error of less than 0.1 mEh which is negligible in relation to reaction energies and the like. Even $10^{-5}$ Eh gives an error of less than 0.1 kcal/mol.

8.9.5.3 Convergence of Multireference Approaches with Respect to $T_{\text{pre}}$

We next turn to multireference treatments. Here we want to correlate all valence electrons in all valence orbitals and therefore a CAS(10,8) is the appropriate choice. We first ask for the converged value of $T_{\text{pre}}$ by using $T_{\text{sel}}=10^{-14}$ and obtain for MRCI+Q:

<table>
<thead>
<tr>
<th>$T_{\text{pre}}$</th>
<th>Energy (Eh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e^{-1}$</td>
<td>-112.943 964</td>
</tr>
<tr>
<td>$1e^{-2}$</td>
<td>-112.952 963</td>
</tr>
<tr>
<td>$1e^{-3}$</td>
<td>-112.953 786</td>
</tr>
<tr>
<td>$1e^{-4}$</td>
<td>-112.954 019</td>
</tr>
<tr>
<td>$1e^{-5}$</td>
<td>-112.954 336</td>
</tr>
<tr>
<td>$1e^{-6}$</td>
<td>-112.954 416</td>
</tr>
<tr>
<td>$1e^{-7}$</td>
<td>-112.954 440</td>
</tr>
</tbody>
</table>

Thus, pretty good convergence is obtained for $T_{\text{pre}} = 10^{-4} - 10^{-6}$. Hence $10^{-4}$ is the default.

To show a convenient input consider the following:
# Here we calculate the CO ground state correlation energy with several methods
# ! RHF aug-SVP aug-SV/C RI-MP2 CCSD(T)
%base "1"

%mp2 density relaxed
donatorbs true
end

* int 0 1
C 0 0 0 0.000000 0.000 0.000
O 1 0 0 1.128 0.000 0.000
*

$new_job

! RHF aug-SVP MRACPF
! moread
%moinp "1.mp2nat"
# the CASSCF is done with MP2 natural orbitals which is a good idea and
# secondly we use a large level shift in order to help convergence
%casscf nel 10
  norb  8
  mult  1
  nroots 1
  shiftup 2
  shiftdn 2
end

%mrci tsel 1e-8
tpre 1e-6
end

* int 0 1
C 0 0 0 0.000 0.000 0.000
O 1 0 0 1.128 0.000 0.000
*

This job computes at the same time all of the below and demonstrates once more the agreement between
consequent single- and multireference correlation methods

SCF = -112.6523
8.9.6 Energy Differences - Bond Breaking

For the calculation of energy differences we start again with the reference CCSD(T) calculation; this method is one of the few which can claim chemical accuracy in practical applications:

Reference Total Energies for N2 at 1.0977 Ångström with
The SVP basis
E(CCSD) = -109.163 497
E(CCSD(T))= -109.175 625
Nitrogen Atom (4S), SVP basis, unrestricted
E(CCSD) = -54.421 004
E(CCSD(T))= -54.421 7183
Energy Difference:
Delta-E(CCSD) = -0.321 489 = 8.75 eV
Delta-E(CCSD(T))= -0.332 188 = 9.04 eV

The basis set is of course not suitable for quantitative comparison to experimental values. However, this is not the point here in these calculations which are illustrative in nature. The SVP basis is just good enough to allow for a method assessment without leading to excessively expensive calculations.

This is now to be compared with the corresponding energy differences computed with some single-reference approaches. A typical input is (this is a somewhat old-fashioned example – in the present program version you would do a full valence CASSCF(10,8) or CASSCF(6,6) and invoke the MR-methods with a single keyword):

! RHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop

%base "1"

* xyz 0 1
N 0 0 0
N 0 0 1.0977
*
%method
  frozencore fc_ewin
end
%mrci

EWin -3,1000
CIType MRACPF2a
Solver DIIS
IntMode FullTrafo
UseIVOs true
AllSingles true
TSel 1e-14
TPre 1e-05
TNat 0.0
ETol 1e-10
RTol 1e-10
NewBlock 1 *

NRoots 1
Excitations CISD
refs CAS(0,0) end
dend
dend

case $new_job
!
ROHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop PModel

%base "2"

* xyz 0 4
N 0 0 0
*

%method
frozencore fc_ewin
dend

%mrcl

EWin -3,1000
CIType MRACPF2a
IntMode FullTrafo
UseIVOs true
AllSingles true
TSel 1e-14
TPre 1e-05
TNat 0.0
ETol 1e-10
RTol 1e-10
NewBlock 4 *
The results are:

**Single reference approaches:**

<table>
<thead>
<tr>
<th>Method</th>
<th>N2-Molecule</th>
<th>N-Atom</th>
<th>Delta-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISD+Q      : -109.167 904</td>
<td>-54.422 769</td>
<td>8.77 eV</td>
<td></td>
</tr>
<tr>
<td>ACPF        : -109.166 926</td>
<td>-54.421 783</td>
<td>8.80 eV</td>
<td></td>
</tr>
<tr>
<td>ACPF2       : -109.166 751</td>
<td>-54.421 333</td>
<td>8.82 eV</td>
<td></td>
</tr>
<tr>
<td>ACPF2a      : -109.166 730</td>
<td>-54.421 186</td>
<td>8.83 eV</td>
<td></td>
</tr>
<tr>
<td>CEPA1       : -109.159 721</td>
<td>-54.422 564</td>
<td>8.56 eV</td>
<td></td>
</tr>
<tr>
<td>CEPA2       : -109.172 888</td>
<td>-54.422 732</td>
<td>8.91 eV</td>
<td></td>
</tr>
<tr>
<td>CEPA3       : -109.161 034</td>
<td>-54.422 589</td>
<td>8.59 eV</td>
<td></td>
</tr>
<tr>
<td>AQCC        : -109.160 574</td>
<td>-54.420 948</td>
<td>8.67 eV</td>
<td></td>
</tr>
<tr>
<td>CEPA-0      : -109.174 924</td>
<td>-54.422 951</td>
<td>8.95 eV</td>
<td></td>
</tr>
</tbody>
</table>

With exception is CEPA1 and CEPA3, the results are OK. The reason for the poor performance of these methods is simply that the formalism implemented is only correct for closed shells – open shells require a different formalism which we do not have available in the MRCI module (but in the single reference MDCI module). Due to the simple approximations made in CEPA2 it should also be valid for open shells and the numerical results are in support of that.

Next we turn to the multireference methods and take a CAS(10,8) reference as for CO in order to correlate all valence electrons. \(^\text{13}\)

**Multi reference approaches:**

<table>
<thead>
<tr>
<th>Method</th>
<th>N2-Molecule</th>
<th>N-Atom</th>
<th>Delta-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRCISD+Q   : -109.180 089</td>
<td>-54.422 667</td>
<td>9.11 eV</td>
<td></td>
</tr>
<tr>
<td>MRACPF     : -109.178 708</td>
<td>-54.421 685</td>
<td>9.12 eV</td>
<td></td>
</tr>
<tr>
<td>MRACPF2    : -109.177 140</td>
<td>-54.421 236</td>
<td>9.11 eV</td>
<td></td>
</tr>
<tr>
<td>MRAQCC     : -109.175 947</td>
<td>-54.420 851</td>
<td>9.10 eV</td>
<td></td>
</tr>
<tr>
<td>SORCI      : -109.179 101</td>
<td>-54.422 703</td>
<td>9.08 eV</td>
<td></td>
</tr>
</tbody>
</table>

This test calculation pleasingly shows the high consistency of multireference approaches which all converge more or less to the same result which must be accurate.

\(^{13}\)Most of these results have been obtained with a slightly earlier version for which the MR energies are a little different from that what the present version gives. The energy differences will not be affected.
There are a number of interesting situations in which one is interested in a small energy difference which arises from two states of different multiplicity but same orbital configuration. This is the phenomenon met in diradicals or in magnetic coupling in transition metal complexes. As a primitive model for such cases one may consider the hypothetical molecule H-Ne-H in a linear configuration which will be used as a model in this section.

The reference value is obtained by a MR-ACPF calculation with all valence electrons active (again, this example is somewhat old fashioned – in the present program version you would do a CASSCF calculation followed by MR methods with a single keyword):

```plaintext
! ROHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop
%basis
 NewAuxCGTO Ne "AutoAux" end
end
* xyz 0 3
 H 0 0 0
 Ne 0 0 2.0
 H 0 0 4.0
*
%method frozencore fc_ewin
end
%mrci
 EWin -3,1000
 CIType MRACPF2a
 IntMode FullTrafo
 Solver DIIS
 UseIVOs true
 TSel 0
 TPre 1e-10
 ETol 1e-09
 RTol 1e-09
 DoDCCIMP2 true
 NewBlock 1 *
 NRots 1
 Excitations CISD
 refs CAS(10,6) end
 end
 NewBlock 3 *
 NRots 1
 Excitations CISD
 refs CAS(10,6) end
 end
end
```

which gives the reference value $108 \text{ cm}^{-1}$. We now compare that to several other methods which only have
the two “magnetic” orbitals (the 1s’s on the hydrogens) in the active space:

```plaintext
... same as above
%mrcri EWin -10,1000
CIType MRDDCI3
... same as previously
NewBlock 1 *
 NRroot 1
 refs CAS(2,2) end
end
NewBlock 3 *
 NRroot 1
 refs CAS(2,2) end
end

This gives the result:

<table>
<thead>
<tr>
<th>Method</th>
<th>S-T gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR-CI+Q</td>
<td>98 cm⁻¹</td>
</tr>
<tr>
<td>MR-CI</td>
<td>93 cm⁻¹</td>
</tr>
<tr>
<td>MR-ACPF</td>
<td>98 cm⁻¹</td>
</tr>
<tr>
<td>MR-ACPF2</td>
<td>98 cm⁻¹</td>
</tr>
<tr>
<td>MR-ACPF2a</td>
<td>97 cm⁻¹</td>
</tr>
<tr>
<td>MR-AQCC</td>
<td>95 cm⁻¹</td>
</tr>
<tr>
<td>SORCI</td>
<td>131 cm⁻¹</td>
</tr>
<tr>
<td>MR-DDCI2</td>
<td>85 cm⁻¹</td>
</tr>
<tr>
<td>MR-DDCI3</td>
<td>130 cm⁻¹</td>
</tr>
</tbody>
</table>

All these methods give good results with SORCI leading to a somewhat larger error than the others. The (difference dedicated CI) DDCI2 method slightly underestimates the coupling which is characteristic of this method. It is nice in a way that DDCI3 gives the same result as SORCI since SORCI is supposed to approximate the DDCI3 (or better the IDDCI3) result which it obviously does.

This splitting can also be studied using broken symmetry HF and DFT methods as explained elsewhere in this manual:

<table>
<thead>
<tr>
<th>Method</th>
<th>S-T gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>70 cm⁻¹</td>
</tr>
<tr>
<td>B3LYP/G</td>
<td>240 cm⁻¹</td>
</tr>
<tr>
<td>BP86</td>
<td>354 cm⁻¹</td>
</tr>
<tr>
<td>PW91</td>
<td>234 cm⁻¹</td>
</tr>
<tr>
<td>PBE</td>
<td>234 cm⁻¹</td>
</tr>
<tr>
<td>PBE0</td>
<td>162 cm⁻¹</td>
</tr>
<tr>
<td>RPBE</td>
<td>242 cm⁻¹</td>
</tr>
</tbody>
</table>
This confirms the usual notions; UHF underestimates the coupling and DFT overestimates it, less so for hybrid functionals than for GGAs. The BP86 is worse than PW91 or PBE. The PBE0 hybrid may be the best of the DFT methods. For some reason most of the DFT methods give the best results if the BS state is simply taken as an approximation for the true open-shell singlet. This is, in our opinion, not backed up by theory but has been observed by other authors too.

Now let us study the dependence on T_{sel} as this is supposed to be critical (we use the DDCI3 method):

<table>
<thead>
<tr>
<th>T_{sel}</th>
<th>S-T gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e^{-04}$</td>
<td>121</td>
</tr>
<tr>
<td>$1e^{-05}$</td>
<td>128</td>
</tr>
<tr>
<td>$1e^{-06}$</td>
<td>132</td>
</tr>
<tr>
<td>$1e^{-07}$</td>
<td>131</td>
</tr>
<tr>
<td>$1e^{-08}$</td>
<td>131</td>
</tr>
<tr>
<td>$1e^{-09}$</td>
<td>131</td>
</tr>
<tr>
<td>$1e^{-10}$</td>
<td>131</td>
</tr>
<tr>
<td>$1e^{-12}$</td>
<td>131</td>
</tr>
<tr>
<td>0</td>
<td>131</td>
</tr>
</tbody>
</table>

The convergence is excellent once AllSingles are included.

8.9.8 Potential Energy Surfaces

Another situation where multireference approaches are necessary is when bond breaking is studied and one wants to calculate a full potential energy surface. Say we want to compute the potential energy surface of the CH molecule. First we have to figure out which states to include. Hence, let us first determine a significant number of roots for the full valence CASSCF reference state (we use a small basis set in order to make the job fast).
NRoots 15
refs CAS(5,5) end
end

* xyz 0 2
C 0 0 0
H 0 0 1.15
*

This yields:

TRANSITION ENERGIES

The lowest energy is -38.308119994 Eh

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>1/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>14.679</td>
<td>0.399</td>
<td>3221.6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>126.464</td>
<td>3.441</td>
<td>27755.7</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>126.464</td>
<td>3.441</td>
<td>27755.7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>132.689</td>
<td>3.611</td>
<td>29121.8</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>164.261</td>
<td>4.470</td>
<td>36051.2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>6</td>
<td>0</td>
<td>305.087</td>
<td>8.302</td>
<td>66958.9</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>-1</td>
<td>7</td>
<td>0</td>
<td>305.087</td>
<td>8.302</td>
<td>66958.9</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>328.911</td>
<td>8.950</td>
<td>72187.7</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>452.676</td>
<td>12.318</td>
<td>99350.8</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>452.676</td>
<td>12.318</td>
<td>99350.8</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>-1</td>
<td>8</td>
<td>0</td>
<td>460.116</td>
<td>12.520</td>
<td>100983.9</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>-1</td>
<td>9</td>
<td>0</td>
<td>463.438</td>
<td>12.611</td>
<td>101712.9</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td>463.438</td>
<td>12.611</td>
<td>101712.9</td>
</tr>
</tbody>
</table>

Thus, if we want to focus on the low-lying states we should include five doublet and one quartet root. Now we run a second job with these roots and scan the internuclear distance.

! ano-pVDZ VeryTightSCF NoPop Conv MRCI+Q

%casscf nel 5
norb 5
nroots 5,1
mult 2,4
shiftup 2
end
The surfaces obtained in this run are shown in 8.17. You can nicely see the crossing of the $^2\Sigma$ and $^2\Delta$ states fairly close to the equilibrium distance and also the merging of the $^4\Sigma$ state with $^2\Pi$ and $^2\Sigma$ towards the asymptote where C-H dissociates in a neutral C-atom in its 3P ground state and a neutral hydrogen atom in its 2S ground state. You can observe that once AllSingles is set to true (the default), the default settings of the MRCI module yield fairly smooth potential energy surfaces.

![Figure 8.17: Potential energy surfaces for some low-lying states of CH using the MRCI+Q method](image)

In many cases one will focus on the region around the minimum where the surface is nearly quadratic. In this case one can still perform a few (2, 3, 5, ...) point polynomial fitting from which the important parameters can be determined. The numerical accuracy and the behavior with respect to T_{sel} has to be studied in these cases since the selection produces some noise in the procedure. We illustrate this with a calculation on the HF molecule:

```
! ano-pVDZ VeryTightSCF NoPop Conv MRCI+Q

%paras R = 0.85,1.1,1.7
```
The output contains the result of a Morse fit:

<table>
<thead>
<tr>
<th>Morse-Fit Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re = 0.93014 Angstroem</td>
</tr>
<tr>
<td>we = 4111.2 cm**-1</td>
</tr>
<tr>
<td>wexe = 79.5 cm**-1</td>
</tr>
</tbody>
</table>

Which may be compared with the CCSD(T) values calculated with the same basis set:

<table>
<thead>
<tr>
<th>Morse-Fit Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re = 0.92246 Angstroem</td>
</tr>
<tr>
<td>we = 4209.8 cm**-1</td>
</tr>
<tr>
<td>wexe = 97.6 cm**-1</td>
</tr>
</tbody>
</table>

The agreement between MRCI+Q and CCSD(T) results is fairly good.

8.9.9 Multireference Systems - Ozone

The ozone molecule is a rather classical multireference system due to its diradical character. Let us look at the three highest occupied and lowest unoccupied MO (the next occupied MO is some 6 eV lower in energy and the next virtual MO some 10 eV higher in energy):

These MOs are two σ lone pairs which are high in energy and then the symmetric and antisymmetric combinations of the oxygen π lone pairs. In particular, the LUMO is low lying and will lead to strong correlation effects since the $(\text{HOMO})^2 \to (\text{LUMO})^2$ excitation will show up with a large coefficient. Physically speaking this is testimony of the large diradical character of this molecule which is roughly represented by the
structure $\uparrow\text{O-O-O}\downarrow$. Thus, the minimal active space to treat this molecule correctly is a CAS(2,2) space which includes the HOMO and the LUMO. We illustrate the calculation by looking at the RHF, MP2 MRACPF calculations of the two-dimensional potential energy surface along the O–O bond distance and the O-O-O angle (experimental values are 1.2717 Å and 116.78°).

\begin{verbatim}
! ano-pVDZ VeryTightSCF NoPop MRCI+Q Conv

%paras R = 1.20,1.40,21
 Theta = 100,150,21
 end

%casscf nel 2
 norb 2
 mult 1
 nroots 1
 end

%mrci tsel 1e-8
 tpre 1e-5
 end

* int 0 1
 0 0 0 0 0 0 0
 0 1 0 0 {R} 0 0
 0 1 2 0 {R} {Theta} 0
*
\end{verbatim}

This is a slightly lengthy calculation due to the 441 energy evaluations required. RHF does not find any meaningful minimum within the range of examined geometries. MP2 is much better and comes close to the desired minimum but underestimates the O–O distance by some 0.03 Å. CCSD(T) gives a very good angle but a O–O distance that is too long. In fact, the largest doubles amplitude is ≈ 0.2 in these calculations (the HOMO–LUMO double excitation) which indicates a near degeneracy calculation that even CCSD(T) has
problems to deal with. Already the CAS(2,2) calculation is in qualitative agreement with experiment and the MRCI+Q calculation then gives almost perfect agreement.

The difference between the CCSD(T) and MRCI+Q surfaces shows that the CCSD(T) is a bit lower than the MRCI+Q one suggesting that it treats more correlation. However, CCSD(T) does it in an unbalanced way. The MRCI calculation employs single and double excitations on top of the HOMO-LUMO double excitation, which results in triples and quadruples that apparently play an important role in balancing the MR calculation. These excitations are treated to all orders explicitly in the MRCI calculation but only approximately (quadruples as simultaneous pair excitations and triples perturbatively) in the coupled-cluster approach. Thus, despite the considerable robustness of CC theory in electronically difficult situations it is not applicable to genuine multireference problems.

![Potential energy surfaces](image)

Figure 8.19: 2D potential energy surface for the O$_3$ molecule calculated with different methods.

This is a nice result despite the too small basis set used and shows how important it can be to go to a multireference treatment with a physically reasonable active space (even if is only 2 × 2) in order to get qualitatively and quantitatively correct results.
8.9.10 Size Consistency

Finally, we want to study the size consistency errors of the methods. For this we study two non-interacting HF molecules at the single reference level and compare to the energy of a single HF molecule. This should give a reasonably fair idea of the typical performance of each method (energies in Eh)14:

<table>
<thead>
<tr>
<th>Method</th>
<th>E(HF)</th>
<th>E(HF+HF)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISD+Q</td>
<td>-100.138 475</td>
<td>-200.273 599</td>
<td>0.00335</td>
</tr>
<tr>
<td>ACPF</td>
<td>-100.137 050</td>
<td>-200.274 010</td>
<td>0.00000</td>
</tr>
<tr>
<td>ACPF2</td>
<td>-100.136 913</td>
<td>-200.273 823</td>
<td>0.00000</td>
</tr>
<tr>
<td>AQCC</td>
<td>-100.135 059</td>
<td>-200.269 792</td>
<td>0.00032</td>
</tr>
</tbody>
</table>

The results are roughly as expected – CISD+Q has a relatively large error, ACPF and ACPF/2 are perfect for this type of example; AQCC is not expected to be size consistent and is (only) about a factor of 10 better than CISD+Q in this respect. CEPA-0 is also size consistent.

8.9.11 Efficient MR-MP2 Calculations for Larger Molecules

Uncontracted MR-MP2 approaches are nowadays outdated. They are much more expensive than internally contracted e.g. the NEVPT2 method described in section 9.12. Moreover, MR-MP2 is prone to intruder states, which is a major obstacle for practical applications. For historical reasons, this section is dedicated to the traditional MR-MP2 approach that is available since version 2.7.0 ORCA. The implementation avoids the full integral transformation for MR-MP2 which leads to significant savings in terms of time and memory. Thus, relatively large RI-MR-MP2 calculations can be done with fairly high efficiency. However, the program still uses an uncontracted first order wavefunction which means that for very large reference space, the calculations still become untractable.

Consider for example the rotation of the stilbene molecule around the central double bond

14Most of these numbers were obtained with a slightly older version but will not change too much in the present version.
The input for this calculation is shown below. The calculation has more than 500 basis functions and still runs through in less than one hour per step (CASSCF-MR-MP2). The program takes care of the reduced number of two-electron integrals relative to the parent MRCI method and hence can be applied to larger molecules as well. Note that we have taken a “JK” fitting basis in order to fit the Coulomb and the dynamic correlation contributions both with sufficient accuracy. Thus, this example demonstrates that MR-MP2 calculations for not too large reference spaces can be done efficiently with ORCA (as a minor detail note that the calculations were started at a dihedral angle of 90 degrees in order to make sure that the correct two orbitals are in the active space, namely the central carbon p-orbitals that would make up the pi-bond in the coplanar structure).
8.10 MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster

The Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) methodology [141–146] has been implemented in ORCA. The strength of the MR-EOM-CC methodology lies in its ability to calculate many excited states from a single state-averaged CASSCF solution, the solution of a single set of amplitudes and an uncontracted MRCI diagonalization, of the final transformed Hamiltonian, over a small manifold of excited configurations. Hence, a given MR-EOM calculation involves three steps, performed by three separate modules in ORCA:

1. a state-averaged CASSCF calculation (CASSCF module),
2. the solution of amplitude equations and the calculation of the elements of the similarity transformed Hamiltonians (MDCI module) and,
3. the uncontracted MRCI diagonalization of the final similarity transformed Hamiltonian (MRCI module).

The current implementation allows for MR-EOM-T\[T^\dagger\|h-v, MR-EOM-T\[T^\dagger|SXD-h-v and MR-EOM-T\[T^\dagger|SXDU-h-v calculations. A more detailed description of these methods and the available input parameters will be given in 9.25. We also note that the theoretical details underlying these methods can be found in [146]. In section 9.25, we will discuss a strategy for the selection of the state-averaged CAS and other steps for setting up an MR-EOM calculation in detail. Furthermore, we will discuss how spin-orbit coupling effects can be included in MR-EOM calculations, a projection scheme to aid with convergence difficulties in the iteration of the T amplitude equations, an orbital selection scheme to reduce the size of the inactive core and virtual subspaces in the calculation of excitation energies and a strategy for obtaining nearly size-consistent results in MR-EOM. The purpose of this section is simply to provide a simple example which illustrates the most basic usage of the MR-EOM implementation in ORCA.

8.10.1 A Simple MR-EOM Calculation

Let us consider an MR-EOM-T\[T^\dagger|SXDU-h-v calculation on formaldehyde. An MR-EOM-T\[T^\dagger|SXDU-h-v calculation is specified via the MR-EOM keyword along with the specification of a state-averaged CASSCF calculation (i.e. CASSCF(nel, norb) calculation with the number of roots of each multiplicity to be included in the state-averaging) and the number of desired roots in each multiplicity block for the final MRCI diagonalization. We note that the CASSCF module is described in sections 8.1.7 and 9.11 and that a description of the MRCI module is given in sections 8.9 and 9.24. Here, we have a state-averaged CAS(6,4) calculation, comprised of 3 singlets and 3 triplets and we request 6 singlet roots and 6 triplet roots in our final MRCI diagonalization (i.e. the roots to be computed in the MR-EOM-T\[T^\dagger|SXDU-h-v calculation):

!MR-EOM def2-TZVP VeryTightSCF
%casscf
 nel 6
 norb 4
 mult 1,3
nroots 3,3
end

%mdci
STol 1e-7
end

%marci
newblock 1 *
nroots 6
refs cas(6,4) end
end
newblock 3 *
nroots 6
refs cas(6,4) end
end
end
end

* xyz 0 1
H 0.000000 0.934473 -0.588078
H 0.000000 -0.934473 -0.588078
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.221104
*

One can alternatively perform an MR-EOM-T|T|SXD-h-v or MR-EOM-T|T|SXD-h-v calculation by replacing the MR-EOM keyword, in the first line of the input above, by MR-EOM-T|Td or MR-EOM-T|Td|SXD, respectively. Namely, replacing the first line of the input above with

!MR-EOM-T|Td def2-TZVP VeryTightSCF

runs the MR-EOM-T|T|-h-v calculation, while,

!MR-EOM-T|Td|SXD def2-TZVP VeryTightSCF

runs the MR-EOM-T|T|SXD-h-v calculation.

The final MR-CI diagonalization manifold includes 2h1p, 1h1p, 2h, 1h and 1p excitations in MR-EOM-T|T|-h-v calculations, 2h, 1p and 1h excitations in MR-EOM-T|T|SXD-h-v calculations and 1h and 1p excitations in MR-EOM-T|T|SXD|U-h-v calculations. Note that in the mdci block, we have set the convergence tolerance (STol1) for the residual equations for the amplitudes to 10^{-7}, as this default value is overwritten with the usage of the TightSCF, VeryTightSCF, etc. keywords. It is always important to inspect the values of the largest T, S (i.e. here, we use S to denote the entire set of S, X and D amplitudes) and U amplitudes. If there are amplitudes that are large (absolute values > 0.15), the calculated results should be regarded with suspicion. For the above calculation, we obtain:
LARGEST T AMPLITUDES

| 8-> 13 | 8-> 13 | 0.066329 |
| 4-> 17 | 4-> 17 | 0.029905 |
| 8-> 9 | 8-> 9 | 0.028159 |
| 8-> 16 | 8-> 16 | 0.027265 |
| 6-> 20 | 6-> 20 | 0.025885 |
| 8-> 21 | 8-> 21 | 0.025307 |
| 4-> 16 | 4-> 16 | 0.024002 |
| 8-> 12 | 8-> 12 | 0.023915 |
| 5-> 18 | 5-> 18 | 0.023552 |
| 8-> 23 | 8-> 23 | 0.023384 |
| 3-> 16 | 3-> 16 | 0.023182 |
| 7-> 19 | 7-> 19 | 0.023044 |
| 8-> 13 | 4-> 11 | 0.022090 |
| 3-> 19 | 3-> 19 | 0.021987 |
| 8-> 9 | 8-> 16 | 0.021230 |
| 8-> 16 | 8-> 9 | 0.021230 |

for the T-amplitudes,

LARGEST S AMPLITUDES

| 4-> 8 | 8-> 11 | 0.074844 |
| 3-> 8 | 8-> 9 | 0.064884 |
| 4-> 5 | 5-> 11 | 0.045476 |
| 3-> 8 | 8-> 16 | 0.042656 |
| 4-> 7 | 7-> 11 | 0.042594 |
| 4-> 5 | 5-> 17 | 0.042874 |
| 4-> 5 | 8-> 11 | 0.039960 |
| 4-> 8 | 8-> 17 | 0.037531 |
| 3-> 5 | 8-> 9 | 0.035908 |
| 4-> 7 | 7-> 17 | 0.035764 |
| 2-> 6 | 6-> 19 | 0.034146 |
| 3-> 5 | 5-> 10 | 0.033339 |
| 2-> 6 | 6-> 10 | 0.032690 |
| 4-> 6 | 6-> 11 | 0.032177 |
| 8-> 8 | 3-> 16 | 0.031774 |
| 2-> 7 | 7-> 22 | 0.031238 |

for the S-amplitudes and,

LARGEST U AMPLITUDES

| 3-> 8 | 3-> 8 | 0.026128 |
| 3-> 8 | 3-> 5 | 0.007682 |
| 2-> 8 | 2-> 8 | 0.006182 |
| 3-> 8 | 2-> 5 | 0.006154 |
| 2-> 8 | 3-> 5 | 0.004954 |
| 3-> 5 | 3-> 5 | 0.004677 |
for the U-amplitudes. Hence, one can see that there are no unusually large amplitudes for this particular calculation. We note that there can be convergence issues with the T amplitude iterations and that in such cases, the flag:

```
! RHF TZVP
%cis  nroots 1
end
* int 0 1
C  0  0  0  0.000000  0.000  0.000
O  1  0  0  1.200371  0.000  0.000
H  1  2  0  1.107372  121.941  0.000
H  1  2  3  1.107372  121.941  180.000
*```

should be added to the %mdci block. The convergence issues are caused by the presence of nearly singular T2 amplitudes and setting the DoSingularPT flag to true activates a procedure which projects out the offending amplitudes (in each iteration) and replaces them by suitable perturbative amplitudes. For more information, see the examples in section 9.25.3.

After the computation of the amplitudes and the elements of the similarity transformed Hamiltonians, within the MDCI module, the calculation enters the MRCI module. For a complete, step by step description of the output of an MRCI calculation, we refer the reader to the example described in section 8.9.2. Let us first focus on the results for the singlet states (CI-BLOCK 1). Following the convergence of the Davidson diagonalization (default) or DIIS procedure, the following results of the MRCI calculation for the singlet states are printed:

```

CI-RESULTS

The threshold for printing is 0.3 percent
The weights of configurations will be printed. The weights are summed over all CSF’s that belong to a given configuration before printing
```
For each state, the total energy is given in $E_h$, the weight of the reference configurations ($\text{RefWeight}$) in the given state, is provided and the energy differences from the lowest lying state are given in eV and cm$^{-1}$. Also, in each case, the weights and a description of the configurations which contribute most strongly to the given state are also provided. See section 8.9.2 for a discussion of the notation that is used for the description of the various configurations. In order to avoid confusion, we note that in the literature concerning the MR-EOM methodology [142–148], the term %active is used to denote the reference weight multiplied by 100%. In general, $\text{RefWeight}$ should be larger than 0.9, such that the states are dominated by reference space configurations. This criterion is satisfied for the first three states and the reference weight of the fourth state is sufficiently close to 0.9. However, the reference weights of the two higher lying states (especially state 4) are too small and these states should be discarded as the resulting energies will be inaccurate (i.e. states with significant contributions from configurations outside the reference
space cannot be treated accurately).

In the case of the triplet states (CI-BLOCK 2), we obtain the following results:

---

**CI-RESULTS**
---

The threshold for printing is 0.3 percent
The weights of configurations will be printed. The weights are summed over all CSF's that belong to a given configuration before printing

**STATE 0:** Energy= -114.190842874 Eh RefWeight= 0.9694 6.00 eV 0.0 cm⁻¹⁻¹
0.9691 : h---h---[2121]
0.0079 : h---h 4[1222]
0.0115 : h---h 4[2221]

**STATE 1:** Energy= -114.196732870 Eh RefWeight= 0.9941 2.29 eV 18460.0 cm⁻¹⁻¹
0.9941 : h---h---[2211]

**STATE 2:** Energy= -114.051503552 Eh RefWeight= 0.9786 4.78 eV 38560.1 cm⁻¹⁻¹
0.9786 : h---h---[1221]

**STATE 3:** Energy= -113.939308154 Eh RefWeight= 0.0006 6.84 eV 55205.5 cm⁻¹⁻¹
0.0006 : h---h---[1222]p9
0.0004 : h---h---[1121]p9
0.9419 : h---h---[2120]p9
0.0131 : h---h---[2120]p10
0.0043 : h---h---[2120]p12
0.0173 : h---h---[2120]p16

**STATE 4:** Energy= -113.925573432 Eh RefWeight= 0.4016 7.22 eV 58219.9 cm⁻¹⁻¹
0.3862 : h---h---[1122]
0.0154 : h---h---[2121]
0.1721 : h---h 4[1222]
0.4100 : h---h 4[2221]
0.0045 : h---h---[2120]p13

**STATE 5:** Energy= -113.910484986 Eh RefWeight= 0.0009 7.63 eV 61531.4 cm⁻¹⁻¹
0.0009 : h---h---[1222]p10
0.0030 : h---h---[1121]p10
0.0120 : h---h---[2120]p9
0.9407 : h---h---[2120]p10
0.0105 : h---h---[2120]p16
0.0112 : h---h---[2120]p19
0.0030 : h---h---[2120]p22

Here, we see that the first three states have reference weights which are greater than 0.9, while the reference weights of the final three states are well below 0.9. Hence, the latter three states should be discarded from any meaningful analysis.

Following the printing of the CI results for the final CI block, the states are ordered according to increasing energy and the vertical transition energies are printed:

---

**TRANSITION ENERGIES**
---
The lowest energy is \(-114.321368498\) Eh

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>(m)Eh</th>
<th>(eV)</th>
<th>1/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>139.526</td>
<td>3.552</td>
<td>28647.1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>144.500</td>
<td>3.932</td>
<td>31714.2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>214.636</td>
<td>5.841</td>
<td>47107.1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>306.218</td>
<td>8.333</td>
<td>67207.1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>333.318</td>
<td>9.070</td>
<td>73154.8</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>357.507</td>
<td>9.728</td>
<td>78463.7</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>382.660</td>
<td>10.396</td>
<td>83852.6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>390.217</td>
<td>10.618</td>
<td>85642.8</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>392.312</td>
<td>10.675</td>
<td>86102.4</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td>395.795</td>
<td>10.770</td>
<td>86867.0</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>-1</td>
<td>5</td>
<td>1</td>
<td>410.884</td>
<td>11.181</td>
<td>90178.5</td>
</tr>
</tbody>
</table>

Furthermore, following the generation of the (approximate) densities, the absorption and CD spectra are printed:

### ABSORPTION SPECTRUM

<table>
<thead>
<tr>
<th>States</th>
<th>Energy (cm(^{-1}))</th>
<th>Wavelength (nm)</th>
<th>(f_{osc})</th>
<th>(T_2) ((D^2))</th>
<th>(T_X) (D)</th>
<th>(T_Y) (D)</th>
<th>(T_Z) (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0((0)) (\rightarrow) 1((0))</td>
<td>1 31714.2</td>
<td>315.3</td>
<td>0.000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 2((0))</td>
<td>1 73154.8</td>
<td>136.7</td>
<td>0.002133136</td>
<td>0.96192</td>
<td>-0.24884</td>
<td>-0.00000</td>
<td>-0.00000</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 3((0))</td>
<td>1 78463.7</td>
<td>127.4</td>
<td>0.157692550</td>
<td>4.26771</td>
<td>-0.00000</td>
<td>-0.00000</td>
<td>2.06584</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 4((0))</td>
<td>1 85642.8</td>
<td>116.8</td>
<td>0.025407931</td>
<td>0.62999</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 5((0))</td>
<td>1 86102.4</td>
<td>116.1</td>
<td>0.024717522</td>
<td>0.68959</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.78076</td>
</tr>
</tbody>
</table>

### CD SPECTRUM

<table>
<thead>
<tr>
<th>States</th>
<th>Energy (cm(^{-1}))</th>
<th>Wavelength (nm)</th>
<th>(R^*T) ((10^4) sgs)</th>
<th>(R_X) (au)</th>
<th>(R_Y) (au)</th>
<th>(R_Z) (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0((0)) (\rightarrow) 1((0))</td>
<td>1 31714.2</td>
<td>315.3</td>
<td>-0.00000</td>
<td>-0.00000</td>
<td>-0.00000</td>
<td>-1.12539</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 2((0))</td>
<td>1 73154.8</td>
<td>136.7</td>
<td>0.00000</td>
<td>-9.00000</td>
<td>-9.00000</td>
<td>-1.48989</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 3((0))</td>
<td>1 78463.7</td>
<td>127.4</td>
<td>0.00000</td>
<td>-9.00000</td>
<td>-9.00000</td>
<td>-1.48989</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 4((0))</td>
<td>1 85642.8</td>
<td>116.8</td>
<td>-0.00000</td>
<td>-0.71799</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0((0)) (\rightarrow) 5((0))</td>
<td>1 86102.4</td>
<td>116.1</td>
<td>-0.00000</td>
<td>-0.71799</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

**WARNINGS:**

- It is important to note that the transition moments and oscillator strengths (and state dipole moments) have been blindly computed by the MRCI module and currently, no effort has been made to include the effects of the various similarity transformations in the evaluation of these quantities. Hence these quantities are only approximate and should only be used as a qualitative aid to determine which states are dipole allowed or forbidden. Furthermore, since the calculated densities are approximate, so are the results of the population analysis that are printed before the absorption and CD spectra.
• While both the CASSCF and MRCI modules can make use of spatial point-group symmetry to some extent, the MR-EOM implementation is currently limited to calculations in $C_1$ symmetry.

8.10.2 Capabilities

The MR-EOM methodology can be used to calculate a desired number of states for both closed- and open-shell systems from a single state-averaged CASSCF solution. Currently, the approach is limited to serial calculations and to smaller systems in smaller active spaces. One should be aware that in the most cost effective MR-EOM-T$|T^\dagger|SXD|U-h-v$ approach (i.e. smallest diagonalization manifold), an MRCI diagonalization is performed over all 1h and 1p excited configurations out of the CAS, which will inevitably limit the size of the initial CAS which can be used. We have also implemented an orbital selection scheme which can be used to reduce the size of the inactive core and virtual subspaces in the calculation of excitation energies and this can be employed to extend the applicability of the approach to larger systems. The current implementation can also be used in conjunction with the spin-orbit coupling submodule (9.24.1) of the MRCI module to calculate spin-orbit coupling effects in MR-EOM calculations to first-order. These and other features of the current implementation will be discussed in 9.25.

8.11 Solvation

Several implicit solvation models are implemented in ORCA. A completely integrated implementation of the conductor-like polarizable continuum model (C-PCM) offers a range of options and has been implemented in all parts of ORCA. The following calculations can be used to carry out calculations in a polarizable continuum using a realistic Van-der-Waals cavity:

• Energies of molecules in solution with a finite dielectric constant $\varepsilon$ using any HF or DFT method.

• Optimization of molecular structures in solution using any HF or DFT method using analytic gradients.

• Calculation of solvent effects on response properties like polarizabilities through coupled-perturbed SCF theory. For magnetic response properties such as the g-tensor the C-PCM response vanishes.

• Calculations of solvent shifts on transition energies using the time-dependent DFT or CIS method. Here one needs to know the refractive index of the solvent in addition to the dielectric constant.

• First order perturbation estimate of solvent effects on state and transition energies in multireference perturbation and configuration-interaction calculations.

As a simple example let us look at the solvent effect on the transition energy of the $n \rightarrow \pi^*$ transition in formaldehyde. We first do a normal CIS calculation:
yielding a transition energy of 4.582 eV. Now we repeat the same calculation but with the CPCM model enabled (which is fairly simple; nothing except the dielectric constant and the refractive index needs to be input; there are technical parameters which can be defined by the user but this is not necessary in most applications; all modules will automatically recognize the presence of the CPCM terms automatically).

This calculation yields:

```

CALCULATED SOLVENT SHIFTS

<table>
<thead>
<tr>
<th>State</th>
<th>Shift(Åh)</th>
<th>Shift(eV)</th>
<th>Shift(cm⁻¹)</th>
<th>Shift(nm)</th>
<th>ECI(eV)</th>
<th>ECI+SHIFT(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.002676</td>
<td>-0.073</td>
<td>-587.3</td>
<td>3.7</td>
<td>4.948</td>
<td>4.875</td>
</tr>
</tbody>
</table>
```

Note that there are two different types of shift: the first is the difference between the CIS calculation in the gas phase and the one using the solvated orbitals. This is the difference $4.984 - 4.582 = 0.402$ eV.
This term is called the “slow” term and represents the interaction of the difference density with the frozen screening charges of the ground state. The second term depends on the instantaneous polarization and is called the “fast” term. It is given by the extra $-0.073$ eV printed above thus yielding a total solvent shift of $0.402 - 0.073 = 0.329$ eV and a final estimate of the transition energy of $4.875$ eV in solution (this is clearly not an accurate value since it is too high as is always found with CIS; the calculated shift is also somewhat higher compared to accurate MR-CI calculations which give $0.25$ eV but it is in the right ballpark; larger basis sets yield also better results here).

In addition, the Minnesota SMD solvation model is implemented in ORCA. See sections 9.28 and 9.28.3 for further details on the available solvation models and how to use them.

### 8.12 Calculation of Properties

#### 8.12.1 Population Analysis and Related Things

Atomic populations and the like are not really a molecular property since they are not observable. They are nevertheless highly useful for chemical interpretation purposes. ORCA lets you obtain very detailed information about the calculated molecular orbitals. Mulliken, Löwdin and Mayer population analysis can be performed and many useful details can be printed. However, it is also easy to get lost in the output from such a calculation since you may not be interested in all these details. In this case ORCA lets you turn most features off. The default is to perform a rather large amount of population analysis.

The Mulliken, Löwdin and Mayer analysis tools should be self-explanatory. If you choose “ReducedPOP” you will get a reduced orbital population where the percentage contributions per basis function type on each atom are listed. This is highly useful in figuring out the character of the MOs. You can, however, also request a printout of the MO coefficients themselves via the output block (section 9.31) or using the keyword “PrintMOs”

In many cases it is not so interesting to look at the MO coefficients but you want to get a full three dimensional picture of MOs, electron densities and spin densities. This is relatively easily accomplished with ORCA through, among other visualization programs, the interface to the OpenMol and Molekel packages (see section 9.32 for details).

The following example:
8.12 Calculation of Properties

# test populations
! HF SVP XYZFile
%plo
Format gOpenMol_bin
MO("CO-4.plt",4,0);
MO("CO-8.plt",8,0);
end
* xyz 0 1
 C 0 0 0
 O 0 0 1.13
*

produces (after running it through gOpenMol, section 9.32.2) the following output:

Figure 8.21: The $\pi$ and $\pi^*$ orbitals of the CO molecule obtained from the interface of ORCA to gOpenMol.

which are the textbook like $\pi$ and $\pi^*$ orbitals of CO respectively. The format gOpenMol_bin is the most easy to use. The alternative format gOpenMol_ascii would require you to use the gOpenMol conversion utility. You can also plot spin densities, electron densities and natural orbitals. See section 9.32.2 for full details. The command MO("CO-4.plt",4,0); is to be understood as follows: there is an MO to be evaluated on a grid and the output is stored in the file CI-4.plt. It is MO four of operator 0. Operator zero is the closed-shell RHF operator. For UHF wavefunctions operator 0 is that for spin-up and operator 1 that for spin-down. For ROHF you should also use operator 0. There are also some alternative output formats including simple ascii files that you can convert yourself to the desired format.

In order to use the interface to Molekel you have to choose the format Cube or GaussianCube which can be read directly by molekel. Since the cube files are ASCII files you can also transfer them between platforms.

# test populations
! HF SVP XYZFile
%plo
Format Cube
MO("CO-4.cube",4,0);
MO("CO-8.cube",8,0);
You can now start Molekel and load (via a right mouse click) the XYZ file (or also directly the .cube file). Then go to the surface menu, select “gaussian-cube” format and load the surface. For orbitals click the “both signs” button and select a contour value in the “cutoff” field. The click “create surface”. The colour schemes etc. can be adjusted at will – try it! It’s easy and produces nice pictures. Create files via the “snapshot” feature of Molekel. Other programs can certainly also deal with Gaussian-Cube files. If you know about another nice freeware program – please let me know!\(^{15}\)

![Figure 8.22: The \(\pi\) and \(\pi^*\)-MOs of CO as visualized by Molekel.](image)

Another thing that may in some situations be quite helpful is the visualization of the electronic structure in terms of localized molecular orbitals. As unitary transformations among the occupied orbitals do not change the total wavefunction such transformations can be applied to the canonical SCF orbitals with no change of the physical content of the SCF wavefunction. The localized orbitals correspond more closely to the pictures of orbitals that chemists often enjoy to think about. Localized orbitals according to the Pipek-Mezey (population-localization) scheme are quite easy to compute. For example, the following run reproduces the calculations reported by Pipek and Mezey in their original paper for the \(\text{N}_2\text{O}_4\) molecule. In the output you will find that the localized set of MOs consists of 6 core like orbitals (one for each N and one for each O), two distinct lone pairs on each oxygen, a \(\sigma\)- and a \(\pi\)-bonding orbital for each N-O bond and one N-N \(\sigma\)-bonding orbital which corresponds in a nice way to the dominant resonance structure that one would draw for this molecule. You will also find a file with the extension .loc in the directory where you run the calculation. This is a standard GBW file that you can use for plotting or as input for another calculation (warning! The localized orbitals have no well defined orbital energy. If you do use them as input for another calculation use GuessMode=CMatrix in the [SCF] block).

\(^{15}\) The Molekel developers ask for the following citation – please do as they ask:


S. Portmann, H.P. Lüthi. MOLEKEL: An Interactive Molecular Graphics Tool. CHIMIA (2000), 54, 766-770. The program appears to be maintained by Ugo Varetto at this time.
# Localized MOs for the N2O4 molecule

! HF STO-3G Bohrs

%loc

LocMet PipekMezey # localization method. Choices:
# PipekMezey (=PM)
# FosterBoys (=FB)
T_Core -1000 # cutoff for core orbitals
Tol 1e-8 # conv. Tolerance (default=1e-6)
MaxIter 20 # max. no of iterations (def. 128)
end

* xyz 0 1
  N 0.000000 -1.653532 0.000000
  N 0.000000 1.653532 0.000000
  O -2.050381 -2.530377 0.000000
  O 2.050381 -2.530377 0.000000
  O -2.050381 2.530377 0.000000
  O 2.050381 2.530377 0.000000
*

If you have access to a version of the gennbo program from Weinhold’s group you can also request natural population analysis and natural bond orbital analysis. The interface is very elementary and is invoked through the keywords NPA and NBO respectively.

# Test the interface to the gennbo program

! HF SVP NPA XYZFile
  * xyz 0 1
  C 0 0 0
  O 0 0 1.13
*

If you choose simple NPA then you will only obtain a natural population analysis. Choosing instead NBO the natural bond orbital analysis will also be carried out. The program will leave a file jobname.47 on disk. This is a valid input file for the gennbo program which can be edited to use all of the features of the gennbo program in the stand-alone mode. Please refer to the NBO manual for further details.

16 Information about the NBO program can be found at http://nbo6.chem.wisc.edu
8.12.2 Absorption and Fluorescence Bandshapes

Bandshape calculations are nontrivial but can be achieved with **ORCA** using the procedures described in section 9.26. Starting from version 2.80, analytical TD-DFT gradients are available which make these calculations quite fast and applicable without expert knowledge to larger molecules.

In a nutshell, let us look into the H$_2$CO molecule. First we generate some Hessian (e.g. BP86/SV(P)). Then we run the job that makes the input for the **orca_asa** program. For example, let us calculate the five lowest excited states:

```
! aug-cc-pVDZ BHHandHLYP TightSCF NMGrad
%tddft nroots 5
end

this is ASA specific input
%rr
 states 1,2,3,4,5
 HessName "Test-ASA-H2CO-freq.hess"
 ASAInput true
end

* int 0 1
 C 0 0 0 0 0 0
 O 1 0 0 1.2 0 0
 H 1 2 0 1.1 120 0
 H 1 2 3 1.1 120 180
*
```

NOTE

- Functionals with somewhat more HF exchange produce better results and are not as prone to “ghost states” as GGA functionals unfortunately are!
- Calculations can be greatly speeded up by the RI or RIJCOSX approximations!
- Analytic gradients for the (D) correction and hence for double-hybrid functionals are NOT available

The **ORCA** run will produce a file **Test-ASA-H2CO.asa.inp** that is an input file for the program that generates the various spectra. It is an ASCII file that is very similar in appearance to an **ORCA** input file:

```
~ ASA input

%sim model IMDHO
 method Heller
 AbsRange 25000.0, 100000.0
```
### 8.12 Calculation of Properties

```
NAbsPoints 1024
FlRange 25000.0, 100000.0
NFlPoints 1024
RRPRange 5000.0, 100000.0
NRRPPPoints 1024
RRSRange 0.0, 4000.0
NRRSPPoints 4000

Excitation energies (cm^-1) for which rR spectra will
be calculated. Here we choose all allowed transitions
and the position of the 0-0 band
RRSE 58960, 66884, 66602

full width half maximum of Raman bands in rR spectra
(cm^-1):
RRS_FWHM 10.0

AbsScaleMode Ext
FlScaleMode Rel

RamanOrder=1 means only fundamentals. For 2 combination
bands and first overtones are also considered, for 3
one has second overtones etc.
RamanOrder 1

E0 means the adiabatic excitation energy
EV would mean the vertical one. sprints vertical
excitations in the TD-DFT output but for the input into
the ASA program the adiabatic excitation energies are
estimated. A rigorous calculation would of course in-
volve excited state geometry optimization
EnInput E0
CAR 0.800
end

These are the calculated electronic states and transition moments
Note that this is in the Franck-Condon approximation and thus
the transition moments have been calculated vertically
$el_states
5
1 32200.79 100.00 0.00 -0.0000 0.0000 -0.0000
2 58960.05 100.00 0.00 0.0000 -0.4219 0.0000
3 66884.30 100.00 0.00 -0.0000 0.4405 0.0000
4 66602.64 100.00 0.00 -0.5217 -0.0000 0.0000
5 72245.42 100.00 0.00 0.0000 0.0000 0.0000

These are the calculated vibrational frequencies for the totally
symmetric modes. These are the only ones that contribute. They
correspond to x, H-C-H bending, C=O stretching and C-H stretching
respectively
$vib_freq_gs
3
1 1462.948534
```
Before the `orca_asa` program can be invoked this file must be edited. We turn the `NAbsPoints` variables and spectral ranges to the desired values and then invoke `orca_asa`:

```
orca_asa Test-ASA-H2CO.asa.inp
```

This produces the output:

```

* O R C A A S A *

--- A program for analysis of electronic spectra ---

Reading file: Test-ASA-H2CO.asa.inp ... done

+----------------------------------+-
| State | E0 (cm⁻¹) | EV (cm⁻¹) | fosc | Stokes shift (cm⁻¹) | Effective Stokes shift (cm⁻¹) |
+----------------------------------+-
| 1 | 36457.24 | 32290.79 | 0.00 | 0.00 | 0.00 |
| 2 | 58424.56 | 58969.95 | 0.01 | 0.00 | 0.00 |
| 3 | 66601.54 | 66884.30 | 0.039| 0.00 | 0.00 |
| 4 | 66111.80 | 66692.64 | 0.055| 0.00 | 0.00 |
| 5 | 71788.55 | 72245.42 | 0.00 | 0.00 | 0.00 |

+----------------------------------+-

BROADENING PARAMETERS (cm⁻¹)

<table>
<thead>
<tr>
<th>State</th>
<th>Intrinsic</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sigma</td>
<td>FWHM</td>
</tr>
<tr>
<td></td>
<td>6K</td>
<td>77K</td>
</tr>
</tbody>
</table>
```
Calculating absorption spectrum ...
The maximum number of grid points ... 5840
Time for absorption ... 9.569 sec (= 0.159 min)
Writing file: Test-ASA-H2CO.asa.abs.dat ... done
Writing file: Test-ASA-H2CO.asa.abs.as.dat ... done

Generating vibrational states up to the 1-th order ... done
Total number of vibrational states ... 3

Calculating rR profiles for all vibrational states up to the 1-th order
State 1 ...
The maximum number of grid points ... 6820
Resonance Raman profile is done
State 2 ...
The maximum number of grid points ... 6820
Resonance Raman profile is done
State 3 ...
The maximum number of grid points ... 6820
Resonance Raman profile is done
Writing file: Test-ASA-H2CO.asa.o1.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.info ... done

Calculating rR spectra involving vibrational states up to the 1-th order
State 1 ... done
State 2 ... done
State 3 ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.58960.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.58960.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66884.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66884.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66602.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66602.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.58960.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.58960.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66884.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66884.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66602.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66602.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.all.xyz.dat ... done

TOTAL RUN TIME: 0 days 0 hours 1 minutes 17 seconds 850 msec
The fluorescence spectrum of the lowest energy peak (in this case S2 which is not very realistic but for illustrative purposes it might be enough):

The Resonance Raman excitation profiles of the three totally symmetric vibrational modes can be obtained
as well:

The dominant enhancement occurs under the main peaks for the C=O stretching vibration which might not be a big surprise. Higher energy excitations do enhance the C-H vibrations particularly strongly. The resonance Raman spectra taken at the vertical excitation energies are also calculated:
In this particular example, the dominant mode is the C=O stretching and the spectra look similar for all excitation wavelength. However, in “real life” where one has electronically excited states of different nature, the rR spectra also dramatically change and are then powerful fingerprints of the electronic excitation being studied – even if the vibrational structure of the absorption band is not resolved (which is usually the case for larger molecules).

This is a cursory example of how to use the orca.asa program. It is much more powerful than described in this section. Please refer to section 9.26 for a full description of features. The orca.asa program can also be interfaced to other electronic structure codes that deliver excited state gradients and can be used to fit experimental data. It is thus a tool for experimentalists and theoreticians at the same time!

8.12.3 IR/Raman Spectra, Vibrational Modes and Isotope Shifts

8.12.3.1 IR Spectra

IR spectral intensities are calculated automatically in frequency runs. Thus, there is nothing to control by the user. Consider the following job\textsuperscript{17}:

```plaintext
! RHF STO-3G TightSCF SmallPrint
! Opt NumFreq
* xyz 0 1
 C 0.000000 0.000000 -0.533905
 O 0.000000 0.000000 0.682807
 H 0.000000 0.926563 -1.129511
 H 0.000000 -0.926563 -1.129511
*
```

which gives you the following output:

```
 IR SPECTRUM

 Mode freq (cm**-1) T**2 TX TY TZ

 6: 1278.77 6.157280 -2.481387 -0.000010 -0.000287
 7: 1395.78 29.682711 -0.000003 5.448182 -0.004815
 8: 1765.08 4.180497 0.000537 0.022003 2.044508
 9: 2100.53 8.550050 0.000080 0.011990 2.924022
10: 3498.72 1.843422 0.001027 -0.178764 -1.345907
11: 3646.23 19.778426 0.000035 4.446922 0.057577
```

The “Mode” indicates the number of the vibration, then the vibrational frequency follows. The value T**2 is the square of the change of the dipole moment along a given vibrational mode in KM/mole. This number is

\textsuperscript{17}This and the following jobs in this section are of very poor quality due to the insufficient quality STO-3G basis set (see section 10.1). However, these jobs execute very rapidly and are therefore adequate for demonstration purposes.
directly proportional to the intensity of a given fundamental in an IR spectrum and is what is plotted by orca_mapspc.

If you want to obtain a plot of the spectrum then call the small utility program like this:

```
orca_mapspc Test-NumFreq-H2CO.out ir -w50
```

The options to the program `orca_mapspc` are:

```
-wvalue : a value for the linewidth (gaussian shape, fwhm)
-x0value : start value of the spectrum in cm**-1
-x1value : end value of the spectrum in cm**-1
-nvalue : number of points to use
```

You get a file `Test-NumFreq-H2CO.out.ir.dat` which contains a listing of intensity versus wavenumber which can be used in any graphics program for plotting. For example:

![Figure 8.23: The predicted IR spectrum of the H₂CO molecule using the numerical frequency routine of ORCA and the tool orca_mapspc to create the spectrum.](image)

**8.12.3.2 Raman Spectra**

In order to predict the Raman spectrum of a compound one has to know the derivatives of the polarizability with respect to the normal modes. Thus, if a frequency run is combined with a polarizability calculation the Raman spectrum will be automatically calculated too.
Consider the following example:

```plaintext
! RHF STO-3G TightSCF SmallPrint
! Opt NumFreq
#
... turning on the polarizability calculation
together with NumFreq automatically gives
the Raman spectrum
#
%elprop Polar 1
end
* xyz 0 1
 c 0.000000 0.000000 -0.533905
 o 0.000000 0.000000 0.682807
 h 0.000000 0.926563 -1.129511
 h 0.000000 -0.926563 -1.129511
*
```

The output consists of the Raman activity (in Å$^4$/AMU) [149] and the Raman depolarization ratios:

```

RAMAN SPECTRUM

<table>
<thead>
<tr>
<th>Mode</th>
<th>freq (cm$^{-1}$)</th>
<th>Activity</th>
<th>Depolarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:</td>
<td>1278.77</td>
<td>0.007349</td>
<td>0.749649</td>
</tr>
<tr>
<td>7:</td>
<td>1395.78</td>
<td>3.020010</td>
<td>0.749997</td>
</tr>
<tr>
<td>8:</td>
<td>1765.08</td>
<td>16.366586</td>
<td>0.708084</td>
</tr>
<tr>
<td>9:</td>
<td>2100.53</td>
<td>6.696490</td>
<td>0.075444</td>
</tr>
<tr>
<td>10:</td>
<td>3498.72</td>
<td>38.650431</td>
<td>0.186962</td>
</tr>
<tr>
<td>11:</td>
<td>3646.23</td>
<td>24.528483</td>
<td>0.748312</td>
</tr>
</tbody>
</table>
```

The polarizability derivatives and the Raman intensities will also be added to the `.hess` file. This allows the effect of isotope substitutions on the Raman intensities to be calculated.

As with IR spectra you can get a plot of the Raman spectrum using:

```plaintext
orca_mapspc Test-NumFreq-H2CO.out raman -w50
```
8.12 Calculation of Properties

Figure 8.24: Calculated Raman spectrum for H$_2$CO at the STO-3G level using the numerical frequency routine of ORCA and the tool orca_mapspc to create the spectrum.

NOTE:

- The Raman module will only work if the polarizabilities are calculated analytically. This means that only those wavefunction models for which the analytical derivatives w.r.t. to external fields are available can be used.

- Raman calculations take significantly longer than IR calculations due to the extra effort of calculating the polarizabilities at all displaced geometries. Since the latter step is computationally as expensive as the solution of the SCF equations you have to accept an increase in computer time by a factor of $\approx 2$.

8.12.3.3 Resonance Raman Spectra

Resonance Raman spectra and excitation profiles can be predicted or fitted using the procedures described in section 9.26.

8.12.3.4 NRVS Spectra

If you happen to have iron in your molecule and you want to calculate the nuclear resonant vibrational scattering spectrum you simply have to run orca_vib program on your .hess file and you will get an output that can be used together with orca_mapspc program for visualisation.
The calculations are usually pretty good in conjunction with DFT frequency calculations. For example, take the ferric-azide complex from the second reference listed below. As for the calculation of resonance Raman spectra described in section 9.26 the DFT values are usually excellent starting points for least-square refinements.

Figure 8.25: Experimental (a, black curve), fitted (a, red) and simulated (b) NRVS spectrum of the Fe(III)-azide complex obtained at the BP86/TZVP level (T = 20 K). Bar graphs represent the corresponding intensities of the individual vibrational transitions. The blue curve represents the fitted spectrum with a background line removed.

Both theory and implementation have been described in detail. [150,151] Here we illustrate the procedure for getting such plots using a Fe(\(SH\))\(^{1-}\) model complex as an example. One first optimizes and computes the vibrations of the complex given in one step with the following input (calculations are usually pretty good in conjunction with DFT frequency calculations and the BP86 functional).
From this calculations we get numerous files from which the Hessian file is of importance here. Now we run the orca_vib program on the .hess file and get an output that can be used further with orca_mapspc program to prepare raw data for visualizations:

```
orca_vib Test-FeIIISH4-NumFreq.hess > Test-FeIIISH4-NumFreq.out
orca_mapspc Test-FeIIISH4-NumFreq.out NRVS
```

The latter command creates a file `Test-FeIIISH4-NumFreq.nrvs.dat` which can be used directly for visualization. The text-file contains data in xy-format which allows the NRVS intensity (y, in atomic units) to be plotted as a function of the phonon energy (x, in cm$^{-1}$).

From the given run we obtain the NRVS plot below in which we compare with the theoretical IR spectrum on the same scale. NRVS reports the Doppler broadening of the Moessbauer signal due to resonant scattering of phonons (vibrations) dominated by the Fe nuclei movements. This are a valuable addition to IR spectra where the corresponding vibrations might have very small intensity.

### 8.12.3.5 Animation of Vibrational Modes

In order to animate vibrational modes and to create “arrow-pictures” you have to use the small utility program orca_pltvib. This program uses an ORCA output file and creates a series of files that can be used together with any visualization program (here: ChemCraft).

For example:

```
NAME = Test-NumFreq-H2CO.inp
! RHF STO-3G TightSCF SmallPrint
! Opt NumFreq
*xyz 0 1
C 0.000000 0.000000 -0.533905
O 0.000000 0.000000 0.682807
H 0.000000 0.926563 -1.129511
H 0.000000 -0.926563 -1.129511
*
```

From this we get vibrations and transition probabilities (Test-NumFreq-H2CO.out)
Figure 8.26: Theoretical IR spectrum with the shapes of vibrations dominating the IR intensity and NRVS scattering

<table>
<thead>
<tr>
<th>Mode</th>
<th>freq (cm⁻¹)</th>
<th>T²x²</th>
<th>TX</th>
<th>TY</th>
<th>TZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1284.36</td>
<td>6.411244</td>
<td>-2.532043</td>
<td>-0.000000</td>
<td>-0.000000</td>
</tr>
<tr>
<td>7</td>
<td>1397.40</td>
<td>29.590615</td>
<td>0.000000</td>
<td>-5.439726</td>
<td>0.000000</td>
</tr>
<tr>
<td>8</td>
<td>1766.60</td>
<td>4.188394</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>2.046557</td>
</tr>
<tr>
<td>9</td>
<td>2099.20</td>
<td>8.429963</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>2.903440</td>
</tr>
<tr>
<td>10</td>
<td>3499.11</td>
<td>19.792263</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>-1.338754</td>
</tr>
<tr>
<td>11</td>
<td>3645.24</td>
<td>19.984096</td>
<td>0.000000</td>
<td>-4.478357</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

The Test-NumFreq-H2CO.out file can be directly opened with ChemCraft which allows immediate observation of any vibrations and preparing plots as shown.
We can infer for this example, that say the vibration 1397 cm\(^{-1}\) is a kind of wagging motion of the hydrogen atoms.

It might be that you can prefer to animate vibrations with the (free) program gOpenMol package; there is a small utility program orca_pltvib. This program uses an ORCA output file and creates a series of files that can be used together with gOpenMol. You can execute `orca_pltvib` in the following way:

Use:

```
orca_pltvib Test-NumFreq-H2CO.out [list of vibrations or all]
```

For example, let us see what the strong mode at 1397 cm\(^{-1}\) corresponds to:

```
orca_pltvib Test-NumFreq-H2CO.out 7
```

you will get a file `Test-NumFreq-H2CO.out.v007.xyz`. Then start up the gOpenMol program and read this file as a Import->coords in Xmol format. After this go to the Trajectory->Main menu and import the file again (again in Xmol format). Now you are able to animate the vibration. In order to create a printable picture press Dismiss and then type `lulVectorDemo {4 0.1 black}` into the gOpenMol command line window. What you get is:

which indicates that the vibration is a kind of wagging motion of the hydrogens. (I am sure that you can get nicer arrows with some playing around with gOpenMol). At the gOpenMol homepage you can find a very nice tutorial to teach you some essential visualization tricks.
Figure 8.28: The 1395 cm$^{-1}$ mode of the H$_2$CO molecule as obtained from the interface of ORCA
to gOpenMol and the orca.pltvib tool to create the animation file.

8.12.3.6 Isotope Shifts

Suppose you have calculated a hessian as in the example discussed above and that you want to predict the
effect of substitution with $^{18}$O. It would be very bad practice to recalculate the hessian to do this since the
calculation is expensive and the hessian itself is independent of the masses. In this case you can use the small
utility program orca.vib. First of all you have to look at the .hess file and edit the masses given there by
hand. For the example given above the .hess file looks like:

```
$orca_hessian_file
......................
$hessian
12
... the cartesian hessian in Eh/bohr**

$vibrational_frequencies
12
...
the vibrational frequencies (in cm$^{-1}$) as in the output

$normal_modes
12 12
... the vibrational normal modes in Cartesian displacements
#
The atoms: label mass x y z
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Here we have changes 15.999 for oxygen into
18O in order to see the oxygen 18 effects
!!
$atoms
4
C 12.0110 0.000000 0.000000 -1.149571
O 18.0000 -0.000000 -0.000000 1.149695
H 1.0080 -0.000000 1.750696 -2.275041
H 1.0080 -0.000000 -1.750696 -2.275041

$actual_temperature
0.000000

$dipole_derivatives
```
... the dipole derivatives (Cartesian displacements)
#
# The IR spectrum
# wavenumber T**2 TX TY TY
#
Sir_spectrum
12
... the IR intensities

if you now call:

orca_vib Test-NumFreq-H2CO.hess

you get then printed to standard out the IR spectrum, the vibrational frequencies, the modes, etc. Let us compare the output of this calculation with the original frequency calculation:

<table>
<thead>
<tr>
<th></th>
<th>H2C16O</th>
<th>H2CO18O</th>
<th>Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:</td>
<td>1284.36</td>
<td>1282.82</td>
<td>-1.54</td>
</tr>
<tr>
<td>7:</td>
<td>1397.40</td>
<td>1391.74</td>
<td>-5.66</td>
</tr>
<tr>
<td>8:</td>
<td>1766.60</td>
<td>1751.62</td>
<td>-14.98</td>
</tr>
<tr>
<td>9:</td>
<td>2099.20</td>
<td>2061.49</td>
<td>-37.71</td>
</tr>
<tr>
<td>10:</td>
<td>3499.11</td>
<td>3499.02</td>
<td>-0.09</td>
</tr>
<tr>
<td>11:</td>
<td>3645.24</td>
<td>3645.24</td>
<td>-0.00</td>
</tr>
</tbody>
</table>

The calculated isotope shifts greatly aid in the identification of vibrations, the interpretation of experiments and in the judgement of the reliability of the calculated vibrational normal modes. A different way of analyzing these isotope shifts is to plot the two predicted spectra and then subtract them from another. This will give you derivative shaped peaks with a zero crossing at the position of the isotope sensitive modes.

### 8.12.4 Thermochemistry

The second thing that you get automatically as the result of a frequency calculation is a thermochemical analysis based on ideal gas statistical mechanics. This can be used to study heats of formation, dissociation energies and similar thermochemical properties. To correct for the breakdown of the harmonic oscillator approximation for low frequencies, entropic contributions to the free energies are computed, by default, using the Quasi-RRHO approach of Grimme. [152] To switch-off the Quasi-RRHO method, use:

```
%freq QuasiRRHO false
 CutOffFreq 35
end
```
Where the CutOffFreq parameter controls the cut-off for the low frequencies mode (excluded from the calculation of the thermochemical properties).

For example let us calculate a number for the oxygen-oxygen dissociation energy in the H$_2$O$_2$ molecule. First run the following job:

```
Calculate a value for the O-O bond strength in H2O2
!
! RKS B3LYP TZVP TightSCF SmallPrint Grid4 NoFinalgrid
! Opt NumFreq
! bohrs
* xyz 0 1
 O -1.396288 -0.075107 0.052125
 O 1.396289 -0.016261 -0.089970
 H -1.775703 1.309756 -1.111179
 H 1.775687 0.140443 1.711854
*
#
Now the OH radical job
#
! UKS B3LYP TZVP TightSCF SmallPrint Grid4 NoFinalgrid
! Opt NumFreq PModel
! bohrs
* xyz 0 2
 O -1.396288 -0.075107 0.052125
 H -1.775703 1.309756 -1.111179
*
```

The first job gives you the following output following the frequency calculation:

```

THERMOCHEMISTRY AT 298.15K

Temperature ... 298.15 K
Pressure ... 1.00 atm
Total Mass ... 34.01 AMU

Throughout the following assumptions are being made:
(1) The electronic state is orbitally nondegenerate
(2) There are no thermally accessible electronically excited states
(3) Hindered rotations indicated by low frequency modes are not treated as such but are treated as vibrations and this may cause some error
(4) All equations used are the standard statistical mechanics equations for an ideal gas
(5) All vibrations are strictly harmonic
```
The inner energy is: \[ U = E(\text{el}) + E(\text{ZPE}) + E(\text{vib}) + E(\text{rot}) + E(\text{trans}) \]

- \( E(\text{el}) \) - is the total energy from the electronic structure calculation
  \[ E(\text{el}) = E(\text{kin-el}) + E(\text{nuc-el}) + E(\text{el-el}) + E(\text{nuc-nuc}) \]
- \( E(\text{ZPE}) \) - the zero temperature vibrational energy from the frequency calculation
- \( E(\text{vib}) \) - the finite temperature correction to \( E(\text{ZPE}) \) due to population of excited vibrational states
- \( E(\text{rot}) \) - is the rotational thermal energy
- \( E(\text{trans}) \) - is the translational thermal energy

Summary of contributions to the inner energy \( U \):

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic energy</td>
<td>-151.54452527 Eh</td>
<td></td>
</tr>
<tr>
<td>Zero point energy</td>
<td>0.02624039 Eh</td>
<td>16.47</td>
</tr>
<tr>
<td>Thermal vibrational correction</td>
<td>0.00144174 Eh</td>
<td>0.28</td>
</tr>
<tr>
<td>Thermal rotational correction</td>
<td>0.00141627 Eh</td>
<td>0.89</td>
</tr>
<tr>
<td>Thermal translational correction</td>
<td>0.00141627 Eh</td>
<td>0.89</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Total thermal energy</td>
<td>-151.51501060 Eh</td>
<td></td>
</tr>
</tbody>
</table>

Summary of corrections to the electronic energy:

(Perhaps to be used in another calculation)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total thermal correction</td>
<td>0.00327428 Eh</td>
<td>2.05</td>
</tr>
<tr>
<td>Non-thermal (ZPE) correction</td>
<td>0.02624039 Eh</td>
<td>16.47</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Total correction</td>
<td>0.02951468 Eh</td>
<td>18.52</td>
</tr>
</tbody>
</table>

The enthalpy is \( H = U + k_B T \)

\( k_B \) is Boltzmann's constant

Summary of corrections to the enthalpy:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total thermal correction</td>
<td>0.00327428 Eh</td>
<td>2.05</td>
</tr>
<tr>
<td>Non-thermal (ZPE) correction</td>
<td>0.02624039 Eh</td>
<td>16.47</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Total correction</td>
<td>0.02951468 Eh</td>
<td>18.52</td>
</tr>
</tbody>
</table>

The entropy contributions are \( T*S = T*(S(\text{el})+S(\text{vib})+S(\text{rot})+S(\text{trans})) \)

- \( S(\text{el}) \) - electronic entropy
- \( S(\text{vib}) \) - vibrational entropy
- \( S(\text{rot}) \) - rotational entropy
- \( S(\text{trans}) \) - translational entropy

The entropies will be listed as multiplied by the temperature to get units of energy
Electronic entropy ... \(0.00000000\) Eh \(0.00\) kcal/mol  
Vibrational entropy ... \(0.000066248\) Eh \(0.42\) kcal/mol  
Rotational entropy ... \(0.00752687\) Eh \(4.72\) kcal/mol  
Translational entropy ... \(0.01734394\) Eh \(10.88\) kcal/mol  
Final entropy term ... \(0.02553329\) Eh \(16.02\) kcal/mol  

---

**GIBBS FREE ENTHALPY**
---

The Gibbs free enthalpy is \(G = H - T*S\)

Total enthalpy ... \(-151.51406639\) Eh  
Total entropy correction ... \(-0.02553329\) Eh \(-16.02\) kcal/mol  
Final Gibbs free enthalpy ... \(-151.53959968\) Eh  

For completeness - the Gibbs free enthalpy minus the electronic energy  
\(G - E(\text{el})\) ... \(0.00492559\) Eh \(3.09\) kcal/mol  

---

**INNER ENERGY**
---

Summary of contributions to the inner energy \(U\):

Electronic energy ... \(-75.73288320\) Eh  
Zero point energy ... \(0.00838485\) Eh \(5.26\) kcal/mol  
Thermal vibrational correction ... \(0.00000000\) Eh \(0.00\) kcal/mol  
Thermal rotational correction ... \(0.00094418\) Eh \(0.59\) kcal/mol  
Thermal translational correction ... \(0.00141627\) Eh \(0.89\) kcal/mol  
Total thermal energy \(-75.72213790\) Eh  

Summary of corrections to the electronic energy:  
(perhaps to be used in another calculation)  
Total thermal correction \(0.00236045\) Eh \(1.48\) kcal/mol  
Non-thermal (ZPE) correction \(0.00838485\) Eh \(5.26\) kcal/mol  
Total correction \(0.01074531\) Eh \(6.74\) kcal/mol  

---

**ENTHALPY**
---

The enthalpy is \(H = U + k_B^*T\)  
k\(B^*\) is Boltzmann's constant  
Total free energy ... \(-75.72213790\) Eh  
Thermal Enthalpy correction ... \(0.00094421\) Eh \(0.59\) kcal/mol  

And similarly for the OH-radical job.
Total Enthalpy ... -75.72119369 Eh

ENTROPY

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic entropy</td>
<td>0.00065446 Eh</td>
<td>0.41 kcal/mol</td>
</tr>
<tr>
<td>Vibrational entropy</td>
<td>0.00000000 Eh</td>
<td>0.00 kcal/mol</td>
</tr>
<tr>
<td>Rotational entropy</td>
<td>0.00256479 Eh</td>
<td>1.61 kcal/mol</td>
</tr>
<tr>
<td>Translational entropy</td>
<td>0.01636225 Eh</td>
<td>10.27 kcal/mol</td>
</tr>
<tr>
<td>Final entropy term</td>
<td>0.01958150 Eh</td>
<td>12.29 kcal/mol</td>
</tr>
</tbody>
</table>

GIBBS FREE ENTHALPY

The Gibbs free enthalpy is $G = H - T*S$

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total enthalpy</td>
<td>-75.72119369 Eh</td>
<td></td>
</tr>
<tr>
<td>Total entropy correction</td>
<td>-0.01958150 Eh</td>
<td>-12.29 kcal/mol</td>
</tr>
<tr>
<td>Final Gibbs free enthalpy</td>
<td>-75.74077518 Eh</td>
<td></td>
</tr>
</tbody>
</table>

For completeness - the Gibbs free enthalpy minus the electronic energy $G-E(el)$

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final G</td>
<td>36.70</td>
<td></td>
</tr>
</tbody>
</table>

Let us calculate the free energy change for the reaction:

$\text{H}_2\text{O}_2 \rightarrow 2\text{OH}$

The individual energy terms are: $2\text{OH}(\text{Eh}) - \text{H}_2\text{O}(\text{Eh})$ kcal/mol

Electronic Energy: (-151.465766)-(-151.544525) 49.42

Zero-point Energy: (0.016770)-(0.026240) -5.94

Thermal Correction(translation/rotation): (0.00472)-(0.002832) 1.18

Thermal Enthalpy Correction: (0.001888)-(0.000944) 0.59

Entropy: -(0.039163)-(0.025533) -8.55

Final G 36.70

Thus, both the zero-point energy and the entropy terms both contribute significantly to the total free energy change of the reaction. The entropy term is favoring the reaction due to the emergence of new translational and rotational degrees of freedom. The zero-point correction is also favoring the reaction since the zero-point
vibrational energy of the O-O bond is lost. The thermal correction and the enthalpy correction are both small.

TIP:

- You can run the thermochemistry calculations at several user defined temperatures by providing the program with a list of temperatures:

```
%freq Temp 290, 295, 300
```

### 8.12.5 Anharmonic Analysis

Building upon (analytical) harmonic calculations of the Hessian, it is possible to calculate a semi-quartic force field as well as higher-order property derivatives. These are required for an anharmonic analysis according to second-order vibrational perturbation theory. The VPT2 calculation can be initiated either via the simple input command `!VPT2` or via the VPT2 keyword in the `%vpt2` block. Finer control can be achieved through the `%VPT2` block, as exemplified in this analysis of water.

```
VPT2 Analysis of H2O
!RHF def2-SVP ExtremeSCF
!VPT2

%vpt2
VPT2 On # do a VPT2 analysis, same as !VPT2 (see above)
AnharmDisp 0.05 # anharmonic displacement factor, default is 0.05
HessianCutoff 1e-12 # cut-off for Hessian matrix elements, default is \(10^{-10}\)
PrintLevel 1 # VPT2 print level [1, 2, 3, 4]
MinimiseOrcaPrint True # Minimises the remaining orca output

end

%method
Z_Tol 1e-14

end

* xyz 0 1
 O 0.000000000000000 0.06256176106279 0.06256176106280
 H 0.000000000000000 -0.06185639479702 0.99929463373422
 H 0.000000000000000 0.99929463373424 -0.06185639479703
*
```

After the analysis, a `<basename>.vpt2` file should be present in the working directory. Within that file all the force field and property derivatives are saved. It is used as an input for the `orca_vpt2` programme which is called automatically after the initial displacement calculations. The programme can also be called separately with the command `orca_vpt2 <basename>.vpt2`. 
A few remarks about VPT2 calculations:

- A VPT2 starting geometry should always be tightly converged. For small molecules the `TightOPT` option is not good enough. Depending on your structure, you might want to experiment with the `TolE`, `TolRMSG` and `TolMaxG` keywords of the `%geom` block.

- Similarly, a well converged SCF is required. The use of the `ExtremeSCF` (or similar) keyword is recommended.

- The CP-SCF equations should be converged to at least $10^{-12}$ (modified via the `ZTol` setting in the `%method` block.

- Linear molecules are not supported yet

- Currently, only Hartree–Fock, DFT and MP2 calculations are supported. Furthermore, VPT2 calculations with DFT functionals which do not provide analytical Hessians cannot be carried out.

- By default, updated atomic masses are used to generate the semi-quartic force field (see 8.3). The masses are printed in the `<basename>.vpt2` file and can be changed in the main input by adding `M <new mass>` behind the coordinate input of each atom.

Currently the programme version is being tested. It provides a vibrational-rotational analysis and thus access to $B_0$, the rotational constants at the ro-vibrational ground state. Furthermore `orca_vpt2` calculates, the anharmonic constants $\chi_{rs}$, the rotational-vibrational coupling constants $\alpha^r_i$, the zero-point ro-vibrational energy contributions as well as the harmonic and fundamental transition frequencies $\omega_r$ and $\nu_r$.

While the Coriolis-resonance corrections are implemented, the Fermi-resonance corrections are still missing. Anharmonic corrections to the harmonic intensities will soon follow.

### 8.12.6 Electrical Properties

A few basic electric properties can be calculated in ORCA although this has never been a focal point of development. The properties can be accessed straightforwardly through the `%elprop` block:

```plaintext
! RKS B3LYP SVP SmallPrint TightSCF Grid4
%elprop
 Dipole true
 Quadrupole True
 Polar 1 # analytic polarizability through CP-SCF
 # possible for SCF runs (HF and DFT)
 # = 3: fully numeric
end
* int 0 1
 C 0 0 0 0 0 0
 H 1 0 0 1.09 109.4712 0
 H 1 2 0 1.09 109.4712 0
 H 1 2 3 1.09 109.4712 0
 H 1 2 3 1.09 109.4712 120
 H 1 2 3 1.09 109.4712 240
```
The polarizability is calculated analytically through solution of the coupled-perturbed SCF equations for HF and DFT runs. For MP2 one can differentiate the analytical dipole moment calculated with relaxed densities. For other correlation methods only a fully numeric approach is possible.

---

**THE POLARIZABILITY TENSOR**

---

The raw cartesian tensor (atomic units):

12.85800  -0.00001  -0.00000
-0.00001  12.85797  -0.00000
-0.00000  -0.00000  12.85794

Diagonalized tensor:

12.85794  12.85797  12.85801
0.00022  -0.24634  0.96918
0.00063  -0.96918  -0.24634
1.00000  0.00067  -0.00005

Isotropic polarizability : 12.85797

As expected the polarizability tensor is isotropic.

The following jobs demonstrate the numeric and analytic calculations of the polarizability:

```plaintext

Numerical calculation of the polarizability

! UKS B3LYP/G SVP VeryTightSCF
%elprop Polar 3
EField 1e-5
end
* int 1 2
C 0 0 0 0 0 0
0 1 0 0 1.1105 0 0
*

$new_job

Analytical calculation of the polarizability

! UKS B3LYP/G SVP VeryTightSCF
%elprop Polar 1
Tol 1e-7
end
```
Here the polarizability of CO$^+$ is calculated twice – first numerically using a finite field increment of $10^{-5}$ au and then analytically using the CP-SCF method. In general the analytical method is much more efficient, especially for increasing molecular sizes.

At the MP2 level, polarizabilities can currently be calculated analytically in all-electron calculations, but with frozen core orbitals the dipole moment has got to be differentiated numerically in order to obtain the polarizability tensor. This will in general require tight SCF converge in order to not get too much numerical noise in the second derivative. Also, you should experiment with the finite field increment in the numerical differentiation process. For example consider the following simple job:

```
! RHF MP2 SVP VeryTightSCF
%elprop Polar 2
 EField 1e-4
end
* int 0 1
 C 0 0 0 0 0 0
 O 1 0 0 1.130 0 0
*
```

In a similar way, polarizability calculations are possible with CASSCF. For other correlation methods, where not even response densities are available, only a fully numeric approach (Polar=3) is possible and requires obnoxiously tight convergence.

Note that polarizability calculations have higher demands on basis sets. A rather nice basis set for this property is the Sadlej one (see 9.3.1).

### 8.12.7 NMR Chemical Shifts

NMR chemical shifts at the HF and DFT (standard GGA and hybrid functionals) levels can be obtained from the EPR/NMR module of ORCA. For the calculation of the NMR shielding tensor the program utilizes Gauge Including Atomic Orbitals (GIAOs - sometimes also refered to as London orbitals). [153–155] In this approach, field dependet basis functions are introduced, which minimizes the gauge origin dependence and ensures rapid convergence of the results with the one electron basis set. [156]

The use of the chemical shift module is simple:
# Ethanol - Calculation of the NMR chemical shieldings at the HF/SVP level of theory

**RHF SVP def2/JK Bohrs NMR**

```
* xyz 0 1
C -1.22692181 0.24709455 -0.00000000
C -0.01354839 -0.54677253 0.00000000
H -2.09280406 -0.41333631 0.00000000
H -1.24962478 0.87541936 -0.88916500
H -1.24962478 0.87541936 0.88916500
O 1.09961824 0.30226226 -0.00000000
H 0.00915178 -1.17509696 0.88916500
H 0.00915178 -1.17509696 -0.88916500
H 1.89207683 -0.21621566 0.00000000
*
```

The output for the shieldings contains detailed information about the para- and diamagnetic contribution, the orientation of the tensor, the eigenvalues, its isotropic part etc. For each atom, an output block with this information is given:

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Diamagnetic contribution to the shielding tensor (ppm)</th>
<th>Paramagnetic contribution to the shielding tensor (ppm)</th>
<th>Total shielding tensor (ppm)</th>
<th>Diagonalized sT*s matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>209.678 -10.541 -0.000</td>
<td>59.273 18.302 0.000</td>
<td>268.951 7.760 -0.000</td>
<td>sD50 200.386 214.435 211.021 iso= 208.614</td>
</tr>
<tr>
<td></td>
<td>-26.566 215.778 0.000</td>
<td>13.380 6.063 -0.000</td>
<td>-13.185 221.841 0.000</td>
<td>sP50 -2.770 7.271 58.064 iso= 20.855</td>
</tr>
<tr>
<td>O</td>
<td>-0.000 0.000 200.386</td>
<td>0.000 -0.000 197.615</td>
<td></td>
<td>Total 197.615 221.707 269.085 iso= 229.469</td>
</tr>
</tbody>
</table>

Note that all units are given in ppm and the chemical shieldings given are absolute shieldings (see below). At the end of the atom blocks, a summary is given with the isotropic shieldings and the anisotropy [157] for each nucleus:
8.12 Calculation of Properties

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Element</th>
<th>Isotropic</th>
<th>Anisotropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C</td>
<td>229.469</td>
<td>59.424</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>227.615</td>
<td>62.882</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>55.997</td>
<td>12.498</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>55.445</td>
<td>15.254</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>55.445</td>
<td>15.254</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>334.100</td>
<td>110.659</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>47.326</td>
<td>27.102</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>47.326</td>
<td>27.102</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>64.238</td>
<td>32.111</td>
</tr>
</tbody>
</table>

Thus, the absolute, isotropic shielding for the $^{13}$C nuclei are predicted to be 229.5 and 227.6 ppm and for $^{17}$O it is 334.1 ppm. While basis set convergence using GIAOs is rapid and smooth, it is still recommended to do NMR calculations with basis sets including tight exponents. However, TZVPP or QZVP should be sufficient in most cases. [158,159]

An important thing to note is that in order to compare to experiment, a standard molecule for the type of nucleus of interest has to be chosen. In experiment, NMR chemical shifts are usually determined relative to a standard, for example either CH$_4$ or TMS for proton shifts. Hence, the shieldings for the molecule of interest and a given standard molecule are calculated, and the relative shieldings are obtained by subtraction of the reference value from the computed value. It is of course important that the reference and target calculations have been done with the same basis set and functional. This also helps to benefit from error cancellation if the standard is chosen appropriately (one option is even to consider an “internal standard” - that is to use for example the $^{13}$C shielding of a methyl group inside the compound of interest as reference).

Let us consider an example - propionic acid (CH$_3$-CH$_2$COOH). In databases like the AIST (http://sdb.s.db.aist.go.jp) the $^{13}$C spectrum in CDCl$_3$ can be found. The chemical shifts are given as $\delta_1 = 8.9$ ppm, $\delta_2 = 27.6$ ppm, $\delta_3 = 181.5$ ppm. While intuition already tells us that the carbon of the carboxylic acid group should be shielded the least and hence shifted to lower fields (larger $\delta$ values), let’s look at what calculations at the HF, BP86 and B3LYP level of theory using the SVP and the TZVPP basis sets yield:

<table>
<thead>
<tr>
<th>method</th>
<th>$\sigma_1$</th>
<th>$\sigma_2$</th>
<th>$\sigma_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF/SVP</td>
<td>191.7</td>
<td>176.6</td>
<td>23.7</td>
</tr>
<tr>
<td>HF/TZVPP</td>
<td>183.5</td>
<td>167.1</td>
<td>9.7</td>
</tr>
<tr>
<td>B86/SVP</td>
<td>181.9</td>
<td>165.8</td>
<td>26.5</td>
</tr>
<tr>
<td>B86/TZVPP</td>
<td>174.7</td>
<td>155.5</td>
<td>7.6</td>
</tr>
<tr>
<td>B3LYP/SVP</td>
<td>181.8</td>
<td>165.8</td>
<td>22.9</td>
</tr>
<tr>
<td>B3LYP/TZVPP</td>
<td>173.9</td>
<td>155.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Looking at these results, we can observe several things - first of all, the dramatic effect of using too small basis sets, which yields differences of more than 10 ppm. Second, the results obviously change a lot upon inclusion of electron correlation by DFT and are functional dependent. Last but not least, these values have nothing in common with the experimental ones (they change in the wrong order), as the calculation yields absolute shieldings like in the table above, but the experimental ones are relative shifts, in this case relative to TMS.
In order to obtain the relative shifts, we calculate the shieldings $\sigma_{TMS}$ of the standard molecule (TMS HF/TZVPP: 194.1 ppm, BP86/TZVPP: 184.8 ppm, B3LYP/TZVPP: 184.3 ppm) and by using $\delta_{\text{mol}} = \sigma_{\text{ref}} - \sigma_{\text{mol}}$ we can evaluate the relative chemical shieldings (in ppm) and directly compare to experiment:

<table>
<thead>
<tr>
<th>method</th>
<th>$\delta_1$</th>
<th>$\delta_2$</th>
<th>$\delta_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF/TZVPP</td>
<td>10.6</td>
<td>27.0</td>
<td>184.4</td>
</tr>
<tr>
<td>B86/TZVPP</td>
<td>10.1</td>
<td>29.3</td>
<td>177.2</td>
</tr>
<tr>
<td>B3LYP/TZVPP</td>
<td>10.4</td>
<td>29.3</td>
<td>181.4</td>
</tr>
<tr>
<td>Exp.</td>
<td>8.9</td>
<td>27.6</td>
<td>181.5</td>
</tr>
</tbody>
</table>

A few notes on the GIAO implementation in ORCA are in order. The use of GIAO’s lead to some fairly complex molecular one- and two-electron integrals and a number of extra terms on the right hand side of the coupled-perturbed SCF equations. These contributions can be time consuming to calculate. In the present ORCA implementation the four-center two-electron GIAO integrals are fairly slow. Hence, we recommend to only use them for reference type calculations on small molecules. A variety of approximations were implemented and are currently being tested. The most satisfactory of these approximations is the RI-JK approximation. Hence, it has presently been made the default. This means, that - if you follow the defaults - you have to provide an auxiliary basis set, even if the SCF calculation is done without any approximation. Please note that the scaling of RIJK is the same as in the SCF, e.g. fourth power of the system size with a small prefactor. Hence, for large molecules, these calculations will be time consuming.

The approximation can be controlled in the eprnmr input block

```plaintext
%eprnmr
GIAO_1el = giao_1el_analytic # analytic integration (default)
 = giao_1el_numeric # numeric integration
GIAO_2el = giao_2el_analytic # fully analytic handling of 2el terms
 = giao_2el_rijonx # Coulomb with RI, exchange exact
 = giao_2el_rijcosx # Coulomb with RI, exchange COSX
 = giao_2el_rijk # RI for Coulomb and exchange (default)
 = giao_2el_cosk # Chain of spheres for Coulomb and exchange
end
```

It is also emphasized that the user can finely control for which nuclei the shifts are calculated. This works in exactly the same way as for the hyperfine and quadrupole couplings described in the next section. For example:

```plaintext
! B3LYP def2-TZVP def2/JK TightSCF

* int 0 1
 C 0 0 0 0 0 0
 C 1 0 0 1.35 0 0
 H 1 2 0 1.1 120 0
 H 1 2 3 1.1 120 180
```
8.12 Calculation of Properties

NMR chemical shifts are also implemented in combination with implicit solvent models, hence the NMR keyword can be combined with the cpcm input block. Note that for calculations including implicit solvent, it is highly recommended to used geometries that have also been obtained by optimizing the geometry including the implicit solvent model.

8.12.8 Hyperfine and Quadrupole Couplings

Hyperfine and quadrupole couplings can be obtained from the EPR/NMR module of ORCA. Since there may be several nuclei that you might be interested in the input is relatively sophisticated.

An example how to calculate the hyperfine and field gradient tensors for the CN radical is given below:

```
! UKS PBE0 def2-MSVP SmallPrint TightSCF Grid5
* int 0 2
 C 0 0 0 0 0 0
 N 1 0 0 1.170 0 0
*
%eprnmr Nuclei = all C { aiso, adip }
Nuclei = all N { aiso, adip, fgrad }
end
```

In this example the hyperfine tensor is calculated for all carbon atoms and all nitrogen atoms which, of course, happen to be a single atom in this specific case. In general you can also give the numbers of certain atoms instead of “all” in order to avoid undesired calculations. A more subtle point is that you have to specify the Nuclei statement after the definition of the atomic coordinates or the program will not figure out what is meant by “all”.

The output looks like the following. It contains similar detailed information about the individual contributions to the hyperfine couplings, its orientation, its eigenvalues, the isotropic part and (if requested) also the quadrupole coupling tensor.
ELECTRIC AND MAGNETIC HYPERFINE STRUCTURE

Nucleus $^0$C : $A$:ISTP= 13 I= 0.5 $P$=134.1903 MHz/au$^3$
$Q$:ISTP= 13 I= 0.5 $Q$= 0.0000 barn

Raw HFC matrix (all values in MHz):

<table>
<thead>
<tr>
<th></th>
<th>696.2059</th>
<th>0.0000</th>
<th>0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td></td>
<td>543.3994</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td>543.3994</td>
</tr>
</tbody>
</table>

$A$(FC) = 594.3349 594.3349 594.3349
$A$(SD) = 101.8709
$A$(Tot) = 696.2059 543.3994 543.3994

Orientation:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>-1.0000000</td>
</tr>
<tr>
<td>Y</td>
<td>0.8457581</td>
<td>0.5335666</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>Z</td>
<td>0.5335666</td>
<td>0.8457581</td>
<td>-0.0000000</td>
</tr>
</tbody>
</table>

Note: Tensor is right-handed

Nucleus $^1$N : $A$:ISTP= 14 I= 1.0 $P$= 38.5677 MHz/au$^3$
$Q$:ISTP= 14 I= 1.0 $Q$= 0.0204 barn

Raw HFC matrix (all values in MHz):

<table>
<thead>
<tr>
<th></th>
<th>13.2269</th>
<th>-0.0000</th>
<th>-0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0000</td>
<td></td>
<td>-45.5967</td>
<td>-0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
<td></td>
<td>45.5967</td>
<td></td>
</tr>
</tbody>
</table>

$A$(FC) = -25.9889 -25.9889 -25.9889
$A$(SD) = -19.6079
$A$(Tot) = 13.2269 -45.5967 -45.5967

Orientation:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>Y</td>
<td>-0.8307391</td>
<td>-0.5566620</td>
<td>-0.0000000</td>
</tr>
<tr>
<td>Z</td>
<td>0.5566620</td>
<td>0.8307391</td>
<td>-0.0000000</td>
</tr>
</tbody>
</table>

Note: Tensor is right-handed

Raw EFG matrix (all values in a.u.$^3$):

<table>
<thead>
<tr>
<th></th>
<th>-0.1833</th>
<th>-0.0000</th>
<th>-0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0000</td>
<td>0.0000000</td>
<td>0.917</td>
<td>0.0000</td>
</tr>
<tr>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000000</td>
<td>0.917</td>
</tr>
</tbody>
</table>

$V$(El) = 0.6468 0.6468 -1.2936
$V$(Nuc) = -0.5551 -0.5551 1.1103

$V$(Tot) = 0.0917 0.0917 -0.1833

Orientation:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.0000000</td>
<td>0.0000000</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>
Another point for hyperfine calculations is that you should normally use basis sets that have more flexibility in the core region. In the present example a double-zeta basis set was used. For accurate calculations you need more flexible basis sets. There are several dedicated basis set for hyperfine calculations: (a) the EPR-II basis of Barone and co-workers. It is only available for a few light atoms (H, B, C, N, O, F). It is essentially of double-zeta plus polarization quality with added flexibility in the core region and should give reasonable results (b) The IGLO-II and IGLO-III bases of Kutzelnigg and co-workers. They are fairly accurate but also only available for some first and second row elements (c) the CP basis for first row transition metals which is accurate as well. (d) General purpose HF-limit basis sets are the uncontracted Partridge basis sets. They will probably be too expensive for routine use but are useful for calibration purposes.

For other elements ORCA does not yet have dedicated default basis sets for this situation it is very likely that you have to tailor the basis set to your needs. If you use the statement \texttt{Print[p.basis]} 2 in the \texttt{%output} block (or \texttt{PrintBasis} in the simple input line) the program will print the actual basis set in input format (for the basis block). You can then add or remove primitives, uncontract core bases etc. For example, here is a printout of the carbon basis DZP in input format:

```plaintext
Basis set for element : C
NewGTO 6
s 5
 1 3623.8613000000 0.0022633312
 2 544.0462100000 0.0173452633
 3 123.7433800000 0.0860412011
 4 34.7632090000 0.3022227208
 5 10.9333330000 0.6898436475
s 1
 1 3.5744765000 1.00000000000
s 1
 1 0.5743824500 1.00000000000
s 1
 1 0.1730364000 1.00000000000
p 3
 1 9.4432819000 0.0570590790
 2 2.0017986000 0.3134587330
 3 0.5462971800 0.7599881644
```
The “s 5”, for example, stands for the angular momentum and the number of primitives in the first basis function. Then there follow five lines that have the number of the primitive, the exponent and the contraction coefficient (unnormalized) in it. **Remember also that when you add very steep functions you must increase the size of the integration grid if you do DFT calculations! If you do not do that your results will be inaccurate.** You can increase the radial grid size by using IntAcc in the Method block or for individual atoms (section 9.2.2.2 explains how to do this in detail). In the present example the changes caused by larger basis sets in the core region and more accurate integration are relatively modest – on the order of 3%, which is, however, still significant if you are a little puristic.

The program can also calculate the spin-orbit coupling contribution to the hyperfine coupling tensor as described in section 9.29.3. To extract the A tensor from a oligonuclear transition metal complex, the A(iso) value in the output is to be processed according to the method described in ref. [160].

If also EPR g-tensor or D-tensor calculations (see next section) are carried out in the same job, ORCA automatically prints the orientation between the hyperfine/quadrupole couplings and the molecular g- or D-tensor. For more information on this see section 9.33.11.

### 8.12.9 The EPR g-Tensor and the Zero-Field Splitting Tensor

The EPR g-tensor is a property that can be well calculated at the SCF level with ORCA through solution of the coupled-perturbed SCF equations. Consider the following multi-job input that computes the g-tensor at three different levels of theory:
The statement `ori -3` means that the origin for this gauge dependent property is to be taken at the center of electronic charge. The `SOMF(1X)` defines the details of the spin-orbit-coupling operator and are explained in section 9.29.2 (in the present case an accurate variant is specified) Other choices and additional variables exist and are explained in detail in section 9.29.2.

The output looks like the following. It contains information on the contributions to the g-tensor (relativistic mass correction, diamagnetic spin-orbit term (= gauge-correction), paramagnetic spin-orbit term (= OZ/SOC)), the isotropic g-value and the orientation of the total tensor.

<table>
<thead>
<tr>
<th>ELECTRONIC G-MATRIX</th>
</tr>
</thead>
</table>

Diagonalized \( gT^t g \) matrix (sqrt of eigenvalues taken):

\[
\begin{array}{ccc}
2.0101862 & -0.0031528 & 0.0000000 \\
-0.0031529 & 2.0079392 & 0.0000000 \\
0.0000000 & 0.0000000 & 2.0021428 \\
\end{array}
\]

\[
\begin{array}{ccc}
gel & 2.0023193 & 2.0023193 & 2.0023193 \\
gRMC & -0.0003182 & -0.0003182 & -0.0003182 \\
gDSO(tot) & 0.0000725 & 0.0001471 & 0.0001485 \\
gPSO(tot) & 0.0000692 & 0.0001567 & 0.0002002 \\
\end{array}
\]

\[
\begin{array}{ccc}
g(tot) & 2.0021428 & 2.0057157 & 2.0124097 iso= 2.0067561 \\
Delta-g & -0.0001765 & 0.0033964 & 0.0100905 iso= 0.0044368 \\
Orientation: & & & \\
X & -0.0000000 & -0.5763356 & 0.8172131 \\
Y & -0.0000000 & -0.8172131 & -0.5763356 \\
Z & 1.0000000 & -0.0000000 & -0.0000000 \\
\end{array}
\]

If the total spin of the system is \( S > 1/2 \) then the zero-field-splitting tensor can also be calculated and printed. For example consider the following job on a hypothetical Mn(III)-complex.
The output documents the individual contributions to the D-tensor which also contains (unlike the g-tensor) contributions from spin-flip terms.

Some explanation must be provided:

- The present implementation in ORCA is valid for HF, DFT and hybrid DFT.

- There are four different variants of the SOC-contribution, which shows that this is a difficult property. We will briefly discuss the various choices.

- The QRO method is fully documented [161] and is based on a theory developed earlier. [162] The QRO method is reasonable but somewhat simplistic and is superseded by the CP method described below.

- The Pederson-Khanna model was brought forward in 1999 from qualitative reasoning. [163] It also contains incorrect prefactors for the spin-flip terms. We have nevertheless implemented the method for comparison. In the original form it is only valid for local functionals. In ORCA it is extended to hybrid functionals and HF.

- The coupled-perturbed method is a generalization of the DFT method for ZFSs; it uses revised prefactors for the spin-flip terms and solves a set of coupled-perturbed equations for the SOC perturbation. Therefore it is valid for hybrid functionals. It has been described in detail. [164]
• The DSS part is an expectation value that involves the spin density of the system. In detailed calibration work [165] it was found that the spin-unrestricted DFT methods behave somewhat erratically and that much more accurate values were obtained from open-shell spin-restricted DFT. Therefore the “UNO” option allows the calculation of the SS term with a restricted spin density obtained from the singly occupied unrestricted natural orbitals.

• The DSS part contains an erratic self-interaction term for UKS/UHF wavefunction and canonical orbitals. Thus, UNO is recommended for these types of calculations. [166] If the option DIRECT is used nevertheless, ORCA will print a warning in the respective part of the output.

### 8.12.10 Mössbauer Parameters

$^{57}$Fe Mössbauer spectroscopy probes the transitions of the nucleus between the $I = \frac{1}{2}$ ground state and the $I = \frac{3}{2}$ excited state at 14.4 keV above the ground state. The important features of the Mössbauer spectrum are the isomer shift ($\delta$) and the quadrupole splitting ($\Delta E_Q$). An idealized spectrum is shown in Figure 8.29.

![Figure 8.29: An idealized Mössbauer spectrum showing both the isomer shift, $\delta$, and the quadrupole splitting, $\Delta E_Q$.](image)

The isomer shift measures the shift in the energy of the $\gamma$-ray absorption relative to a standard, usually Fe foil. The isomer shift is sensitive to the electron density at the nucleus, and indirectly probes changes in the bonding of the valence orbitals due to variations in covalency and 3d shielding. Thus, it can be used to probe oxidation and spin states, and the coordination environment of the iron.

The quadrupole splitting arises from the interaction of the nuclear quadrupole moment of the excited state with the electric field gradient at the nucleus. The former is related to the non-spherical charge distribution in the excited state. As such it is extremely sensitive to the coordination environment and the geometry of the complex.

Both the isomer shift and quadrupole splitting can be successfully predicted using DFT methods. The isomer shift is directly related to the s electron density at the nucleus and can be calculated using the formula
where $\alpha$ is a constant that depends on the change in the distribution of the nuclear charge upon absorption, and $\rho_0$ is the electron density at the nucleus [167]. The constants $\alpha$ and $\beta$ are usually determined via linear regression analysis of the experimental isomer shifts versus the theoretically calculated electron density for a series of iron compounds with various oxidation and spin states. Since the electron density depends on the functional and basis set employed, fitting must be carried out for each combination used. A compilation of calibration constants ($\alpha$, $\beta$ and $C$) for various methods was assembled. [168] Usually an accuracy of better than 0.10 mm s$^{-1}$ can be achieved for DFT with reasonably sized basis sets.

The quadrupole splitting is proportional to the largest component of the electric field gradient (EFG) tensor at the iron nucleus and can be calculated using the formula:

$$\Delta E_Q = \frac{1}{2} eQV_{zz} \left(1 + \frac{\eta^2}{3}\right)^2$$

(8.12)

where $e$ is the electrical charge of an electron and $Q$ is the nuclear quadrupole moment of Fe (approximately 0.16 barns). $V_{xx}$, $V_{yy}$ and $V_{zz}$ are the electric field gradient tensors and $\eta$, defined as

$$\eta = \left|\frac{V_{xx} - V_{yy}}{V_{zz}}\right|$$

(8.13)

is the asymmetry parameter in a coordinate system chosen such that $|V_{zz}| \geq |V_{yy}| \geq |V_{xx}|$.

An example of how to calculate the electron density and quadrupole splitting of an iron center is as follows:

```
%eprnmr
 nuclei = all Fe {fgrad, rho}
end
```

If the core properties basis set CP(PPP) is employed, one has to increase the radial integration accuracy for the iron atom, for example:

```
%basis newgto Fe "CP(PPP)" end
end

%method
 SpecialGridAtoms 26
 SpecialGridIntAcc 7
end
```

The output file should contain the following lines, where you obtain the calculated quadrupole splitting directly and the RHO(0) value (the electron density at the iron nucleus). To obtain the isomer shift one has to insert the RHO(0) value into the appropriate linear equation (Eq. 8.11).
8.12 Calculation of Properties

Moessbauer quadrupole splitting parameter (proper coordinate system)
\[ e^{2}q_{Q} = -0.406 \text{ MHz} = -0.035 \text{ mm/s} \]
\[ \text{eta} = 0.871 \]
\[ \Delta E_{Q} = \left(\frac{1}{2}e^{2}q_{Q}\sqrt{1+\frac{1}{3}\text{eta}^{2}}\right) = -0.227 \text{ MHz} = -0.020 \text{ mm/s} \]
\[ \text{RHO}(0) = 11581.35289571 \text{ a.u.}^{*}\text{a} \quad \# \text{ the electron density at the Fe nucleus.} \]

NOTE:
- Following the same procedure, Moessbauer parameters can be computed with the CASSCF wavefunction. In case of a state-averaged CASSCF calculation, the averaged density is used in the subsequent Moessbauer calculation.

8.12.11 Broken-Symmetry Wavefunctions and Exchange Couplings

A popular way to estimate the phenomenological parameter \( J_{AB} \) that enters the Heisenberg–Dirac–van Vleck Hamiltonian which parameterizes the interaction between two spin systems is the “broken-symmetry” formalism. The phenomenological Hamiltonian is:

\[
H_{\text{HDvV}} = -2J_{AB}\vec{S}_{A}\vec{S}_{B}
\]  

\[(8.14)\]

It is easy to show that such a Hamiltonian leads to a “ladder” of spin states from \( S = S_{A} + S_{B} \) down to \( S = |S_{A} - S_{B}| \). If the parameter \( J_{AB} \) is positive the systems “A” and “B” are said to be ferromagnetically coupled because the highest spin-state is lowest in energy while in the case that \( J_{AB} \) is negative the coupling is antiferromagnetic and the lowest spin state is lowest in energy.

In the broken symmetry formalism one tries to obtain a wavefunction that breaks spatial (and spin) symmetry. It may be thought of as a “poor man’s MC-SCF” that simulates a multideterminantal character within a single determinant framework. Much could be said about the theoretical advantages, disadvantages, problems and assumptions that underly this approach. Here, we only want to show how this formalism is applied within ORCA.

For \( N_{A} \) unpaired electrons localized on “site A” and \( N_{B} \) unpaired electrons localized on a “site B” one can calculate the parameter \( J_{AB} \) from two separate spin-unrestricted SCF calculations: (a) the calculation for the high-spin state with \( S = \frac{(N_{A}+N_{B})}{2} \) and (b) the “broken symmetry” calculation with \( M_{S} = \frac{(N_{A}-N_{B})}{2} \) that features \( N_{A} \) spin-up electrons that are quasi-localized on “site A” and \( N_{B} \) spin-down electrons that are quasi-localized on “site B”. Several formalisms exist to extract \( J_{AB} \): [169–174].

\[
J_{AB} = -\frac{(E_{\text{HS}} - E_{\text{BS}})}{(S_{A} + S_{B})^{2}}
\]  

\[(8.15)\]

\[
J_{AB} = -\frac{(E_{\text{HS}} - E_{\text{BS}})}{(S_{A} + S_{B})(S_{A} + S_{B} + 1)}
\]  

\[(8.16)\]

\[
J_{AB} = -\frac{(E_{\text{HS}} - E_{\text{BS}})}{(S^{2})_{\text{HS}} - (S^{2})_{\text{BS}}}
\]  

\[(8.17)\]
We prefer the last definition (Eq. 8.17) because it is approximately valid over the whole coupling strength regime while the first equation implies the weak coupling limit and the second the strong coupling limit.

In order to apply the broken symmetry formalism use:

```
%scf BrokenSym NA,NB
end
```

The program will then go through a number of steps. Essentially it computes an energy and wavefunction for the high-spin state, localizes the orbitals and reconverges to the broken symmetry state.

**CAUTION:** Make sure that in your input coordinates “site A” is the site that contains the larger number of unpaired electrons!

Most often the formalism is applied to spin coupling in transition metal complexes or metal-radical coupling or to the calculation of the potential energy surfaces in the case of homolytic bond cleavage. In general, hybrid DFT methods appear to give reasonable semiquantitative results for the experimentally observed splittings.

As an example consider the following simple calculation of the singlet–triplet splitting in a stretched Li$_2$ molecule:

```
Example of a broken symmetry calculation
#
! UKS B3LYP/G SVP TightSCF Grid4 NoFinalGrid
%scf BrokenSym 1,1
end
* xyz 0 3
 Li 0 0 0
 Li 0 0 4
*
```

There is a second mechanism for generating broken-symmetry solutions in ORCA. This mechanism uses the individual spin densities and is invoked with the keywords `FlipSpin` and `FinalMs`. The strategy is to exchange the $\alpha$ and $\beta$ spin blocks of the density on certain user-defined centers after converging the high-spin wavefunction. With this method arbitrary spin topologies should be accessible. The use is simple:

```
Example of a broken symmetry calculation using the "FlipSpin" feature
#
! UKS B3LYP/G SVP TightSCF Grid4 NoFinalGrid
%scf
 FlipSpin 1
```
Finally, you may attempt to break the symmetry by using the SCF stability analysis feature (see Section 9.7). The ground spin state can be obtained by diagonalizing the above spin Hamiltonian through ORCA-ECA utility (see 9.33.13).

### 8.12.12 Natural Orbitals for Chemical Valence

In ORCA chemical bonds can be analyzed in terms of the electron density rearrangement taking place upon bond formation. This quantity is defined as the difference between the electron density of an adduct AB and that of the so-called “supermolecule”, obtained from the antisymmetrized product of the wavefunctions of the non-interacting A and B fragments. This electron density difference can be analyzed by exploiting the properties of the Natural Orbitals for Chemical Valence (NOCVs), that are the eigenvectors of the corresponding one electron density difference matrix. This analysis is available in ORCA for HF and DFT (only for closed shell systems).

The generation of NOCVs is done in three steps.

In the first step, one has to perform single point energy calculations on the isolated fragments (A and B in the present example) and save the corresponding .gbw files (A.gbw and B.gbw).

In the second step, one has to generate the .gbw file of the supermolecule (AB.gbw), using:

```
orca_mergefrag A.gbw B.gbw AB.gbw
```

In the third step, one has to run an SCF calculation using the orbitals in the AB.gbw file as starting guess and setting the EDA keyword to true in the SCF block.
Note that, when the NOCV analysis is used in conjunction with DFT calculations, a very fine integration grid must be used. With the grid5 keyword, one obtains results that are typically converged with respect to the integration grid for standard DFT. For scalar relativistic ZORA calculations, it is advisable to set also IntAcc 6 in the method block. If the NOCV analysis is requested but a starting guess is not given, the analysis will be performed with the default guess used in the SCF calculation, leading to completely different results.

A typical output of the analysis is reported the following:

```
ENERGY DECOMPOSITION ANALYSIS OF THE SCF INTERACTION ENERGY

Delta Total Energy (Kcal/mol) : -9.998

NOCV/ETS analysis

<table>
<thead>
<tr>
<th>negative eigen. (e)</th>
<th>positive eigen. (e)</th>
<th>DE_k (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1739401311</td>
<td>0.1739401311</td>
<td>-5.952</td>
</tr>
<tr>
<td>-0.0607716293</td>
<td>0.0607716293</td>
<td>-1.189</td>
</tr>
<tr>
<td>-0.0420733869</td>
<td>0.0420733869</td>
<td>-1.278</td>
</tr>
<tr>
<td>-0.0288977718</td>
<td>0.0288977718</td>
<td>-0.490</td>
</tr>
<tr>
<td>-0.0207403772</td>
<td>0.0207403772</td>
<td>-0.220</td>
</tr>
<tr>
<td>-0.0192167553</td>
<td>0.0192167553</td>
<td>-0.219</td>
</tr>
<tr>
<td>-0.0126925147</td>
<td>0.0126925147</td>
<td>-0.148</td>
</tr>
<tr>
<td>-0.0077091386</td>
<td>0.0077091386</td>
<td>-0.043</td>
</tr>
<tr>
<td>-0.0044403861</td>
<td>0.0044403861</td>
<td>-0.329</td>
</tr>
<tr>
<td>-0.0042656499</td>
<td>0.0042656499</td>
<td>-0.139</td>
</tr>
<tr>
<td>-0.0000000000</td>
<td>0.0000000000</td>
<td>-0.000</td>
</tr>
</tbody>
</table>

Consistency Check Sum_k DE_k : -9.998

NOCV were saved in : jobname.nocv.gbw
```

The NOCV eigenvalues are printed alongside with the corresponding energy contributions, computed using the Extended Transition State (ETS) method of Ziegler [175]. The NOCVs, with the corresponding eigenvalues, are stored in a .gbw file and can be used for subsequent analyses. “Delta Total Energy” is the energy difference between the reference (the supermolecule) and the converged SCF wavefunction. This quantity is also called “Orbital Interaction” term in the NOCV/ETS energy decomposition scheme. In order to check if results are at convergence with respect to the integration grid, one can compare this value with the difference
between the energy of the converged SCF wavefunction and the first step of the SCF iteration. These two numbers should be identical.

### 8.12.13 Local Energy Decomposition

The “Local Energy Decomposition” (LED) analysis [176, 177] is a tool for obtaining insights into the nature of intermolecular interactions by decomposing the DLPNO-CCSD(T) energy into physical meaningful contributions. By defining two fragments, the corresponding interaction energy is decomposed (see Section 9.29.4 for further information).

All that is required to obtain this decomposition in ORCA is to define the fragments and specify the !LED keyword in the simple input line. Note that the decomposition of the Hartree-Fock energy makes use of the RI approximation. Hence, in order to obtain fully consistent results, the initial Hartree-Fock calculation should also be done with the RI-JK approximation. Otherwise, there will be a slight mismatch between the SCF energy and the energy decomposition. This may be perfectly acceptable. Note that tightly converged SCF and coupled cluster energies are preferable in order to avoid any numerical noise in the results. Moreover, for weakly interacting systems, TightPNO settings should be used. An example of input follows.

```plaintext
! RHF TightSCF cc-pVDZ cc-pVTZ/JK RIJK
! DLPNO-CCSD(T) cc-pVDZ/C TightPNO LED
* int 0 1
C(1) 0 0 0 0.000000 0.000 0.000
H(1) 1 0 0 1.095136 0.000 0.000
H(1) 1 2 0 1.094874 109.545 0.000
H(1) 1 2 3 1.094834 109.598 120.042
H(1) 1 2 3 1.095358 109.416 240.067
H(2) 4 1 2 3.110450 138.295 175.624
C(2) 6 4 1 1.095116 84.968 7.763
H(2) 7 6 4 1.095143 109.379 69.448
H(2) 7 6 4 1.095288 109.366 189.600
H(2) 7 6 4 1.094884 109.475 309.523
*
```

The program will then print information on the fragments and the assignment of localized MOs to fragments.

```

FRAGMENT ANALYSIS OF THE TOTAL ENERGY

Number of fragments = 2
Fragment 1: 0 1 2 3 4
Fragment 2: 5 6 7 8 9
Populations of internal orbitals onto Fragments:
 0: 1.000 0.000 assigned to fragment 1
```
Running Typical Calculations

This is followed by the decomposition of the Hartree-Fock energy into intra- and inter-fragment contributions, based on the localisation of the occupied orbitals.

```
| 1: | 0.000 | 1.000 | assigned to fragment 2 |
| 2: | 1.029 | 0.000 | assigned to fragment 1 |
| 3: | 1.029 | 0.000 | assigned to fragment 1 |
| 4: | 1.029 | 0.000 | assigned to fragment 1 |
| 5: | 1.029 | 0.000 | assigned to fragment 1 |
| 6: | 0.000 | 1.029 | assigned to fragment 2 |
| 7: | 0.000 | 1.029 | assigned to fragment 2 |
| 8: | 0.000 | 1.029 | assigned to fragment 2 |
| 9: | 0.000 | 1.029 | assigned to fragment 2 |
```

This is followed by the decomposition of the Hartree-Fock energy into intra- and inter-fragment contributions, based on the localisation of the occupied orbitals.

```
HARTREE-FOCK ENERGY DECOMPOSITION

Nuclear repulsion = 40.419238613944
One electron energy = -186.512170061190 (T= 80.15476396165, V= -239.312496085413)
Two electron energy = 65.696131573213 (J= 78.864187396616, K= -13.168055823404)
Total energy = -80.39679874033
Consistency check = -80.39679874033 (sum of intra- and inter-fragment energies)
Kinetic energy = 80.154763906165
Potential energy = -160.551563780198
Virial ratio = 2.003019608019
```

```
INTRA-FRAGMENT SCF ENERGY FOR FRAGMENT 1

Nuclear repulsion = 13.373425098664
One electron energy = -79.579418888625 (T= 40.077521444727, V= -119.656940333352)
Two electron energy = 26.008519989416 (J= 32.592272339649, K= -6.583752350233)
Total energy = -40.197473800544
Kinetic energy = 40.077521444727
Potential energy = -80.274995245272
Virial ratio = 2.002993008337
```

```
INTRA-FRAGMENT SCF ENERGY FOR FRAGMENT 2

Nuclear repulsion = 13.372726585574
One electron energy = -79.578313290624 (T= 40.077242461437, V= -119.655555752061)
Two electron energy = 26.008109102053 (J= 32.591796692056, K= -6.583687590003)
Total energy = -40.197477602997
```
Kinetic energy = 40.077242461437
Potential energy = -88.274720064434
Virial ratio = 2.003000085190

---

FRAGMENT SCF INTERACTION FRAGMENTS 2/1

Nuclear repulsion = 13.673086929705
Nuclear attraction = -27.354437881941
Coulomb repulsion = 13.680118364912

Sum of electrostatics = -0.001232587324 ( -0.773 kcal/mol)
Two electron exchange = -0.000615883168 ( -0.386 kcal/mol)
Total SCF interaction = -0.001848470492 ( -1.160 kcal/mol)

Sum of INTRA-fragment SCF energies = -80.394951403541
Sum of INTER-fragment SCF energies = -0.001848470492
Total SCF energy = -80.396799874033

In order to convert the intra-fragment energy components into contributions to the binding energy, single point energy calculations must be carried out on the isolated monomers, frozen in the geometry they have in the adduct, and the corresponding terms must be subtracted. Note that one can also include the deformation energy by simply computing the energy of the geometrically relaxed fragments (see Section 9.29.4 for further information). This can be readily achieved with a shell script or a spreadsheet program.

In the next part of the output, a first decomposition of the correlation energy into intra- and inter-fragment contributions, based on the localisation of the occupied orbitals, is printed.

---

CORRELATION ENERGY DECOMPOSITION

---

INTER- vs INTRA-FRAGMENT CORRELATION ENERGIES (Eh)

<table>
<thead>
<tr>
<th>Fragment 1</th>
<th>Fragment 2</th>
<th>Sum=</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD sum of pair en.</td>
<td>-0.185120348699</td>
<td>-0.185125705813</td>
</tr>
<tr>
<td>Triples corrections</td>
<td>-0.000615883168</td>
<td>-0.000615883168</td>
</tr>
<tr>
<td>PNO &amp; local corrections</td>
<td>-0.000004349418</td>
<td>-0.000004270842</td>
</tr>
</tbody>
</table>

-0.188796347564 -0.188800602657 sum= -0.377596958220
Interaction correlation for Fragments 2 and 1:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD pair energies</td>
<td>-0.000830593381</td>
<td>-0.521 kcal/mol</td>
</tr>
<tr>
<td>Triples contribution</td>
<td>-0.000085801584</td>
<td>-0.054 kcal/mol</td>
</tr>
<tr>
<td>PNO &amp; Local corrections</td>
<td>-0.000013570952</td>
<td>-0.009 kcal/mol</td>
</tr>
<tr>
<td>Total interaction</td>
<td>-0.000929965917</td>
<td>-0.584 kcal/mol</td>
</tr>
</tbody>
</table>

Sum of INTRA-fragment correlation energies = -0.377596950220
Sum of INTER-fragment correlation energies = -0.000929965917

Total correlation energy = -0.378526916137

For the DLPNO-CCSD strong pairs, a more sophisticated decomposition, based on the localisation of both occupied orbitals and PNOs, is also carried out and printed. Accordingly, the correlation energy is divided into intra-fragment, dispersion and charge transfer components. Note that, due to the charge transfer excitations, these intra-fragment contributions differ from the ones obtained in the previous decomposition. For further information, see Section 9.29.4.

Decomposition of the CCSD pair energies
Pipek-Mezey localization is used for localizing PNOs
Decomposition of the intra-fragment CCSD energies ..
FRAGMENT 1 = -0.185126848699 Eh ... done
FRAGMENT 2 = -0.185125705813 Eh ... done

Decomposition of the inter-fragments CCSD energies ..
FRAGMENTS 2,1 = -0.000830593381 Eh ... done

Summary strong pair decomposition
Intra fragment contributions:
INTRA Fragment 1  -0.185035776
INTRA Fragment 2  -0.185010910

Dispersion contributions:
Dispersion 2,1  -0.000723393

Charge transfer contributions:
Charge Transfer 1 to 2  -0.000139187
Charge Transfer 2 to 1  -0.000167381

8.13 QM/MM Calculations

ORCA is easy to interface as a QM engine in pretty much any QM/MM environment, as it will accept a set of point charges from an external file (see section 9.1.3) and it will return, in a transparent format, all the
8.13 QM/MM Calculations

required information for computing energies and gradients to the driving program. In our research group we have experience with four different QM/MM environments: ChemShell, Gromacs, pDynamo and NAMD. In the following each of the interfaces are described. Is beyond the scope of the manual to be exhaustive, and only minimal working examples are going to be presented. These will cover mainly the technical aspects with respect to the QM part of the QM/MM calculation. For the initial preparation of the system the user is referred to the documentation of the driving program.

8.13.1 ORCA and Gromacs

In cooperation with the developers of Gromacs software package we developed an interface to ORCA. The interface is available starting with Gromacs version 4.0.4 up to version 4.5.5.

As mentioned above, the initial setup has to be done with the Gromacs. In the QM/MM calculation Gromacs will call ORCA to get the energy and the gradients of the QM atoms. The interface can be used to perform all job types allowed by the Gromacs software package, e.g. optimizations, molecular dynamics, free energy. In addition, for geometry optimizations we have implemented a microiterative scheme that can be requested by setting the keyword $bOpt = yes$ in the Gromacs .mdp file. This will cause ORCA to perform a QM geometry optimization every time it is called by Gromacs. During this optimization ORCA will also compute the Lennard-Jones interaction between the QM and MM atoms, and freeze the boundary atoms. This microiterative scheme can also be used to perform a transition state optimization. If you are looking for a transition state and have a good initial guess for the structure, you can carry out an optimization of the MM system and at the same time perform a transition state optimization of the QM system with ORCA via the microiterative scheme. Since it is expensive to calculate the Hessian for each microiterative step, the user can tell ORCA to use the (updated) Hessian matrix of the previous step via read_temp_Hess in the ORCA input.

In order to allow full flexibility to the user, the information for the QM run are provided in a separate plain text file, called GromacsBasename.ORCAINFO. When Gromacs writes the input for the ORCA calculation, it will merge this file with the information on the coordinates, point charges, Lennard-Jones coefficients and type of calculation (EnGrad, Opt, TSOpt).

Below is a typical example of an input file created by Gromacs, where for each Gromacs optimization step, a full optimization of the QM-part will be performed by ORCA, instead of just doing the energy and gradient calculation.

```plaintext
Optimization step in the Lennard-Jones and point charges field of the MM atoms
! QMMOpt

file containing the Lennard Jones coefficients for the Lennard-Jones interaction
%LJCoefficients "temp.LJ"
file containing the point charges for the electrostatic interaction
%pointcharges "temp.pc"

%geom
 # calculate the exact Hessian before the first optimization step
 Calc_Hess true
```
# in case of a TS optimization the updated Hessian of the previous
# TS optimization run is read instead of calculating a new one
read_temp_Hess true
end

NOTES:

- If you are using `bOpt` or `bTS` you have to take care of additional terms over the boundary. Either you can zero out the dihedral terms of the Q2-Q1-M1-M2 configurations, or you can fix the respective Q2 atoms.

- If you want to use the ORCA constraints, you have to also put them in the Gromacs part of the calculation.

- If there are no bonds between the QM and MM systems, the `bOpt` optimization of the QM system might have convergence problems. This is the case if the step size is too large and thus QM atoms come too close to MM atoms. The convergence problems can be circumvented by adding extra coordinates and Hessian diagonal values for Cartesian coordinates of selected QM atoms to the set of internal coordinates. This should be done for only few atoms that are in the boundary region.

```plaintext
%geom
 # add the Cartesian position of atoms 2 and 4 to the
 # set of internal coordinates with a diagonal Hessian value of 0.1
 Hess_Internal
 {C 2 D 0.1}
 {C 4 D 0.1}
end
end
```

## 8.13.2 ORCA and pDynamo

The interface with the pDynamo library is briefly documented here. It uses the same plain text files to exchange information between the pDynamo library and ORCA. In order to have similar functionality as presented above, we have extended the interface to generate more complex ORCA input files by accepting verbatim blocks of text. We have also implemented in pDynamo the capability of writing files containing Lennard-Jones parameters.

A simple example which calculates the QM/MM energy for a small designed peptide in which the side chain of one amino acid is treated QM is illustrated below. For this example, a complete geometry optimization is going to be performed during the ORCA call.
import os
import pCore
import pBabel
import pMolecule
import pMoleculeScripts

# Read the initial coordinates from the .pdb file.
system = pMoleculeScripts.PDBFile_ToSystem(
    "1UA0.pdb", modelNumber=1, useComponentLibrary=True)

# Instantiate the required models.
mmmodel = pMolecule.MMModelOPLS("protein")
nbmodel = pMolecule.NBModelORCA()
qcmodel = pMolecule.QCModelORCA(
    command=os.getenv("ORCA_COMMAND"),
    deleteJobFiles=False, header="bp86 .def2-svp qmmmopt/pdynamo",
    job="chignolin", run=True)

# Assign the models to the system.
system.DefineMMModel(mmmodel)
system.DefineQCMModel(qcmodel, qcSelection=pCore.Selection([35, 36, 37, 34, 40, 41]))
system.DefineNBModel(nbmodel)
system.electronicState = pMolecule.ElectronicState(
    charge=-1, multiplicity=1)

# Print a summary and calculate the energy.
system.Summary()
system.Energy()

After the execution of the above Python program, a series of files are going to be created chignolin.inp, chignolin.pc, chignolin.lj and ORCA is going to be called. The generated ORCA input file is listed below.

! bp86 def2-svp qmmmopt/pdynamo
% geom
    constraints
        {C 0 C}
        {C 1 C}
    end
end

% pointcharges "chignolin.pc"
% ljcoefficients "chignolin.lj"
* xyz -1 1
H    -1.8637532468  1.1350324675  2.4244220779  2.4244220779
C     -0.5230000000  0.6870000000  3.2490000000   3.2490000000
C      0.4180000000  1.7240000000  3.8660000000   3.8660000000
There are few points that have to be raised here. Because the keyword `qmmm/pdynamo` was specified in the header variable, the pDynamo library will automatically add the constraint block in the ORCA input, which will freeze the link atoms and the QM atoms to which they are bound. It will also generate the `chignolin.lj` file containing all the Lennard-Jones parameters. The important parts of this file, which is somewhat different than the one generated by Gromacs, are listed next.

<table>
<thead>
<tr>
<th>#</th>
<th>number of atoms</th>
<th>combination rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>138 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>sigma</th>
<th>epsilon</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.778000</td>
<td>-1.424000</td>
<td>4.200000</td>
<td>3.250000</td>
<td>0.711280</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-6.878000</td>
<td>-0.708000</td>
<td>2.896000</td>
<td>3.500000</td>
<td>0.276144</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-5.557000</td>
<td>-0.840000</td>
<td>2.138000</td>
<td>3.750000</td>
<td>0.439320</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.433000</td>
<td>0.826000</td>
<td>0.502000</td>
<td>2.960000</td>
<td>0.878640</td>
<td>-1</td>
</tr>
<tr>
<td>61</td>
<td>-0.523000</td>
<td>0.687000</td>
<td>3.249000</td>
<td>3.500000</td>
<td>0.276144</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>0.418000</td>
<td>1.724000</td>
<td>3.866000</td>
<td>3.750000</td>
<td>0.439320</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>-0.069000</td>
<td>2.762000</td>
<td>4.283000</td>
<td>2.960000</td>
<td>0.878640</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>1.609000</td>
<td>1.463000</td>
<td>3.911000</td>
<td>2.960000</td>
<td>0.878640</td>
<td>4</td>
</tr>
<tr>
<td>65</td>
<td>-2.259000</td>
<td>-0.588000</td>
<td>1.846000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1</td>
</tr>
<tr>
<td>66</td>
<td>-1.795000</td>
<td>2.207000</td>
<td>2.427000</td>
<td>2.500000</td>
<td>0.125520</td>
<td>-1</td>
</tr>
<tr>
<td>67</td>
<td>-1.224000</td>
<td>0.346000</td>
<td>3.997000</td>
<td>2.500000</td>
<td>0.125520</td>
<td>5</td>
</tr>
<tr>
<td>68</td>
<td>0.055000</td>
<td>-0.151000</td>
<td>2.889000</td>
<td>2.500000</td>
<td>0.125520</td>
<td>6</td>
</tr>
<tr>
<td>69</td>
<td>-0.311000</td>
<td>2.922000</td>
<td>0.557000</td>
<td>3.250000</td>
<td>0.711280</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-1.387000</td>
<td>-2.946000</td>
<td>5.106000</td>
<td>2.500000</td>
<td>0.125520</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>number of special pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>atom1</th>
<th>atom2</th>
<th>factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>32</td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>39</td>
<td>0.500000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>31</td>
<td>0.000000</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>30</td>
<td>0.500000</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>32</td>
<td>0.500000</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>31</td>
<td>0.500000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>0.500000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>39</td>
<td>0.500000</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>31</td>
<td>0.000000</td>
<td></td>
</tr>
</tbody>
</table>
The second number on the first line refers to the type of combination rule used to calculate the Lennard-Jones interaction. It is 0 if a geometric average is used (OPLS force field), or 1 for the Lorentz-Berthelot rules (AMBER force field). The id on the last column is -1 for MM atoms and is equal to the atom number for the QM atoms. In this case the hydrogen link atom is atom 0. The last block of the file is composed of atom pairs and a special factor by which their Lennard-Jones interaction is scaled. In general this factor is equal to 1, but for atoms one or two bonds apart is zero, while for atoms three bonds apart depends on the type of force field, and in this case is 0.5.

After successful completion of the ORCA optimization run, the information will be relayed back the pDynamo library, which will report the total QM/MM energy of the system. At this point the type QM/MM of calculation is limited only by the capabilities of the pDynamo library, which are quite extensive.

8.13.3 ORCA and NAMD

Since version 2.12, NAMD is able to perform hybrid QM/MM calculations. A more detailed explanation of all available key words, setting up the calculation and information on tutorials and on the upcoming graphic interface to VMD are available on the NAMD website.

Similar to other calculations with NAMD, the QM/MM is using a pdb file to control the active regions. An example is shown below, where the sidechain of a histidine protonated at Nε is chosen to be the QM region.

Either the occupancy column or the b-factor column of the file are used to indicate which atom are included in a QM area and which are treated by the forcefield. In the other column, atoms which are connecting the QM area and the MM part are indicated similarly. To clarify which column is used for which purpose, the keywords **qmColumn** and **qmBondColumn** have to be defined in the NAMD input.

```
...
ATOM 1737 CA HSE P 117 14.762 47.946 31.597 1.00 0.00 PROT C
ATOM 1738 HA HSE P 117 14.751 47.579 32.616 0.00 0.00 PROT H
ATOM 1739 CB HSE P 117 14.129 49.300 31.501 1.00 1.00 PROT C
ATOM 1740 HB1 HSE P 117 14.407 49.738 30.518 0.00 1.00 PROT H
ATOM 1741 HB2 HSE P 117 13.024 49.194 31.509 0.00 1.00 PROT H
ATOM 1742 ND1 HSE P 117 13.899 51.381 32.779 0.00 1.00 PROT N
```
NOTES:

- If one wants to include more than one QM region, integers bigger than 1 can be used to define the different regions.

- Charge groups cannot be split when selecting QM and MM region. The reason is that non-integer partial charges may occur if a charge group is split. Since the QM partial charges are updated in every QM iteration, this may lead to a change in the total charge of the system over the course of the MD simulation.

- The occupancy and b-factor columns are used for several declarations in NAMD. If two of these come together in one simulation, the keyword `qmParamPDB` is used to define which pdb file contains the information about QM atoms and bonds.

- To simplify the selection of QM atoms and writing the pdb file a set of scripts is planned to be included in future releases of NAMD.

To run the calculation, the keyword `qmForces on` must be set. To select ORCA `qmSoftware "orca"` must be specified and the path to the executables must be given to `qmExecPath`, as well as a directory where the calculation is carried out (`qmBaseDir`). To pass the method and specifications from NAMD to ORCA `qmConfigLine` is used. These lines will be copied to the beginning of the input file and can contain both simple input as well as block input. To ensure the calculation of the gradient, the `engrad` keyword should be used.

The geometry of the QM region including the selected links as well as the MM point charges are copied to the ORCA inputfile automatically. Multiplicity and charge can be defined using `qmMult` and `qmCharge`, although the latter can be determined automatically by NAMD using the MM parameters. It should be noted at this point that NAMD is capable to handle more than one QM region per QM/MM calculation. Therefore for each region, charge and multiplicity are expected. In the case of only one QM region, the input looks like the following:

```
qmMult "1_1"
qmCharge "1_0"
```

Currently, two charge modes are available: Mulliken and CHELPG. They have to be specified in the NAMD input using `QMChargeMode` and in the `qmConfigLine`, respectively. Different embedding schemes, point charge schemes and switching functions are available, which will be not further discussed here. Another useful tool worth mentioning is the possibility to call secondary executables before the first or after each QM software
execution using \texttt{QMPrepProc} or \texttt{QMSecProc}, respectively. Both are called with the complete path and name to the QM input file, allowing e.g. storage of values during an QM/MM-MD.

It is strongly emphasized that at this points both programs are constantly developed further. For the latest information, either the \texttt{ORCA} forum or the NAMD website should be consulted.
9 Detailed Documentation

9.1 More on Coordinate Input

We will now enter the detailed discussion of the features of ORCA. Note that some examples are still written in the “old syntax” but that there is no need for the user to adopt that old syntax. The new one works as well.

9.1.1 Fragment Specification

The atoms in the molecule can be assigned to certain fragments. Presently this doesn’t do much but to help to organize the output in the population analysis section (and can therefore be very useful). To assign a given atom to a given fragment put a \( n \) directly after the atomic symbol. Fragment enumeration starts with fragment 1!

```
%coords
 CTyp xyz # the type of coordinates xyz or internal
 Charge -2 # the total charge of the molecule
 Mult 2 # the multiplicity = 2S+1
coords
 Cu(1) 0 0 0
 Cl(2) 2.25 0 0
 Cl(2) -2.25 0 0
 Cl(2) 0 2.25 0
 Cl(2) 0 -2.25 0
end
end
```

In this example the fragment feature is used to divide the molecule into a “metal” and a “ligand” fragment and consequently the program will print the metal and ligand characters contained in each MO in the population analysis section.

9.1.2 Defining Geometry Parameters and Scanning Potential Energy Surfaces

ORCA lets you define the coordinates of all atoms as functions of user defined geometry parameters. By giving not only a value but a range of values (or a list of values) to this parameters potential energy surfaces
can be scanned. In this case the variable RunTyp is automatically changed to Scan. The format for the parameter specification is straightforward:

```plaintext
%coords
 CTyp internal
 Charge 0
 Mult 1
 pardef
 rCH = 1.09; # a C-H distance
 ACOH = 120.0; # a C-O-H angle
 rCO = 1.35, 1.10, 26; # a C-O distance that will be scanned
 end
 coords
 C 0 0 0 0 0 0
 O 1 0 0 {rCO} 0 0
 H 1 2 0 {rCH} {ACOH} 0
 H 1 2 3 {rCH} {ACOH} 180
 end
end
```

In the example above the geometry of formaldehyde is defined in internal coordinates (the geometry functions work exactly the same way with cartesian coordinates). Each geometrical parameter can be assigned as a function of the geometry parameters by enclosing the function braces, “{}”. For example a function may look like \(0.5 \times \cos(\text{Theta}) \times rML + R\). Note that all trigonometric functions expect their arguments to be in degrees and not radians. The geometry parameters are expected to be defined such that the lengths come out in Ångströms and the angles in degrees. After evaluating the functions the coordinates will be converted to atomic units. In the example above the variable rCO was defined as a “Scan parameter”. Its value will be changed in 26 steps from 1.3 down to 1.1 and at each point a single point calculation will be done. At the end of the run the program will summarize the total energy at each point. This information can then be copied into the spreadsheet of a graphics program and the potential energy surface can be plotted. Up to three parameters can be scan parameters. In this way grids or cubes of energy (or property) values as a function of geometry can be constructed.

If you want to define a parameter at a series of values rather than evenly spaced intervals, the following syntax is to be used:

```plaintext
%coords
 CTyp internal
 Charge 0
 Mult 1
 pardef
 rCH = 1.09; # a C-H distance
 ACOH = 120.0; # a C-O-H angle
 rCO [1.3 1.25 1.22 1.20 1.18 1.15 1.10]; # a C-O distance that will be scanned
 end
```
In this example the C-O distance is changed in seven non-equidistant steps. This can be used in order to provide more points close to a minimum or maximum and fewer points at less interesting parts of the surface.

A special feature has also been implemented into ORCA - the parameters themselves can be made functions of the other parameters as in the following (nonsense) example:

```plaintext
%coords
CTyp internal
Charge 0
Mult 1
pardef
rCOHalf= 0.6;
rCO = { 2*2*rCOHalf };
end
coords
 C 0 0 0 0 0 0
 O 1 0 0 {rCO} 0 0
 H 1 2 0 {rCH} {ACOH} 0
 H 1 2 3 {rCH} {ACOH} 180
end
```

In this example the parameter rCO is computed from the parameter rCOHalf. In general the geometry is computed (assuming a Scan calculation) by (a) incrementing the value of the parameter to be scanned, (b) evaluating the functions that assign values to parameters and (c) evaluating functions that assign values to geometrical variables. Although it is not mandatory it is good practice to first define the static or scan-parameters and then define the parameters that are functions of these parameters.

Finally ORCA has some special features that may help to reduce the computational effort for surface scans:

```plaintext
%method
SwitchToSOSCF true
 # switches the converger to SOSCF
 # after the first point. SOSCF may
 # converge better than DIIS if the
 # starting orbitals are good.
```
9.1 More on Coordinate Input

```plaintext
default = false
ReducePrint true # reduce printout after the first
point default=true
The initial guess can be changed after the first
point. The default is MOREad. The MOs of the pre-
vious point will in many cases be a very good guess
for the next point. In some cases however, you may
want to be more conservative and use a general guess.
ScanGuess OneElec # the one electron matrix
Hueckel # the extended Hueckel guess
PAtom # the PAtom guess
PModel # the PAtom guess
MOREad # MOs of the prev. point
```

end

NOTE:

- You can scan along normal modes of a hessian using the `NMScan` feature as described in section 9.19.8.9.

- The surface scan options are also supported in conjunction with TD-DFT/CIS or MR-CI calculations (see section 9.19.8.7).

9.1.3 Inclusion of Point Charges

In some situations it is desirable to add point charges to the system. In ORCA there are two mechanisms to add point-charges. If you only want to add a few point charges you can “mask” them as atoms as in the following (nonsense) input:

```plaintext
A water dimer
! BP86 def2-SVP

* xyz 0 1
O 1.4190 0.0000 0.0597
H 1.6119 0.0000 -0.8763
H 0.4450 0.0000 0.0898
Q -0.834 -1.3130 0.0000 -0.0310
Q 0.417 -1.8700 0.7570 0.1651
Q 0.417 -1.8700 -0.7570 0.1651
*
```

Here the “Q”’s define the atoms as point charges. The next four numbers are the magnitude of the point charge and its position. The program will then treat the point charges as atoms with no basis functions and nuclear charges equal to the “Q” values.
If you have thousands of point charges to treat, as in a QM/MM calculation, it is more convenient, and actually necessary, to read the point charges from an external file as in the following example:

```
A water dimer
! BP86 def2-SVP

% pointcharges "pointcharges.pc"

* xyz 0 1
O 1.4190 0.0000 0.0597
H 1.6119 0.0000 -0.8763
H 0.4450 0.0000 0.0898
*
```

The program will now read the file “pointcharges.pc” that contains the point-charge information and then call the module orca.pc which adds the point charge contribution to the one-electron matrix and the nuclear repulsion. The file “pointcharges.pc” is a simple ASCII file in the following format:

```
3
-0.834 -1.3130 0.0000 -0.0310
 0.417 -1.8700 0.7570 0.1651
 0.417 -1.8700 -0.7570 0.1651
```

The first line gives the number of point charges. Each consecutive line gives the magnitude of the point charge (in atomic units) and its position (in Angström units!). However, it should be noted that ORCA treats point charges from an external file differently than "Q" atoms. When using an external point charge file, the interaction between the point charges is not included in the nuclear energy. This behavior originates from QM/MM, where the interactions among the point charges is done by the MM program. These programs typically use an external point charge file when generating the ORCA input. To add the interaction of the point charges to the nuclear energy, the DoEQ keyword is used either in the simple input or the %method block as shown below:

```
A non QM/MM pointcharge calculation
!DoEQ

% pointcharges "pointcharges.pc"

%method
DoEQ true
end
```
9.2 Choice of Computational Model

9.2.1 Features Common to All Calculations

The computational model is specified in the block `%method`. The following choices exist:

```
%method
 Method
 HFGTO # Hartree-Fock with GTOs (synonym HF)
 DFGTO # Density Functional with GTOs (syn. DFT)
 MP2 # Second order Moeller-Plesset
 CNDO # complete neglect of differential overlap
 INDO # intermediate neglect of d. o.
 NDDO # neglect of diatomic d. o.
end
```

In the case of Hartree-Fock calculations [59] nothing else is required in this block. Density functional calculations [178,179] need slightly more attention.

The `RunType` (=type of calculation to be performed) is chosen as follows:

```
%method
 RunTyp
 Energy # single point calc. (default)
 Gradient # single point energy and gradient
 Opt # Geometry optimization
 MD # Molecular dynamics
 Scan # scan of geometric parameters
end
```

You can tell the main program the explicit names and positions of the other modules. In this way you could in principle also interface your own programs to ORCA as long as they respect the input/output conventions used in ORCA (which are, however, reasonably complicated).

```
%method
 ProgSCF "MySCFProg.exe"
 ProgGTOInt "MyGTOIntProg.exe"
 ProgMP2 "MyProgMP2.exe"
 ProgPlot "MyPlotProgram.exe"
 ProgSCFGrad "MySCFGradientProg.exe"
end
```
9.2.2 Density Functional Calculations

9.2.2.1 Choice of Functional

Basic Choice of Density Functional. If you are doing a DFT calculation [178, 179], the following choices for local and gradient corrected density functionals are available (see also simple input keywords in section 6.2.2):
%method
# Choices for 'Functional'. If no reference is given,
# look further below for the references for individual
# exchange and correlation parts
Functional
#******************************************************************************
# Local functionals
#******************************************************************************
HFS   # Hartree-Fock Slater (Slater exchange only)
XAlpha # The famous old Slater Xa theory
LSD   # Local spin density (VWN-5A form)
VWN5  # Local spin density (VWN-5)
VWN3  # Local spin density (VWN-3)
PWLDA # Local spin density (PW-LDA)
#******************************************************************************
# 'Pure' GGA functionals
#******************************************************************************
BNULL # Becke '88 exchange, no corr.
BVWN  # Becke '88 exchange, VWN-5 corr.
BP    # Becke '88 X-Perdew 86 correlation
PW91  # Perdew-Wang GGA-II '91 func.
mPWPW # Modified PW with PW correlation
mPWLYP # same with LYP correlation
BLYP  # Becke X with LYP correlation
GP    # Gill '96 X, Perdew '86 corr.
GLYP  # Gill '96 X with LYP correlation
PBE   # Perdew-Burke-Ernzerhof
revPBE # Revised PBE (exchange scaling) [180]
RPBE  # Revised PBE (functional form of X) [181]
PWP   # PW91 exchange + P86 correlation
OLYP  # the optimized exchange and LYP
OPBE  # the optimized exchange and PBE
XLYP  # the Xu/Goddard exchange and LYP
B97-D # Grimme's GGA including D2 dispersion correction
B97-D3 # Grimme's GGA including D3 dispersion correction
PW86PBE # as used for vdw-DF and related [182] [183] [184]
RPW86PBE # revised version of the exchange functional [185]
#******************************************************************************
# Meta GGA functionals
#******************************************************************************
M06L  # Truhlar's semi-local functional [186]
TPSS  # the TPSS functional
revTPSS # revised TPSS [187] [188]
#******************************************************************************
# Hybrid functionals
#***************************************
B1LYP  # One parameter Hybrid of BLYP
B3LYP  # Three parameter Hybrid of BLYP [189]
B1P    # Analogous with Perdew correlation
B3P    # Analogous with Perdew correlation
G1LYP  # 1 par. analog with Gill 96 X
G3LYP  # 3 par. analog with Gill 96 X
G1P    # similar with P correlation
G3P    # similar with P correlation
PBE0   # 1 parameter version of PBE [190]
PWP1   # 1 parameter version of PWP (analogous to PBE0)
M06    # Truhlar’s 2006 low-HF hybrid [191]
M06-2X # Truhlar’s 2006 high-HF hybrid [191]
mPW1PW # 1 parameter version of mPW PW (analogous to PBE0)
mPW1LYP # 2 parameter version of mPWLYP (analogous to PBE0)
PW91_0 # 1 parameter version of PW91 (analogous to PBE0)
O3LYP  # 3 parameter version of OLYP [192]
X3LYP  # 3 parameter version of XLYP [193]
PW6B95 # Hybrid functional by Truhlar [194]
B97    # Becke's original hybrid
BHAN DHLYP # Half-and-half Becke hybrid functional [195]
#***************************************
# Range-Separated Hybrid functionals
#***************************************
wB97    # Head-Gordon’s fully variable DF [114]
wB97X   # Head-Gordon's DF with minimal Fock exchange [114]
wB97X-D3 # Chai's refit incl. D3 correction [115]
CAM-B3LYP # Handy’s fit [112]
LC-BLYP # Hirao’s original application [113]
#***************************************
# Meta Hybrid functionals
#***************************************
TPSSH   # hybrid version of TPSS with 10% HF exchange
TPSS0   # hybrid version of TPSS with 25% HF exchange
#***************************************
# Double-Hybrid functionals (mix in MP2)
#***************************************
B2PLYP  # Grimme’s 2006 double-hybrid [106]
mPW2PLYP # Schwabe/Grimme improved double-hybrid [107]
B2GP-PLYP # Martin's refit of B2PLYP [196]
B2K-PLYP # Martin's refit of B2PLYP [196]
B2T-PLYP # Martin's refit of B2PLYP [196]
PWPB95  # Recent Grimme double-hybrid [197]
Note that Functional is a compound key. It chooses specific values for the variables Exchange, Correlation and ACM described below. If given as a simple input keyword, in some cases, it will also activate a dispersion correction. You can explicitly give these variables instead or in addition to Functional. However, make sure that you specify these variables after you have assigned a value to Functional or the values of Exchange, Correlation and ACM will be reset to the values chosen by Functional.

Empirical Parameters in Density Functionals. Some of the functionals incorporate empirical parameters that can be changed to improve agreement with experiment. In ORCA there is some freedom to change functional parameters. Currently there are several parameters that can be changed (other than the parameters used in the hybrid functionals). The first of these parameters is $\alpha$ of Slaters X$\alpha$ method. Theoretically it has a value of $2/3$ and this is used in the HFS and LSD functionals. However, exchange is about 10% underestimated by this approximation (a very large number!) and a value around 0.70-0.75 seems to be better for molecules. The second parameter is the parameter $\beta$ for Becke’s gradient corrected exchange functional. Becke has determined the value 0.0042 by fitting the exchange energies for rare gas atoms. There is some evidence that with smaller basis sets for molecules a slightly smaller value such as 0.0039 gives improved results. The final parameter is the value $\kappa$ occurring in the PBE exchange functional. It has been given the value 0.804 by Perdew et al. in order to satisfy the Lieb-Oxford bound. Subsequently other workers have argued that a larger value for this parameter (around 1.2) gives better energetics and this is explored in the revPBE functional. Note that it also has been shown that while revPBE gives slightly better energetics it also gives slightly poorer geometries. Within the PBE correlation functional, there is also the $\beta_C$ (not to be confused with the $\beta$ exchange parameter in Becke’s exchange functional). Its original value in the PBE functional is $\beta_C = 0.066725$, but modified variants exist, e.g., the PBEsol functional, or the PBEh-3c compound method. Furthermore, the $\mu$ parameter in the PBE exchange functional may be modified. In the original formulation it is related to $\beta_C$ via $\mu = \beta_C \frac{\pi}{3}$, but has been changed in the latter variants as well.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAlpha</td>
<td>0.75</td>
<td>Slater’s alpha parameter (default 2/3)</td>
</tr>
<tr>
<td>XBeta</td>
<td>0.0039</td>
<td>Becke’s beta parameter</td>
</tr>
<tr>
<td>XKappa</td>
<td>0.804</td>
<td>PBE(exchange) kappa parameter (default 0.0042)</td>
</tr>
<tr>
<td>CBetaPBE</td>
<td>0.066725</td>
<td>PBE(correlation) beta (default 0.066725)</td>
</tr>
<tr>
<td>XMuePBE</td>
<td>0.21952</td>
<td>PBE(exchange) mue parameter (default 0.21952)</td>
</tr>
</tbody>
</table>

Specifying Exchange and Correlation approximations individually. The following variables are available for specifying the exchange and correlation approximations individually and to construct user defined hybrid or “extended” hybrid functionals:

<table>
<thead>
<tr>
<th>Exchange Type</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_NOX</td>
<td></td>
<td>no exchange</td>
</tr>
<tr>
<td>X_SLATER</td>
<td></td>
<td>Slaters local exchange [198] [199]</td>
</tr>
<tr>
<td>X_B88</td>
<td></td>
<td>Becke 88 gradient exchange [200]</td>
</tr>
<tr>
<td>X_G96</td>
<td></td>
<td>Gill 96 gradient exchange [201]</td>
</tr>
<tr>
<td>X_PW91</td>
<td></td>
<td>Perdew-Wang 91 gradient exchange [202] [203]</td>
</tr>
<tr>
<td>X_mPW</td>
<td></td>
<td>Adamo-Barone modification of PW [204]</td>
</tr>
</tbody>
</table>
Hybrid Density Functionals. The hybrid DFs \cite{195,212} are invoked by choosing a nonzero value for the variable ACM. (ACM stands for “adiabatic connection model”). Specifically, these functionals have the following form:

\begin{equation}
E_{XC} = aE_{HF}^X + (1-a)E_{LSD}^X + bE_{GGA}^X + cE_{GGA}^C + dE_{LSD}^C + eE_{GGA}^C
\end{equation}

Here, \( E_{XC} \) is the total exchange/correlation energy, \( E_{HF}^X \) is the Hartree-Fock exchange, \( E_{LSD}^X \) is the local (Slater) exchange, \( E_{GGA}^X \) is the gradient correction to the exchange, \( E_{LSD}^C \) is the local, spin-density based part of the correlation energy and \( E_{GGA}^C \) is the gradient correction to the correlation energy. This brings use to a little bit awkward subject: several hybrid functionals with the same name give different values in different programs. The reason for this is that they either choose slightly different default values for the parameters \( a, b, c \) and or they differ in the way they treat the local part of the correlation energy. Different parameterizations exist. The most popular is due to Vosko, Wilk and Nusair (VWN, \cite{208}). However, VWN in their classic paper give two sets of parameters - one in the main body (parameterization of RPA results; known as VWN-III) and one in their table 5 of correlation energies (parameterization of the Ceperley/Alder
Monte Carlo results; known as VWN-V). Some programs choose one set, others the other. In addition a slightly better fit to the uniform electron gas has been produced by Perdew and Wang [209]. The results from this fit are very similar to what the parameters VWN5 produce (the fit to the Ceperley Alder results) whereas VWN3 (fit to the RPA results) produces quite different values. To be short - in ORCA almost all functionals choose PWLDA as the underlying LDA functional. A special situation arises if LYP is the correlation functional [211]. LYP itself is not a correction to the correlation but includes the full correlation. It is therefore used in the B3LYP method as:

$$E_{\text{B3LYP}}^C = E_{\text{LSD}}^C + c \left( E_{\text{LYP}}^C - E_{\text{LSD}}^C \right)$$

(9.2)

In ORCA VWN5 is chosen for the local correlation part. This choice is consistent with the TurboMole program [213–215] but not with the Gaussian program [216]. However, the user has full control over this point. You can choose the underlying local part of any correlation functional with the variable LDAOpt:

```
%method
LDAOpt C_PWLDA
 C_VWN5
 C_VWN3
end
```

Specifying C_VWN3 for LDAOpt together with Functional=B3LYP should give results very close to the B3LYP functional as implemented in the Gaussian series of programs1.

In particular for the popular B3LYP functional the following aliases are defined in order to facilitate comparisons with other major electronic structure packages:

```
%method
Functional B3LYP # consistent with TurboMole
 B3LYP_TM # consistent with TurboMole
 # = Functional= B3LYP
 # LDAOpt = C_VWN5;
 B3LYP_G # consistent with Gaussian
 # = Functional= B3LYP
 # LDAOpt = C_VWN3;
end
```

One Parameter Hybrid Density Functionals. A few words on the one parameter hybrid methods appears in order. Through the underlying LDA dependence of the three parameter hybrids different programs give different answers because they differ in the underlying LDA. On the other hand, it has recently been argued from theoretical reasoning that the optimal mixing ratio for DFT and HF exchange is 0.25 [218]. Furthermore numerical calculations have shown that the results of using this fixed ratio and not scaling the GGA correlation or exchange are as good as the original three parameter hybrids [219]. I personally

1There is some evidence that the version used in the Gaussian program gives miniscule better results in molecular applications then the TurboMole variant but the differences are very small [217]
sympathize with these ideas because they are based on theory and they remove some arbitrariness from the hybrid procedures. Also the slightly higher HF-exchange (0.25 in favor of 0.20 used in the original three parameter hybrids) is, I believe, in the right direction. Thus the one parameter hybrids have the simple form:

\[ E_{XC} = E_{\text{DFT}}^X + a' (E_{\text{HF}}^X - E_{\text{DFT}}^X) + E_{\text{DFT}}^C \]  

(9.3)

with \( a' = \frac{1}{4} \) which is the same as putting: \( a = a' \), \( b = 1 - a' \) and \( c = 1 \) in the three parameter hybrids and this is how it is implemented. The one parameter hybrid \textbf{PBE0} has been advertised as a hybrid functional of overall well balanced accuracy [190].

**Extended “double-hybrid” functionals.** In addition to mixing the HF-exchange into a given DF, Grimme has proposed to mix in a fraction of the MP2 correlation energy calculated with hybrid DFT orbitals. [106] Such functionals may be referred to as “extended” hybrid functionals. Grimme’s expression is:

\[ E_{XC} = aE_{\text{HF}}^X + (1-a)E_{\text{DFT}}^X + (1-c)E_{\text{DFT}}^C + cE_{\text{MP}}^2 \]  

(9.4)

Such functionals can be user-defined in ORCA as follows:

```plaintext
%method
ScalHFX = a
ScalDFX = 1-a
ScalGGAC = 1-c
ScalLDAC = 1-c
ScalMP2C = c
end
```

Grimme recommends the B88 exchange functional, the LYP correlation functional and the parameters \( a=0.53 \) and \( c=0.27 \). This gives the B2PLYP functional which appears to be a fair bit better than B3LYP based on Grimme’s detailed evaluation study.

Presently, this methodology covers single points and analytic gradients (hence all forms of geometry optimization, relaxed scans, transition state searches and numerical frequencies are supported). Note that you need to choose `%mp2 density relaxed end` in order to get the correct response density which is consistent with first order properties as analytic derivatives. By default this density is not calculated since its construction adds significant overhead to the calculation. Therefore you have to specifically request it if you want to look at the consistent density. You can also choose `%mp2 density unrelaxed end` which would give you the unrelaxed (expectation value like) density of the method at considerably less computational cost. However, this is not recommended since the changes to the relaxed density are considerable in our experience and the unrelaxed density has a much weaker theoretical status than its relaxed counterpart.

**Range-separated hybrid functionals.** ORCA supports functionals based on the error function splitting of the two-electron operator used for exchange as first realized by Hirao and coworkers [111]:

\[ r_{12}^{-1} = \frac{\text{erfc}(\mu \cdot r_{12}) \cdot r_{12}^{-1}}{SR} + \frac{\text{erfc}(\mu \cdot r_{12}) \cdot r_{12}^{-1}}{LR} \]  

(9.5)
where \( \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt \) and \( \text{erfc}(x) = 1 - \text{erf}(x) \). Note that the splitting is only applied to exchange; one-electron parts of the Hamiltonian, the electron-electron Coulomb interaction and the approximation for the DFT correlation are not affected. Later, Handy and coworkers generalized the ansatz to: \[ r_{12}^{-1} = \frac{1 - [\alpha + \beta \cdot \text{erf}(\mu \cdot r_{12})]}{r_{12}^{-1}} + \frac{\alpha + \beta \cdot \text{erf}(\mu \cdot r_{12})}{r_{12}^{-1}} \] (9.6)

The splitting has been described in graphical form (according to Handy and coworkers), along the terminology of ORCA, in Figure 9.1:

Figure 9.1: Graphical description of the Range-Separation ansatz. The gray area corresponds to Hartree-Fock exchange. \( \alpha \) and \( \beta \) follow Handy’s terminology. \[112\]

The splitting has been used to define the \( \omega \)B97 family of functionals where the short-range part (SR) is described by DFT exchange and the long-range part by exact exchange/Hartree-Fock exchange. The same is true for CAM-B3LYP and LC-BLYP. It is possible to use a fixed amount of Hartree-Fock exchange (EXX) and/or a fixed amount of DFT exchange in this ansatz.

<table>
<thead>
<tr>
<th>Functional</th>
<th>Keyword</th>
<th>fixed EXX</th>
<th>variable part</th>
<th>( \mu/\text{bohr}^{-1} )</th>
<th>fixed DFT-X</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \omega )B97</td>
<td>WB97</td>
<td>—</td>
<td>100%</td>
<td>0.40</td>
<td>—</td>
<td>[114]</td>
</tr>
<tr>
<td>( \omega )B97X</td>
<td>WB97X</td>
<td>15.7706%</td>
<td>84.2294%</td>
<td>0.30</td>
<td>—</td>
<td>[114]</td>
</tr>
<tr>
<td>( \omega )B97X-D3</td>
<td>WB97X-D3</td>
<td>19.5728%</td>
<td>80.4272%</td>
<td>0.25</td>
<td>—</td>
<td>[115]</td>
</tr>
<tr>
<td>CAM-B3LYP</td>
<td>CAM-B3LYP</td>
<td>19%</td>
<td>46%</td>
<td>0.33</td>
<td>35%</td>
<td>[112]</td>
</tr>
<tr>
<td>LC-BLYP</td>
<td>LC-BLYP</td>
<td>—</td>
<td>100%</td>
<td>0.33</td>
<td>—</td>
<td>[113]</td>
</tr>
</tbody>
</table>

The currently available speed-up options are RIJONX and RIJCOSX. Otherwise, integral-direct single-point calculations, calculations involving the first nuclear gradient (i.e. geometry optimizations), frequency calculations, TDDFT, TDDFT nuclear gradient, and EPR/NMR calculations are the only supported job types thus far. In principle, it is possible to change the amount of fixed Hartree-Fock exchange (ACM-A) and the amount of variable exchange (RangeSepScal) and \( \mu \), though this is not recommended. The amount of fixed DFT Exchange (ACM-B) can only be changed for CAM-B3LYP and LC-BLYP. In other words, ACM-B is ignored by the \( \omega \)B97 approaches, because no corresponding \( \mu \)-independent exchange functional has been defined.
Note: For information on the ACM formalism, see preceding section called “Specifying Exchange and Correlation approximations individually”. While it is technically possible to choose an exchange functional that has no $\mu$-dependence, this makes conceptually no sense.

### 9.2.2.2 Choice of Integration Grid

The next subject of importance for the DFT calculation is the size of the integration grid for numerical integration. Three-dimensional numerical quadrature is necessary due to the complicated analytical form of the exchange-correlation potential (and energy). The expressions for these quantities are so complicated that there is no hope of finding analytical solutions to the required integrals and some numerical approximation, commonly three-dimensional numerical integration, is necessary. The numerical integration [220–225] is a major step in any DFT calculation and if the RI approximation [223–229] is used for the Coulomb part it usually dominates the total wall clock time.

**Accuracy.** The good news about the numerical integration is that the effort only increases approximately linearly with the molecular size such as to make calculations on relatively large molecules not prohibitive [222, 230–232]. The bad news about numerical integration is that it is not trivial to make it highly accurate. Especially if you choose relatively small grids it is advisable to check that the results are converged (say to at least $\approx 1$ mEh) by reconverging the calculation with a larger grid (Grid) and higher radial integral accuracy (IntAcc). As a rule of thumb the error in the numerically integrated total electron density is on the same order of magnitude as the error in the numerically integrated XC energy [221]. Therefore the program prints this information each iteration (Num. Int. El.: . . .).

**Rotational Invariance.** Through the very fact that a grid is used, the total energy depends on the molecular orientation which is of course unphysical [233, 234]. Unless the integration grid is large enough to make the dependence negligible it is therefore not a good idea to calculate closely related molecules in grossly different orientations. This unpleasant feature arises because ORCA does not yet have a “standard orientation” for molecules like other programs. Note that other programs also have that rotational variance.

---

\(^2\)Actually, the XC energy and potential are somewhat smoother than the density itself leading to the expectation that the error in the density is a pessimistic estimate of the error in the XC energy.
Choice of Computational Model

problem but they hide it through employment of a standard orientation. Grid free methods to integrate the XC part are known \[235–237\] and they remove these problems. However, they will probably not be implemented in the near future into ORCA because they have a less favorable computational scaling than the numerical integration, requiring a large additional \(O(N^3)\) diagonalization at each iteration.

**Choice of Grid.** Several default grids are available in ORCA. They are chosen by specifying the variable **Grid**.

<table>
<thead>
<tr>
<th>Method</th>
<th>Grid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>product grid</td>
<td># product grid</td>
</tr>
<tr>
<td>1</td>
<td>Lebedev 50 (not recommended)</td>
<td># Lebedev 50 points</td>
</tr>
<tr>
<td>2</td>
<td>Lebedev 110 points (default for SCF iterations)</td>
<td># Lebedev 110 points</td>
</tr>
<tr>
<td>3</td>
<td>Lebedev 194 points (more accurate)</td>
<td># Lebedev 194 points</td>
</tr>
<tr>
<td>4</td>
<td>Lebedev 302 points (default for FinalGrid)</td>
<td># Lebedev 302 points</td>
</tr>
<tr>
<td>5</td>
<td>Lebedev 434 points (large)</td>
<td># Lebedev 434 points</td>
</tr>
<tr>
<td>6</td>
<td>Lebedev 590 points (larger)</td>
<td># Lebedev 590 points</td>
</tr>
<tr>
<td>7</td>
<td>Lebedev 770 points (very large)</td>
<td># Lebedev 770 points</td>
</tr>
</tbody>
</table>

Like **Functional**, **Grid** is merely a compound variable that affects several other variables that control the details of grid design. Any of these variables can be specified after **Grid** in order to change the default values. In general the grid consists of a series of radial shells around each atom and an angular grid for each radial shell.

**Specifying Grid parameters Individually.** A particular radial integration method\(^3\) is determined by specifying **RadialGrid**. In my hands, the default, **GaussChebyshev** \[221,238\], is the most efficient and it is not recommended to change to **EulerMcLaurin** \[222,230–232\] integration. The number of radial points is determined by the parameter **IntAcc**. From **IntAcc** the number of radial shells for a given atom is computed as (taken from Krack and Köster \[238\] \(\varepsilon = 10^{-\text{IntAcc}}\)):

\[
n_{\text{rad}}(A) = -5 (3 \log \varepsilon - n_A + 8) \tag{9.7}
\]

where \(n_A\) is the row of the periodic table of element \(A\). The defaults for **IntAcc** range from \(\approx 3.7\) to \(\approx 5.5\).\(^4\) It is not recommended to go below 3.5. **AngularGrid** specifies the largest angular grid to be used (see below).

If **SimpleGrid** is chosen a product integration is performed over the angular variables with a Gauss-Legendre integration for \(\theta\) and equally spaced points for \(\varphi\) \[222,230–232\]. This integration is useful because it is open ended - the number of points can be increased *ad infinitum*. It is however, difficult to imagine situations where the largest Lebedev grid is still too small. The Lebedev grids \[239–245\] are generally more efficient (theoretically by a factor 1.5). For the **SimpleGrid** the parameter **NThetaMax** is the number to multiply \(n_{\text{rad}}\) with to obtain the maximum number of \(\theta\) points for a given atom. The number of \(\varphi\) points is automatically

\(^3\)For the experts - ORCA always uses the mapping M3 and also the atomic size adjustments of Treutler and Ahlrichs in the radial integration.

\(^4\)In general it is usually the angular integration that limits the accuracy. Thus it is a questionable strategy to choose a small angular grid and then increase **IntAcc** to a large value.
chosen for a given $\theta$ based on a recommendation by Treutler and Ahlrichs and avoids crowding of points near the poles [221].

Finally $\text{BFCut}$ and $\text{WeightCut}$ are thresholds. If a gridpoint has a weight smaller than $\text{WeightCut}$ it is simply neglected (Becke scheme). If the weight scheme is chosen according to $\text{Weight}_\text{AtomXC}$, the grid point is also neglected if it gives a contribution of $<\text{WeightCut}$ to the promolecular density which is constructed from a superposition of spherically symmetric atomic densities. $\text{BFCut}$ determines when to neglect the contribution of a given basis function to a given gridpoint or the contribution of a given basis function product to the total density at a given gridpoint. There was extensive experimentation with these values and they should probably not be changed. In particular, the results may be quite sensitive to $\text{WeightCut}$ (larger values are not recommended) but should be quite stable with $\text{BFCut}$ (smaller values should not change the energy appreciably but may significantly raise the computation time).

**Grid pruning.** Like most other programs ORCA “prunes” the angular grids [222, 230–232]. It is well known that the radial shells close to the nucleus need less angular grid points to achieve high accuracy while those in the bonding region need larger angular grids. Taking this into account one can save large numbers of grid points. Table 9.1 shows the default settings for various parameters.
points (and therefore computation time) by using smaller angular grids close to the nuclei. There was some experimentation with this feature and the defaults should probably not be changed.

- **GridPruning**=3 Here the radial integration is divided into five domains that defined through the numbers $\gamma_1$ to $\gamma_4$ [222,230–232]. There are spheres defined by $\gamma_i R_{\text{max}}$, where $R_{\text{max}}$ is Clementi’s radius of the outermost valence orbital [246]. The angular grids are used in order $n_g$=3, $n_g$=2, $n_g$=1, $n_g$, $n_g$=1 where $n_g$ is the size of the largest angular grid. For example for **AngularGrid**=4 the Lebedev grids with 50, 110, 194, 302, 194 points are used in the domains one to five. In my experience this leads to significant reduction in the number of points as well as small errors (on the order of some $\mu E_h$) relative to the unpruned grids of the same size.

**Default Grids** Having specified the individual parameters, the default grids are characterized by the following settings:

<table>
<thead>
<tr>
<th>Grid</th>
<th>AngularGrid</th>
<th>IntAcc</th>
<th>H,He</th>
<th>Li-Ne</th>
<th>Na-Ar</th>
<th>K-Kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SimpleGrid</td>
<td>4.34a</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td>Lebedev50</td>
<td>4.34</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Lebedev110</td>
<td>4.34</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Lebedev194</td>
<td>4.34</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Lebedev302</td>
<td>4.67</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Lebedev434</td>
<td>5.01</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Lebedev590</td>
<td>5.34</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Lebedev770</td>
<td>5.67</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

- ^a NThetaMax=0.4 for Grid 0.
- ^b The choice of IntAcc was such that there is no further improvement in the accuracy with more radial points.
- ^c for all grids GridPruning=3, RadialGrid=GaussChebyshev, HGridReduce=true (except grid 0).
- ^d Number of radial points.

If no value for **Grid** is specified in the input, **Grid**=2 is used for the SCF iterations and **Grid**=4 for the final energy (**vide infra**).

**Multigrid feature.** The TurboMole developers [213–215] have advocated a method where the SCF iterations are done with a small grid and gradients and final energies are evaluated on a larger, more accurate grid [221]. Overall this gives a substantial improvement in speed with no significant loss in accuracy as long as the smaller grid for the SCF iterations is large enough such that it does not produce significant errors in the final density.

Using the multigrid feature in ORCA is essentially very easy:

```bash
%method
FinalGrid 4 # grid to use for the final energy
 # evaluation
end
```

The grid parameters of the final grid can also be individually specified:
By default the multigrid feature is used and the final grid defaults to grid 4. If you do not want to use the multigrid feature you have to specify:

By default the multigrid feature is used and the final grid defaults to grid 4. If you do not want to use the multigrid feature you have to specify:

```
%method
 UseFinalGrid false
End
Or
 ! NoFinalGrid
end
```

CAUTION:

- if you use a large grid (i.e. Grid=6) and forget to turn off the multigrid feature the energies you get are only as accurate as Grid 4.

**Post-SCF-GGA Option.** For many molecules the cost of evaluating the XC energy and potential on a three dimensional grid will dominate the overall computational cost. At the GGA level (functionals other than the local density approximation, LSD and HFS, that incorporate the density gradient) it is often found that the self-consistent electron distribution is rather similar to that obtained from a LSD calculation. However, LSD calculations need a little bit less time because the derivatives of the basis functions at the grid points are not needed. It may therefore be a sensible approach to calculate the self-consistent electron and spin densities at the LSD level and then obtain the final total energy at the GGA level. This was advocated by the ADF developers.

This feature is invoked in ORCA by using:

```
%method
 PostSCFGGA true
end
```

What this does is to use the PWLDA local approximation in the SCF iterations and obtain the final energy at whatever functional was chosen in the input file.

*More recent test calculations reveal that the performance gain from using this feature is truly minimal while the errors introduced in the final energies are large. Further use of this feature is therefore strongly discouraged.*
9.2 Choice of Computational Model

SpecialGrid Option. Sometimes you will like to increase the integration accuracy for some atoms that need special care while it is not necessary to enlarge the grid generally. This situation for example arises when the basis set contains very steep functions on a few atoms that are required in order to calculate core properties such as isotropic hyperfine couplings. ORCA provides you with a basic mechanism to increase the radial integration accuracy for a few atoms while maintaining the chosen grid for all others.

```%method
a maximum of 64 assignments can be made
in = 0 : no changes are made
in > 0 : the grid will be changed for all atoms with atomic number=in to IntAcc=an
in < 0 : only the specific n’th atom will have its IntAcc value changed to an
SpecialGridAtoms i1, i2, i3,...,in;
SpecialGridIntAcc a1,a2,a3,...,an;
end
```

9.2.2.3 Using the RI-J Approximation to the Coulomb Part

A very useful approximation that greatly speeds up DFT calculations unless the molecule gets very large is the so called “RI-approximation” [223–229]. RI stands for “Resolution of the identity”. In short, charge distributions arising from products of basis functions are approximated by a linear combination of auxiliary basis functions.

\[
\phi_i(\vec{r}) \phi_j(\vec{r}) \approx \sum_k c^{ij}_k \eta_k(\vec{r})
\] (9.8)

There are a variety of different possibilities to determine the expansion coefficients \(c^{ij}_k\). A while ago Almlöf and coworkers [247] have shown that for the approximation of electron repulsion integrals the best choice is to minimize the residual repulsion\(^5\).

Define:

\[
R_{ij} \equiv \phi_i(\vec{r}) \phi_j(\vec{r}) - \sum_k c^{ij}_k \eta_k(\vec{r})
\] (9.9)

and

\[
T_{ij} = \int \int R_{ij}(\vec{r}) \frac{1}{|\vec{r} - \vec{r}'|} R_{ij}(\vec{r}) \, d^3r \, d^3r'
\] (9.10)

\(^5\)But note that the basic theory behind the method is known for a long time, at least since the late sixties have methods similar to the RI approximation been used, mainly in the context of “approximate ab initio methods” such as LEDO, PDDO and MADO but also in density functional theory in the mid and late seventies by Baerends, Dunlap and others [223–225, 229]
and determine $T_{ij} = \int \int R_{ij} (\vec{r}) \frac{1}{|\vec{r} - \vec{r}'|} R_{ij} (\vec{r}') d^3r d^3r'$, leading to

$$e^{ij} = V^{-1} t^{ij} \tag{9.11}$$

where:

$$t^{ij}_k = \langle \phi_i, \phi_j | r^{-1}_{12} | \eta_k \rangle \tag{9.12}$$

$$V_{ij} = \langle \eta_i | r^{-1}_{12} | \eta_j \rangle \tag{9.13}$$

Thus an ordinary two electron integral becomes:

$$\langle \phi_i, \phi_j | r^{-1}_{12} | \phi_k, \phi_l \rangle \approx \sum_{p,q} c^{ij}_{pq} c_{kl} V_{pq} \tag{9.14}$$

$$= \sum_{r,s} (V^{-1})_{rs} t^{ij}_{rs} \sum_{r,s} (V^{-1})_{qs} t^{kl}_{rs}$$

$$= \sum_{r,s} (V^{-1})_{rs} t^{ij}_{rs} t^{kl}_{rs} \tag{9.15}$$

and the total Coulomb energy becomes ($\mathbf{P}$ is the total density matrix):

$$E_J = \sum_{i,j} \sum_{k,l} P_{ij} P_{kl} \langle \phi_i, \phi_j | r^{-1}_{12} | \phi_k, \phi_l \rangle \tag{9.16}$$

$$\approx \sum_{r,s} \sum_{i,j} \sum_{k,l} P_{ij} P_{kl} \sum_{r,s} (V^{-1})_{rs} t^{ij}_{rs} t^{kl}_{rs}$$

$$= \sum_{r,s} (V^{-1})_{rs} \sum_{i,j} P_{ij} t^{ij}_{rs} \sum_{k,l} P_{kl} t^{kl}_{rs} \tag{9.17}$$

In a similar way the Coulomb contribution to the Kohn-Sham matrix is calculated. There are substantial advantages from this approximation: the quantities to be stored are the matrix $V^{-1}$ which depends only on two indices and the three index auxiliary integrals $t^{ij}_k$. This leads to a tremendous data reduction and storage requirements relative to a four index list of repulsion integrals. Furthermore the Coulomb energy and the Kohn-Sham matrix contributions can be very quickly assembled by simple vector/matrix operations leading to large time savings. This arises because each auxiliary basis function $\eta_k (\vec{r})$ appears in the expansion of many charge distributions $\phi_i (\vec{r}) \phi_j (\vec{r})$. Unfortunately a similar strategy is less easily (or with less benefit) applied to the Hartree-Fock exchange term. In addition, the two and three index electron repulsion integrals are easier to compute than the four index integrals leading to further reductions in processing time.
If the auxiliary basis set \( \{ \eta \} \) is large enough, the approximation is also highly accurate. Since any DFT procedure already has a certain, sometimes sizable, error from the noise in the numerical integration of the XC part it might be argued that a similarly large error in the Coulomb part is perfectly acceptable without affecting the overall accuracy of the calculation too much. Furthermore, the errors introduced by the RI method are usually much smaller than the errors in the calculation due to basis set incompleteness in the first place. I therefore recommend the use of the RI procedure for pure DFs. However, one should probably not directly mix absolute total energies obtained from RI and non-RI calculations because the error in the total energy accumulates and will rise with increasing molecular size while the errors in the relative energies will tend to cancel.

There are several choices for AUX basis sets described in the next section which depend on the choice of the primary GTO basis used to expand the molecular orbitals.

In ORCA all that is needed to invoke the RI approximation is to type:

```
%method
RI on # do use the RI-J approximation
off # do not use the RI-J approximation
end
```

Recall:

- If you use RI you must specify an auxiliary basis set in the `%basis` section. Do not rely on the program to make an automatic choice for you.

### 9.2.2.4 The Split-RI-J Coulomb Approximation

There is an improved version of the RI-algorithm that has been implemented in version 2.2.09. This algorithm yields the same Coulomb energy as the standard RI-algorithm but is significantly faster if the basis set contains many high angular momentum functions (d-, f-, g-functions). For small basis sets there is virtually no difference between the two algorithms except that Split-RI-J uses more memory than standard RI. However, calculations with ca. 2000 basis functions need about 13 MB extra for Split-RI-J which is a trivial requirement on present day hardware.

The Split-RI-J algorithm is invoked with:

```
! Split-RI-J
```

---

6 It probably should be noted that a slightly awkward step in the procedure is the inversion of the auxiliary integral matrix \( V \) which can easily become very large. Matrix inversion is an \( O(N^3) \) process such that for large molecules this step takes some real time. However, in ORCA this is only done once during the calculation whereas other programs that constrain the fit to also exactly reproduce the number of electrons need to perform a similar process each iteration. Starting from Version 2.2.09 ORCA implements Cholesky decomposition in favor of matrix inversion which removes any bottleneck concerning the solution of the linear equation system.
Split-RI-J is presently only available for SCF calculations. The gradient, coupled-perturbed Kohn-Sham and TD-DFT modules will use the standard RI approximation instead.

NOTE:

- The Split-RI-J algorithm is the default if RI is turned on via `RI`. If you do not want to use Split-RI-J please insert the keyword `NoSplit-RI-J`.

### 9.2.2.5 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJONX)

The RI approximation can be used, although with less benefit, for hybrid DFT and Hartree-Fock (RHF and UHF) calculations. In this case a different algorithm\(^7\) is used that allows a fair approximation to the Hartree-Fock exchange matrix. It can be difficult to make this approximation highly accurate. It is, however, usefully fast compared to direct SCF if the molecule is “dense” enough. There are special auxiliary basis sets for this purpose (see section 6.3).

```
%method
 RI on # do use the RI approximation
end

%basis
 Aux "def2/JK"
end
```

NOTE: There has been little experimentation with this feature. It is provided on an experimental basis here.

Another feature that was implemented is to use the RI method for the Coulomb term and the standard treatment for the exchange term. This method is called RIJONX because the exchange term should tend towards linear scaling for large molecules. You can use this feature for Hartree-Fock and hybrid DFT calculation by using:

```
%method
 RI on # do use the RI approximation
 RIFlags 1 # ...but treat exchange exactly
end

equivalently use the following keyword AND DON’T FORGET
TO ASSIGN AN AUXILIARY BASIS SET!

! RIJONX
```

The requirements for the auxiliary basis are the same as for the normal RI-J method.

\(^7\) This algorithm was described by Kendall and Früchtl [226].
9.2 Choice of Computational Model

9.2.2.6 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX)

The aim of this approximation is to efficiently compute the elements of exchange-type matrices:\(^8\)

\[
K_{\mu\nu} = \sum_{\kappa\tau} P_{\kappa\tau}(\mu\kappa|\nu\tau) \tag{9.18}
\]

where \( P \) is some kind of density-type matrix (not necessarily symmetric) and the two-electron integrals are defined over the basis set \( \{\varphi\} \) by:

\[
(\mu\kappa|\nu\tau) = \int \mu(r_1)\kappa(r_1)\nu(r_2)\tau(r_2) r_{12}^{-1} dr_1 dr_2 \tag{9.19}
\]

The approximation pursued here can be written as follows:

\[
K_{\mu\nu} \approx \sum_g X_{\mu g} \sum_\tau A_{\nu\tau}(r_g) \sum_\kappa P_{\kappa\tau} X_{\kappa g} \tag{9.20}
\]

Here the index \( g \) refers to grid points \( r_g \) and:

\[
X_{\kappa g} = w_g^{1/2}\kappa(r_g) \tag{9.21}
\]

\[
A_{\nu\tau}(r_g) = \int \frac{\nu(r)\tau(r)}{|r-r_g|} dr \tag{9.22}
\]

where \( w_g \) denotes the grid weights. Thus, the first integration is carried out numerically and the second one analytically. Note that this destroys the Hermitian character of the two-electron integrals.

Equation 9.20 is perhaps best evaluated in three steps:

\[
F_{\tau g} = (PX)_{\tau g} \tag{9.23}
\]

\[
G_{\nu g} = \sum_\tau A_{\nu\tau}(r_g) F_{\tau g} \tag{9.24}
\]

\[
K_{\mu\nu} = (XG\dagger)_{\mu\nu} \tag{9.25}
\]

As such the equations are very similar to the pseudo-spectral method extensively developed and discussed by Friesner and co-workers since the mid 1980s and commercially available in the Jaguar quantum chemistry package. The main difference at this point is that instead of \( X_{\kappa g} \) there appears a least-square fitting operator \( Q_{\kappa g} \) in Friesner’s formulation. Note that an analogue of the fitting procedure has also been implemented in

\(^8\) The theory of this approach together with all evaluations and implementation details is described in [104]. References to earlier work can also be found there.
ORCA, which however does not need specially optimized grids as in Friesner’s pseudospectral method. The basic idea is to remove the grid errors within the basis set by “fitting” the numerical overlap to the analytical one. Due to its nature, overlap fitting is supposed to work better with larger basis sets.

Given the exchange matrix, the exchange energy is given by (a sum over spin cases is left out here for simplicity):

\[
E_X = \frac{1}{2} \sum_{\mu \nu} P_{\mu \nu} K_{\mu \nu}(P)
\]  
(9.26)

Assuming that \( E_X \) refers to the nonrelativistic, variational SCF exchange energy, the derivative with respect to parameter \( \lambda \) can be re-arranged to the following form:

\[
\frac{\partial E_X}{\partial \lambda} \approx 2 \sum_g \sum_{\mu \nu} \frac{\partial F_{\mu g}}{\partial \lambda} G_{\nu g}
\]  
(9.27)

with:

\[
\frac{\partial F_{\mu g}}{\partial \lambda} = w_1^{1/2} \sum_\kappa P_{\kappa \mu} \frac{\partial X_{\mu g}}{\partial \lambda}
\]  
(9.28)

In this formulation, the gradient arises as a minor modification of the exchange matrix formation code. In particular, the derivatives of the analytic integrals are not needed, merely the derivatives of the basis functions on the grid.

In our implementation, we have defined grids of increasing quality. Higher and more accurate (and more expensive) grids for the COSX approximation are chosen by increasing \( n \) from 1 to 9 in

! GridXn

From version 2.9, overlap fitting is used by default. This means that there might be some differences with respect to previous versions. Firstly, smaller grids are used by default. The old default grid can be retained by typing

! GridXOLD

If consistency with previous versions of ORCA is desired, overlap fitting can be removed using the keyword !NoSFitting. Note that overlap fitting yields better results as the basis and/or the grid increases. It was adapted as the default procedure with the smallest reliable grid, but it is compatible with all possible grids. Grids tested in the overlap fitting paper are available as !GridXSi and !GridXSO. [248] The latter grid is the default.

For expert users, the grid parameters for the exchange grids can be even more finely controlled:
9.2 Choice of Computational Model

There are three grids involved: the smallest grid (Acc1, Ang1) that is used for the initial SCF iterations, the medium grid (Acc2, Ang2) that is used until the end of the SCF and the largest grid (Acc3, Ang3) that is used for the final energy and the gradient evaluations. UseFinalGridX turns this last grid on or off. “Accn” refers to the radial integration accuracy, GridX refers to the angular grid resolution and XCorrection (=0 or 1) refers to the method used for correcting the grid error. For “0” no one-center correction is applied, for “1” a one-center correction is computed analytically for the two-electron integrals. Note that in cases where convergence difficulties arise, it is advisable to increase the smallest grid to a larger value, or even equal to the medium grid using the Acc1, Ang1 parameters.

To modify the overlap fitting parameters

Note that overlap fitting works for HF and MP2 gradients as well without specifying any additional keyword. The UseQGradFit parameter merely uses the same fitting matrix for the gradients as for the energy calculation. However, this does not save significant time, neither is it more accurate, therefore it is turned off by default.

9.2.2.7 Choice of the COSX Grid and Convergence Issues

Other than the !Gridn (where n is an integer number) keywords used to specify the DFT integration grids, the grid structures used for HF exchange evaluation, called by the keywords !GridXn have also been discussed in previous chapters. The purpose of this chapter is to give a more specific introduction into the properties of COSX grids, and discuss some more common problems while using these.

As a start, it will be useful to relate the simple keywords GridXn, to the method block keywords detailed above. Sometimes it is necessary to increase the grids using the method block parameters directly, as they provide a more flexible control over the grid size. For some of the more common grids the simple keywords and the equivalent method block parameters are given below.
Symptoms of convergence issues: Erratic convergence behavior, often starting from the first SCF step, or possibly setting in at a later stage, producing crazy energy values, with “megahartree” jumps. If overlap fitting is on, the following error message may also be encountered: “Error in Cholesky inversion of numerical overlap”.

Convergence issues may arise when the chosen grid has difficulties in representing the basis set. This is the “grid equivalent” of a linear dependence problem, discussed in 9.3.4. It should also be mentioned that the grid related problem discussed here often goes hand in hand with basis set linear dependence, although not necessarily. The most straightforward way of dealing with these is to increase the size of the integration grid. This however, is not always desirable or possible, and in the remainder of this chapter some other methods will be discussed.

One way to avoid the Cholesky inversion issue is to turn overlap fitting off (!NoSFitting), however, this means that the numerical problems are still present, only they are ignored. Due to the fact that overlap
fitting operates with the numerical overlap, and its inverse, it is more sensitive to linear dependence issues, and turning off the fitting procedure may lead to convergence. This may be a pragmatic, but by no means clean solution, since it relies on the assumption that the numerical errors are small.

On the other hand, overlap fitting also gives a similar tool to deal with linear dependence issues as the one discussed in 9.3.4 for basis sets. The eigenvalues of the numerical overlap can be inspected similarly, and small values can be screened out. There is unfortunately no universal way to determine this screening parameter, but see 9.3.4 for typical values.

The parameters influencing the method used for inversion and obtaining the fitting matrix are

<table>
<thead>
<tr>
<th>%method</th>
<th>SFitInvertType Cholesky</th>
<th># Use Cholesky inversion. Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cholesky_Q</td>
<td># Cholesky + full Q matrix</td>
</tr>
<tr>
<td></td>
<td>Diag</td>
<td># Inversion via diagonalization</td>
</tr>
<tr>
<td></td>
<td>Diag_Q</td>
<td># Diag + full Q matrix</td>
</tr>
<tr>
<td></td>
<td>SInvThresh</td>
<td>1e-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td># inversion threshold for Diag and Diag_Q, default 1 e-8</td>
</tr>
</tbody>
</table>

By default, the inversion procedure proceeds through Cholesky decomposition as the fastest alternative. Ideally the overlap matrix is non-singular, as long as the basis set is not linear dependent. For singular matrices the Cholesky procedure will fail. It should be noted at this point that the numerical overlap can become linear dependent even if the overlap of basis functions is not, and so a separate parameter will be needed to take care of grid related issues. To achieve this, a diagonalization procedure (Diag) can be used instead of Cholesky with the corresponding parameter to screen out eigenvectors belonging to eigenvalues below a threshold (SInvThresh). For both Cholesky and diagonalization procedures a “full Q” approach is also available (Cholesky_Q and Diag_Q), which corresponds to the use of a more accurate (untruncated) fitting matrix.

9.2.2.8 Improved Analytical Evaluation of the Coulomb Term: Split-J

ORCA features a method that gives the exact Coulomb term at significantly reduced computational cost. It can most profitably be applied to the case where no HF exchange is present. Thus if you use LDA or GGA functionals and you do not want to apply the RI approximation (perhaps because you use a special basis set for which no fit-set is available), the Split-J is an attractive alternative to the traditional evaluation. The advantages of Split-J increase with the quality of the basis set used, i.e. if you have basis sets with high-angular momentum functions split-J can be more effective by a factor of 2-5 compared to the traditional evaluation. For smaller basis sets (i.e. SV(P) and the like) the advantages are smaller but still significant. However, Split-J is also significantly slower than RI-J (but recall that Split-J is exact while RI-J is an approximation).

A small job that uses the Split-J feature is shown below:
9.2.2.9 The Standard Computational Levels

**WARNING:** The keywords below no longer change the basis set for the calculation. The default basis set is def2-SVP and any changes to it must be specified explicitly! This makes these keywords somewhat less helpful and their use is discouraged.

Standard calculation levels are defined below

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Calculation-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RunTyp</td>
<td>Quick DFT</td>
</tr>
<tr>
<td>Functional</td>
<td>BP</td>
</tr>
<tr>
<td>RI</td>
<td>On</td>
</tr>
<tr>
<td>SCFConv</td>
<td>Loose</td>
</tr>
<tr>
<td>GeoConv</td>
<td>-</td>
</tr>
<tr>
<td>Grid(^2)</td>
<td>2/3</td>
</tr>
</tbody>
</table>

1 – The RI approximation can be used in these calculations by using ! RIJONX in the input
2 – The first and second number refer to the dual-grid feature of ORCA

You can easily override these defaults by simply typing the appropriate keyword that changes one of the settings given above (for example if you want MediumOpt but with the PBE functional simply give ! MediumOpt PBE).

9.2.2.10 Treatment of Dispersion Interactions with DFT-D3

**Introduction**

DFT-D3 is an atom-pairwise (atom-triplewise) dispersion correction which can be added to the KS-DFT energies and gradient [2]:

\[ E_{\text{DFT-D3}} = E_{\text{KS-DFT}} + E_{\text{disp}} \] (9.29)
$E_{\text{disp}}$ is then the sum of the two- and three-body contributions to the dispersion energy: $E_{\text{disp}} = E^{(2)} + E^{(3)}$. The most important is the two-body term which is given at long range by:

$$E_{\text{disp}} = - \sum_{A<B} \sum_{n=6,8} s_n \frac{C_{AB}^n}{r_{AB}^n}$$

(9.30)

$C_{AB}^n$ denotes the averaged (isotropic) $n$th-order dispersion coefficient for atom pair $AB$, and $r_{AB}$ is their internuclear distance. $s_n$ is a functional-dependent scaling factor (see below). In the general case, an adequate damping function must be employed.

**Damping Functions**

In order to avoid near singularities for small $r_{AB}$, the dispersion contribution needs to be damped at short distances. One possible way is to use rational damping as proposed by Becke and Johnson [249–251]:

$$E^{(2)} = - \sum_{A<B} \sum_{n=6,8} s_n \frac{C_{AB}^n}{r_{AB}^n} + f(R_{AB}^0)^n$$

(9.31)

with [251]

$$R_{AB}^0 = \sqrt{\frac{C_{AB}^8}{C_{AB}^6}}$$

(9.32)

and

$$f(R_{AB}^0) = a_1 R_{AB}^0 + a_2.$$  
(9.33)

Damping the dispersion contribution to zero for short ranges (as in Ref. [2]) is also possible:

$$E^{(2)} = - \sum_{A<B} \sum_{n=6,8} s_n \frac{C_{AB}^n}{r_{AB}^n} f_{d,n}(r_{AB})$$

(9.34)

with

$$f_{d,n} = \frac{1}{1 + 6(r_{AB}^0 s_{r,n} R_{AB}^0)^{-\alpha_n}}$$

(9.35)

Note that the $R_{AB}^0$ used with this damping are from Ref. [2]. For more information on the supported damping functions, see Ref [109]. In the ORCA program the dispersion correction with zero damping is invoked by the keyword ! D3ZERO. The default is the recommended variant with Becke-Johnson damping and is invoked by the keyword ! D3BJ or simply ! D3.
Three-body term

It is possible to calculate the three-body dispersion contributions with DFT-D3, according to

\[
E^{(3)} = - \sum_{A<B<C} C_{ABC}^{(3)} \frac{(3 \cos \theta_A \cos \theta_B \cos \theta_C + 1)}{(r_{AB} r_{BC} r_{CA})^3} f_{d,(3)}(\tau_{ABC}),
\]

where \(\theta_A, \theta_B\) and \(\theta_C\) are the internal angles of the triangle formed by \(r_{AB}, r_{BC}\) and \(r_{CA}\). The \(C_9\) coefficient is approximated by

\[
C_{ABC}^{(3)} \approx - \sqrt{C_{AB}^{(6)} C_{AC}^{(6)} C_{BC}^{(6)}}.
\]

The three-body contribution has a small effect on medium-sized molecules and is damped according to equation 9.36. The damping function \(f_{d,(3)}(\tau_{ABC})\) is similar to the one shown in equation 9.35 with \(\tau_{ABC}\) being the geometric mean of \(r_{AB}, r_{BC}\) and \(r_{CA}\). It can be used with both variants of the \(E^{(2)}\) term. However, the three-body term itself will always be calculated using the zero damping scheme. Adding the three-body correction has proven to give quite accurate results for the thermochemistry of supramolecular systems [152].

In the ORCA program, the dispersion correction with zero damping and the three-body contribution is invoked by the keyword \texttt{D3ZERO ABC}. Becke-Johnson damping for \(E^{(2)}\) and zero damping for \(E^{(3)}\) is invoked by \texttt{D3BJ ABC}.

Options

Note that correcting Hartree-Fock (HF) is only parameterized with BJ-damping. For a constantly updated list of supported functionals, check the website of the Grimme group [252]. If there is a functional on this website that is parameterized, but the parameters are not implemented into the ORCA program yet, you can specify the parameters manually as shown below (using the respective parameters from Ref. [252]). In the same fashion, one could also use own parameters but this is not recommended.

**Important**: GGA and hybrid functionals should only be used with \(s_6 = 1.0\) to ensure asymptotically correct behaviour. Double-hybrid functionals already account for parts of the dispersion interaction and should therefore be used with \(s_6 < 1.0\). Within the “\%method” block it is possible to change the parameters \(s_6, a_1, s_8\) and \(a_2\) for the variant with Becke-Johnson damping.

```bash
! d3bj b2plyp
\%method
D3S6 0.64
D3A1 0.3065
D3S8 0.9147
D3A2 5.0570
end
```

The variant with zero damping offers the parameters \(s_6, rs_6, s_8\) and \(\alpha_6\).
If a geometry optimization is performed (! opt) then the program automatically calls the DFT-D3 gradient. There are also special functional parameters, which were optimized for triple-zeta basis sets. This option is only available with zero damping and can be invoked by the keywords ! D3ZERO D3TZ. Preliminary results in the SI of Ref. [2] indicate that results are slightly worse than with the default parameters and QZVP type basis sets. This option should be carefully tested for future use in very large computations.

Example input files
In the following, we list some example input files. A computation using the DFT-D3 dispersion correction with BJ-damping using the D3BJ keyword may look like this. As it is the default, the use of the keyword D3 is identical.

```
! pbe svp d3bj
* xyz 0 1
 C 0.000000 0.000000 0.000000
 O 0.000000 0.000000 1.400000
 O 0.000000 0.000000 -1.400000
*
```

The output for the dispersion correction in the ORCA output will look like this:

```

DFT DISPERSION CORRECTION
DFTD3 V2.1 Rev 6
USING Becke-Johnson damping

The default PBE functional is recognized
Active option DFTDOPT ... 4
molecular C6(AA) [au] = 156.562480

DFT-D V3
parameters
 s6 scaling factor : 1.0000
 a1 scaling factor : 0.4289
 s8 scaling factor : 0.7875
```
$E_{\text{disp}}$ is given as the “Dispersion correction”. It will be automatically included into the singlepoint energy. As discussed above, the parameters $s6$, $a1$, $s8$ and $a2$ may be defined manually by:

```
! pbe svp d3bj
%method
D3S6 1.0
D3A1 0.4289
D3S8 0.7875
D3A2 4.4407
end
*xyz 0 1
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.400000
O 0.000000 0.000000 -1.400000
*
```

The calculation of the same system with $D3\text{ZERO}$ is invoked by:

```
! pbe svp d3zero
*xyz 0 1
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.400000
O 0.000000 0.000000 -1.400000
*
```

In the same fashion as above, the $s6$, $rs6$, $s8$ and the exponent $\alpha_6$ can be defined by the user. The next example shows this along with the call for the three-body correction using $ABC$:
9.2 Choice of Computational Model

9.2.2.11 DFT Calculations with the Non-Local, Density Dependent Dispersion Correction: DFT-NL

Accounting for the missing van der Waals (vdW, dispersion) forces in standard Kohn–Sham Density Functional Theory (DFT) has become essential in many studies of chemical and physical electronic structure problems. Common approaches use atom pair-wise additive schemes such as the popular DFT-D3 [2,109] method, which is also available in ORCA by invoking the keyword “! D3” (for more information see section 9.2.2.10).

A different route is followed by the van der Waals Density Functional (vdW-DF) as pioneered by Langreth and Lundquist [185]. These methods use as input to compute the Non-Local (NL) dispersion contribution only the electron density. The recently developed vdW functional VV10 of Vydrov and Van Voorhis [253] currently seems to be the most promising candidate for a general and accurate electronic structure method. We use the term DFT-NL for any (hybrid)GGA density functional in combination with the non-local part of the VV10 functional with an optimized parameter \( b \), which will be defined below. The performance of these methods has been evaluated in Ref. [254] using the GMTKN30 [197,255,256] database and the S66 set [257]. The performance of weak hydrogen bonds were evaluated in Ref. [258].

We recommend the DFT-D3 dispersion correction in general and the DFT-NL method for checking purposes by single-point calculations. DFT-NL and DFT-D3 perform very similar but NL is to be preferred for metallic systems or when the basic electronic structure changes significantly (e.g. oxidations or ionizations). Because the NL correction increases the computational cost in particular of GGA treatments using RI significantly, it is more useful in combination with hybrid functionals (and RI-JK or RIJCOSX techniques) where the computational overhead is marginal if it is done non-self-consistently (see below).

The total exchange-correlation (XC) energy of VV10 type functionals is defined in eq. 9.38. It is composed of standard exchange (X) and correlation (C) parts and the non-local (NL) term, which covers (mainly) long-range dispersive energy:

\[
E_{\text{XC}}^{\text{DFT-NL}} = E_{\text{X}}^{\text{(hybrid)GGA}} + E_{\text{C}}^{\text{GGA}} + E_{\text{C-NL}}^{\text{VV10}} \\
(9.38)
\]
The NL term is given by the following double-integral:

\[
E_{C,NL}^{VV10} = \int dr \rho(r) \left[ \beta + \frac{1}{2} \int dr' \rho(r') \varphi(r,r') \right]
\]  

(9.39)

where \( \rho \) is the total electron density, and the definition of the kernel \( \varphi(r,r') \) and \( \beta \) is as follows (in a.u.):

\[
\varphi(r,r') = -\frac{3}{2g'g} g(r) = \omega_0(r) R^2 + \kappa(r) \quad R = |r - r'|
\]

\[
\omega_0(r) = \sqrt{C \left[ \frac{\nabla \rho(r)}{\rho(r)} \right]^2 + \frac{4\pi}{3} \rho(r)} \quad \kappa(r) = b \frac{R}{2} \left[ \frac{\rho(r)}{\omega_0(r)} \right]^{1/6} \quad \beta = \frac{1}{\sqrt{2}} \left( \frac{3}{16} \right)^{3/4}
\]

In the original definition, the short-range attenuation parameter \( b \) appearing in \( \kappa \) and \( \beta \) was fitted to the S22 set [259] of non-covalent interactions \((b = 5.9 \text{ for the rPW86PBE GGA})\). The other parameter \( C = 0.0093 \) appearing in \( \omega_0 \), which determines the long-range behavior, was set to its original value. Other DFT-NL functionals are constructed analogously. For a detailed discussion of the derivation of the formulas and their physical meaning and basis see the references given and those given therein.

The defined energy of the non-local DFT-NL exchange-correlation functional can be computed non-self-consistently based on a converged SCF density but a self-consistent treatment is also possible. We take B3LYP as an example.

In our implementation of the non-self-consistent B3LYP-NL functional, in the first step a self-consistent B3LYP computation is performed. In the second step the optimized electron density from the B3LYP computation is taken as input for the energy calculation of the non-local part. This procedure is invoked by the combination of the keywords “! B3LYP NL”. Use of the keywords “! B3LYP SCNL” would request a self-consistent treatment in which orbitals and density are optimized in the presence of the full B3LYP-NL exchange-correlation potential (see below). According to many test calculations, an SCNL treatment is rarely necessary for normal energy evaluations.

The computation of the double-integral given in eq. 9.39 requires using an integration grid, just like for normal exchange-correlation functionals. The grid size is used analogously to the regular grids available in the ORCA program and can be specified by invoking the keyword “! vdwgridX”, where “X” can be 1, 2, 3, 4, 5, 6, or 7. The default grid size is “! vdwgrid2”. In test calculations we found, that going beyond grid size of 3 is not necessary in normal applications.

In the following we compute the energy of an argon dimer at the distance of 3.76 Å with the def2-TZVP basis set using the B3LYP hybrid functional as an example with the non-self-consistent variant of the DFT-NL dispersion correction. The original VV10 method is based on the rPW86PBE GGA.

```plaintext
! B3LYP NL
! def2-TZVP def2/JK RIJK grid4 vdwgrid2 nofinalgrid nososcf nopop

*xyz 0 1
Ar 0.0 0.0 0.0
Ar 0.0 0.0 3.76
*
```
The DFT-NL output for this example is shown below:

```
DFT-NL dispersion correction

SC Energy -1054.960659618
NL parameter b = 4.80
NL Energy 0.289416556
SC+NL Energy -1054.751243062
NL done in 0.3 sec

TOTAL SCF ENERGY

Total Energy : -1054.75124306 Eh -28701.24047 eV
Components:
 Nuclear Repulsion : 45.59931263 Eh 1240.82038 eV
 Electronic Energy : -1100.35055569 Eh -29942.06085 eV
 NL Energy : 0.20941656 Eh 5.69851 eV
```

Here we find the B3LYP total energy ("SC Energy") of -1054.9607 Eh, the parameter $b = 4.8$, the non-local contribution ("NL Energy") of 0.2094 Eh and the final total energy ("SC+NL Energy") of -1054.7512 Eh, which is the sum of the SC and NL energy. In the "Components" section the non-local-contribution is listed separately ("NL Energy") in order to be consistent with the "! SCNL" option (see below).

In the current version of ORCA there are seven GGA and hybrid functionals available, which can be used with the DFT-NL method. The GGA functionals are rPW86PBE ($b = 5.9$), BLYP ($b = 4.0$) and revPBE ($b = 3.7$). The hybrid functionals are B3LYP ($b = 4.8$), B3PW91 ($b = 4.5$), revPBE0 ($b = 4.3$) and revPBE38 ($b = 4.7$). In addition, we also added the non-local term to Hartree-Fock (HF) with a parameter of $b = 3.9$. The parameter $C$ was not changed. All these functionals are ready to use by invoking the keyword "! DF NL", where DF stands for the seven density functionals. Hartree-Fock is invoked with the keyword "! HF NL".

All DFT-NL methods can be used for closed-shell and open-shell systems.

All density functionals that are available in ORCA (but for which no $b$ parameter has been determined yet) can also be used with the DFT-NL method by providing a value for the parameter $b$ as shown here:

```
%method
NLb 5.0
End
```

For example, for the functional BP86 the parameter $b$ has not been fitted yet and, therefore, using the option "! BP86 NL" will give an error, but by providing a parameter $b$ (5.0 just as an example!) one can use this functional in combination with the DFT-NL dispersion correction. Users who want to use such new combinations might contact the Grimme group.
In addition, for any of the already fitted functionals one can define a user specific value for the parameter $b$, which might be different to the default value, therefore, overriding the default parameter $b$. For example, for B3LYP the fitted parameter is $b = 4.8$ which is changed below to a more repulsive value of $b = 5.2$.

The other parameter $C = 0.0093$ appearing in $\omega_0$ may also be changed with the “NLC” keyword as shown in the following example. Of course, both parameters $b$ and $C$ can be changed with the keywords “NLb” and “NLC” at the same time.
Self-consistent computations with the DFT-NL dispersion correction

Self-consistent calculations with the DFT-NL dispersion correction are possible by invoking the keyword "! \texttt{SCNL}" in combination with one of the available density functionals (rPW86PBE, revPBE, BLYP, B3LYP, B3PW91, revPBE0 and revPBE38). However, as explained above any density functional can be used also in combination with the "\texttt{SCNL}" keyword by providing a parameter b with the "\texttt{NLb}" keyword. Note, that due to technical reasons self-consistent calculations are not possible with the Hartree-Fock method.

In the following example we use the B3LYP hybrid functional with the self-consistent DFT-NL variant:

```
! B3LYP SCNL
! def2-TZVP def2/JK RIJK grid4 vdwgrid2 nofinalgrid nososcfc nopop

*xyz 0 1
Ar 0.0 0.0 0.0
Ar 0.0 0.0 3.76
*
```

The DFT-NL output of this example is shown below:

```

| Self-consistent DFT-NL dispersion correction |

NL parameter b = 4.80

SCF ITERATIONS

<table>
<thead>
<tr>
<th>ITTER</th>
<th>Energy</th>
<th>Delta-E</th>
<th>Max-DP</th>
<th>RMS-DP</th>
<th>[F,P]</th>
<th>Damp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1054.7512430617</td>
<td>0.000000000000</td>
<td>0.00166322</td>
<td>0.00007167</td>
<td>0.0007919</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>-1054.7512472736</td>
<td>-0.000004211912</td>
<td>0.00077400</td>
<td>0.00002662</td>
<td>0.0005919</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>-1054.7512477044</td>
<td>-0.000000430774</td>
<td>0.000004435</td>
<td>0.000000152</td>
<td>0.0000304</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

***** Energy Check signals convergence *****

* SUCCESS *
* SCF CONVERGED AFTER 3 CYCLES *

--
TOTAL SCF ENERGY
--

Total Energy : -1054.75124767 Eh -28701.24059 eV
```
Components:
- Nuclear Repulsion : 45.59931263 Eh 1240.82038 eV
- Electronic Energy : -1100.35056030 Eh -29942.06097 eV
- NL Energy : 0.20940947 Eh 5.69832 eV

The procedure for the self-consistent computation is similar to the non-self-consistent one: In the first step a self-consistent B3LYP run is performed and in the second step the converged electron density is used as input for the self-consistent SCNL run, as shown in the output example above.

In the output the “Total Energy” is the energy of an exchange-correlation functional (B3LYP) plus the non-local (NL) contribution. In the “Components” section the non-local contribution (“NL Energy”) is listed separately in order to be consistent with the “! NL” option (see above).

As can be seen from this example only two cycles of the self-consistent NL run were performed. The difference in energy (5.0e-06) by comparing the self-consistent (-1054.751248) and non-self-consistent (-1054.751243) computations is very small which seems to be typical also even for larger systems.

In the current version of ORCA analytical gradients for any DFT-NL dispersion correction are not available and, therefore, geometry optimizations are not possible using analytical gradients. As mentioned above we recommend to use DFT-D3 optimized geometries for single point DFT-NL calculations.

9.2.2.12 DFT and HF Calculations with the geometrical Counterpoise Correction: gCP

The central idea of the gCP correction [260] is to add in a semi-empirical fashion a correction $\Delta E_{gCP}$ to the energies of molecular systems, in order to remove artificial overbinding effects from BSSE (see section 8.1.6). The correction uses atomic corrections and thus also yields the ability to correct for intramolecular BSSE. The parametrization is constructed such that it approximates the Boys and Bernadi counterpoise (CP) correction $\Delta E_{CP}$ in the intermolecular case

$$\Delta E_{CP} \approx \Delta E_{gCP}, \quad (9.40)$$

where e.g. for a complexation reaction $A + B \rightarrow C$ our correction is given by

$$\Delta E_{gCP} = E_{gCP}(C) - E_{gCP}(A) - E_{gCP}(B). \quad (9.41)$$

In practice, $E_{gCP}$ can simply be added to the HF/DFT energy

$$E_{total} = E_{HF/DFT} + E_{gCP}. \quad (9.42)$$

which is also done in ORCA. The **FINAL SINGLE POINT ENERGY** is the sum of the HF/DFT energy and the gCP correction.

The central equation over all atoms $N$ reads:

$$E_{gCP} = \sigma \cdot \sum_{a}^{N} \sum_{b \neq a}^{N} e_{miss}^{a} \cdot f_{dec}(R_{ab}), \quad (9.43)$$
Table 9.4: Overview of parametrized basis sets. The level keyword in \!GCP(level) is a compound of HF or DFT and the basis set keyword. Valid examples are: \!GCP(HF/MINIS), \!GCP(DFT/LANL), \!GCP(HF/TZ), \!GCP(DFT/631GD) …

<table>
<thead>
<tr>
<th>parametrized basis set</th>
<th>HF</th>
<th>DFT</th>
<th>basis set keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIS</td>
<td>yes</td>
<td>yes</td>
<td>MINIS</td>
</tr>
<tr>
<td>SV</td>
<td>yes</td>
<td>yes</td>
<td>SV</td>
</tr>
<tr>
<td>6-31G(d)</td>
<td>yes</td>
<td>yes</td>
<td>631GD</td>
</tr>
<tr>
<td>6-31G(d) + LANL2DZ (Sc-Zn)</td>
<td>no</td>
<td>yes</td>
<td>LANL</td>
</tr>
<tr>
<td>def2-SV(P)</td>
<td>no</td>
<td>yes</td>
<td>SV(P)</td>
</tr>
<tr>
<td>def2-SV(P/h,c)</td>
<td>no</td>
<td>yes</td>
<td>SVX or SV(P/H,C)</td>
</tr>
<tr>
<td>def2-SVP</td>
<td>yes</td>
<td>yes</td>
<td>SVP</td>
</tr>
<tr>
<td>def2-TZVP</td>
<td>yes</td>
<td>yes</td>
<td>TZ</td>
</tr>
</tbody>
</table>

where the energy $e_a^{\text{miss}}$ is a measure for the incompleteness of the chosen target basis set (that is typically small), and $f_{\text{dec}}(R_{ab})$ is a decay function that depends on the inter-atomic distance $R_{ab}$.

The scaling factor $\sigma$ is one out of 4 parameters needed for every method/basis set combination. More details on this can be found in the original gCP paper [260].

Analytical gradients are available for geometry optimization. Due to its semi-empirical nature the correction itself is calculated within seconds even for very large systems.

The correction can be invoked by using \!GCP(level) keyword, where level is a compound of the method (=HF or DFT) and the basis set. See table 9.4 for the available basis sets and the corresponding keyword. For a B3LYP calculation using the def2-SV(P) basis set a typical input would be:

\[
\! \text{B3LYP def2-SV(P) GCP(DFT/SV(P))}
\]

*xyzfile 0 1 example.xyz

The output states the level, the 4 parameters mentioned above and the correction itself:

```
--
g C P - geometrical counterpoise correction
--
Method: dft/sv(p)
Parameters: sigma eta alpha beta
 0.2424 1.2371 0.6076 1.4078
Egcp: 0.0381115568 a.u.
--
gCP correction 0.038111557
--
FINAL SINGLE POINT ENERGY -152.809257799447
```
There may be issued several warnings and notices: Elements of the 4th and higher period are treated as their
3rd period analog, i.e. Sn is treated as if it were Ge in terms of parameters. If this is the case a notice is
printed. If an element has no parameters it will give no contributions to the correction. Both cases can occur
at once:

! HF SV GCP(hf/minis)
*xyzfile 0 1 example.xyz

The corresponding output:

Method: hf/minis

** NOTE ** -> element sn will be treated as ge
** WARNING ** -> element ge has no parameters (no contribution)!
Parameters: sigma eta alpha beta
0.1290 1.1526 1.1549 1.1763

Egcp: 0.1593457998 a.u.

WARNING: Basis set mismatch between ORCA and otool_gcp:
ORCA: 280 gCP: 88
--------------------------------------------------
gCP correction 0.159345800
--------------------------------------------------

This is done for the user convenience. It enables the computation of molecules that has un-parametrized
elements. If only one or a few atoms in a larger molecule is treated inaccurate or not at all the error can
be expected to be small. In case of a mismatch between the ORCA basis set and the selected basis set for
gCP another warning is printed. This was done on purpose in the example above (GCP(hf/minis) instead of
GCP(hf/sv)). This is meant to be a safety check. However, a small deviation may cause only a minor error
(be careful nonetheless!). Use your own judgment if you want to use an unparametrized basis sets: Number
of basis functions and exponents should be very similar!

For debug issues, !LARGEPRINT will print additional information about parameters and individual atomic
contributions.

The gCP input can also be defined through the method section

%method
  DoGCP true/false # turn gCP on/off
  GCPMETHOD "method" # define method string for otool_gcp, eg. dft/svp
  GCP.D3MINIS true/false # use special DFT-D3 refit for HF/MINIS (default=true)
end

Further comments:
CP(HF/MINIS) sets automatically the refitted D3 parameter as proposed in the original gCP paper.

The gCP method is implemented via an external tool called otool_gcp, which is based on the original Fortran
program used in the publication. Thus, the otool_gcp binary can also be called directly via the command
line (otool_gcp -h gives an overview of the options). It is also possible to read an external parameter file
9.2 Choice of Computational Model

(SHOME/.gcppar) using !GCP(FILE). For further information, please look at the manual for the gcp program as provided by Prof. S. Grimme\(^9\). During the calculation some temporary output files are written by ORCA: basename.gcp.in.tmp and basename.gcp.out.tmp will contain the input for otool_gcp and its output.

It has been demonstrated that the popular combination of B3LYP with 6-31G(d) can be strongly improved using DFT-D3 and gCP [261]. For convenience, the following compound keyword is defined \( \text{B3LYP-gCP-D3/6-31G}^* \). This equals the keywords: \( \text{B3LYP 6-31G}^* \text{ D3BJ GCP(DF/631GD)} \).

General Advices:

- Small basis sets show not only a large BSSE, but general shortcomings. These effects are not always clearly distinguishable.
- If computationally affordable, large basis sets (triple-\( \zeta \) and higher) are always preferable for a given system.
- gCP makes only sense for somewhat large molecules
- gCP should always be applied together with a dispersion correction for DFT: gCP-D3 is well tested, but gCP-NL does also work well. (see sections 9.2.2.10 for DFT-D3 and 9.2.2.11 for DFT-NL)

9.2.2.13 HF-3c: Hartree-Fock with three corrections

HF-3c is a fast Hartree-Fock based method developed for computation of structures, vibrational frequencies and non-covalent interaction energies in huge molecular systems [262]. The starting point for evaluating the electronic energy is a standard HF calculation with a small Gaussian AO basis set. The used so-called MINIX basis set consists of different sets of basis functions for different groups of atoms as shown in table 9.5.

<table>
<thead>
<tr>
<th>element</th>
<th>basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-He, B-Ne</td>
<td>MINIS</td>
</tr>
<tr>
<td>Li-Be</td>
<td>MINIS+1(p)</td>
</tr>
<tr>
<td>Na-Mg</td>
<td>MINIS+1(p)</td>
</tr>
<tr>
<td>Al-Ar</td>
<td>MINIS+1(d)</td>
</tr>
<tr>
<td>K-Zn</td>
<td>SV</td>
</tr>
<tr>
<td>Ga-Kr</td>
<td>SVP</td>
</tr>
<tr>
<td>Rb-Rn</td>
<td>def2-SVP with Stuttgart-Dresden ECPs</td>
</tr>
</tbody>
</table>

Three terms are added to correct the HF energy \( E_{\text{tot}}^{\text{HF/MINIX}} \) in order to include London dispersion interactions, to account for the BSSE and to correct for basis set deficiencies, i.e. overestimated bond lengths. The corrected total energy is therefore calculated as

\[
E_{\text{tot}}^{\text{HF-3c}} = E_{\text{tot}}^{\text{HF/MINIX}} + E_{\text{disp}}^{\text{D3(BJ)}} + E_{\text{gCP BSSE}} + E_{\text{SRB}},
\]  

The first correction term \( E_{\text{disp}}^{\text{D3(BJ)}} \) is the atom-pair wise London dispersion energy from the D3 dispersion correction scheme [2] applying Becke-Johnson (BJ) damping [249–251] (see section 9.2.2.10). The second term \( E_{\text{gCP BSSE}} \) denotes the geometrical counterpoise (gCP) correction [260] to treat the BSSE (see section 9.2.2.12).

---

\(^9\)http://www.thch.uni-bonn.de/tc/
For the HF-3c method, the three usual D3 parameters $s_8$, $a_1$ and $a_2$ were re-fitted using reference interaction energies of the complexes of the S66 test set \[257\]. This results in $s_8 = 0.8777$, $a_1 = 0.4171$ and $a_2 = 2.9149$. The parameter $s_6$ was set to unity as usual to enforce the correct asymptotic limit and the gCP correction was already applied in this fitting step. The last term $E_{SRB}$ is a short-ranged correction to deal with basis set deficiencies which occur when using small or minimal basis sets. It corrects for systematically overestimated covalent bond lengths for electronegative elements and is calculated as a sum over all atom pairs:

$$E_{SRB} = -s \sum_{A}^{Atoms} \sum_{B \neq A}^{Atoms} (Z_A Z_B)^{3/2} \exp(-\gamma(R_{AB}^{0,D3})^{3/4} R_{AB})$$ (9.45)

Here, $R_{AB}^{0,D3}$ are the default cut-off radii as determined \textit{ab initio} for the D3 scheme \[2\] and $Z_A$, $Z_B$ are the nuclear charges. This correction is applied for all elements up to argon. The empirical fitting parameters $s = 0.63$ and $\gamma = 0.7$ were determined to produce vanishing HF-3c total atomic forces for B3LYP-D3(BJ)/def2-TZVPP equilibrium structures of 107 small organic molecules. More details can be found in the original publication \[262\].

The HF-3c method can only be invoked with a simple keyword:

```bash
! HF-3c
```

! HF-3c is a compound keyword and equals ! HF MINIX D3BJ GCP(HF/MINIX) PATOM, hence no basis set etc. has to be specified. The PATOM guess is selected since the grid construction for the default guess can take more time than an actual SCF step. The guess can only be overwritten manually in the %method section. The default mode for the integral handling is set to \textit{Conventional}. The storing of the two-electron integrals on disk or in memory if possible leads to large computational savings. In case one want to use the \textit{Direct} mode, this has to be specified in the %scf input section:

```bash
%scf
 SCFmode Direct
end
```

The output gives the used parameters and the correction itself for D3 and gCP separately. As the SRB correction is also calculated with the otool_{gcp}, the results are given in the gCP output section. The \textbf{Total correction to HF/MINIX} is the sum of all three corrections (D3, gCP and SRB) and \textbf{FINAL SINGLE POINT ENERGY} is the total HF-3c energy as given in equation 9.44.
molecular C6(AA) [au] = 1680.256597

DFT-D V3
parameters
using HF/MINIX parameters
s6 scaling factor : 1.0000
a1 scaling factor : 0.4171
s8 scaling factor : 0.8777
a2 scaling factor : 2.9149
ad hoc parameters k1-k3 : 16.0000 1.3333 -4.0000

\[ Edisp/kcal, au: -32.163184627631 -0.051255291794 \]
\[ E6 /kcal: -18.007221978 \]
\[ E8 /kcal: -14.155962649 \]
\[ % E8 : 44.012938437 \]

------------------------------------------
Dispersion correction -0.051255292
------------------------------------------

------------------------------------------------------------------------------
g C P - geometrical counterpoise correction
------------------------------------------------------------------------------
Method: hf/minix
Parameters: sigma eta alpha beta
0.1290 1.1526 1.1549 1.1763
Egcp: 0.0723150636 a.u.
Ebas: -0.0636976872 a.u.
------------------------------------------
gCP+bas correction 0.008617376
------------------------------------------

Total correction to HF/MINIX -0.042637915

------------------------------------------
FINAL SINGLE POINT ENERGY -163.002895262171
------------------------------------------

For the elements up to Xe, the default initial guess is a Hückel guess. Beyond Xe, the guess mode is changed to HCORE since no Hückel parameters for the respective ECP bases are available and other models are not implemented at the moment. For calculations with only lighter elements and therefore no ECPs, the ECP printouts in the output file can be ignored.
9.2.2.14 PBEh-3c: A PBE hybrid density functional with small AO basis set and two corrections

PBEh-3c is a highly efficient electronic structure approach performing particularly well in the optimization of geometries and for interaction energies of non-covalent complexes. [263] Here, a global hybrid variant of the Perdew-Burke-Ernzerhof (PBE) functional with a relatively large amount of non-local Fock-exchange (42%) is employed with a valence-double-zeta Gaussian AO basis set (def2-mSVP). Basis set superposition errors (BSSE) and London dispersion effects are accounted for by the gCP and D3 schemes, respectively (see above). The basis set is constructed such that:

<table>
<thead>
<tr>
<th>element</th>
<th>basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>def2-SV(P) (α scaled by 1.2)</td>
</tr>
<tr>
<td>He</td>
<td>def2-SVP(-p)</td>
</tr>
<tr>
<td>Li-Be,Na-Kr</td>
<td>def2-SV(P)</td>
</tr>
<tr>
<td>B,Ne</td>
<td>Ahlrichs’ DZ + Polarization from def2-SVP</td>
</tr>
<tr>
<td>C-F</td>
<td>Ahlrichs’ DZ + Polarization from 6-31G*</td>
</tr>
<tr>
<td>Rb-Rn</td>
<td>def2-SVP with Stuttgart-Dresden ECPs</td>
</tr>
</tbody>
</table>

For inter- and intramolecular BSSE the gCP expression from Eq. 9.43 is used but with a damping function (similar to the zero-damping in Eq. 9.35). This damping improves the thermochemistry of the method significantly compared with the non-damped version. London dispersion effects are accounted for by the DFT-D3 (BJ-damping) scheme including the three-body term. Compared to the related HF-3c approach, the PBEh-3c is somewhat more costly, however, it yields much better geometries. These are roughly of MP2-quality (or even better for non-covalent structures) but may be computed at much lower cost. Due to the moderate amount of non-local Fock exchange, the method is less prone to self-interaction errors (as in GGAs) but still applicable in cases when Hartree-Fock fails (strongly correlated systems).

The PBEh-3c method may be invoked with the simple keyword:

! PBEh-3c

Identical to HF-3c, the default initial guess for all elements up to Xe is a Hückel guess. Beyond Xe, the guess mode is changed to HCORE. For calculations with only lighter elements and therefore no ECPs, the ECP printouts in the output file can be ignored.

Very recently, a new composite ‘low-cost’ method for accurate thermochemistry, structures, and noncovalent interactions specifically also for transition metal chemistry and other stronger correlated systems was implemented. As it is based on the B97 GGA including D3 with thee-body contribution, a short range bond length correction, and a modified, stripped-down triple-ζ basis, def2-mTZVP, the computational cost of this method termed B97-3c are between that of HF-3c and PBEh-3c (for large systems roughly two times more expensive than HF-3c). It is invoked with a simple keyword analogously to the latter methods. A more detailed description as well as the proper reference to cite will be added after the corresponding paper has been published (approximately March 2017, S. Grimme et al.).
9.2.3 Semiempirical Methods

The present version of ORCA has inherited the capability of doing semiempirical calculations from the earlier versions. A number of methods based on the “neglect of differential overlap” [264,265] are currently implemented for energies and analytic gradients (for geometry optimization).

<table>
<thead>
<tr>
<th>Method</th>
<th>CNDO</th>
<th>INDO</th>
<th>NDDO</th>
</tr>
</thead>
<tbody>
<tr>
<td># for Method=CNDO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>CNDO_1</td>
<td>CNDO_2</td>
<td>CNDO_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># for Method=INDO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>INDO_1</td>
<td>INDO_2</td>
<td>ZINDO_1</td>
</tr>
<tr>
<td></td>
<td>ZINDO_2</td>
<td>ZINDO_S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># for Method=NDDO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>ZNDDO_1</td>
<td>ZNDDO_2</td>
<td>MNDO</td>
</tr>
<tr>
<td></td>
<td>AM1</td>
<td>PM3</td>
<td></td>
</tr>
</tbody>
</table>

The methods MNDO [266–268], AM1 [269] and PM3 [270] are available for main group elements only and arise from the work of the Dewar group. They have been optimized to reproduce molecular structure and energetics. The older CNDO/1,2 and INDO/1,2 were developed by the Pople group [271–279] and were designed to roughly mimic minimal basis ab initio calculations. The methods of the Zerner group (ZINDO/1,2 and ZINDO/S) are closely related to the older methods but have been well parameterized for transition metals too [280–290]. ZINDO/1 (and less so ZINDO/2) are suitable for geometry optimization. ZINDO/S gives good results for electronically excited states at moderate configuration interaction levels and is also successful for the calculation of electron and spin distributions in large transition metal complexes [285–290]. The ZNDDO/1,2 methods have been implemented into ORCA as straightforward extensions of the corresponding INDO methods without changing any parameter. However, the methods benefit from the somewhat more accurate representation of the Coulomb interaction within the NDDO approximation [291,292]. The preliminary experience with these methods is that they are better than the corresponding INDO methods for calculation of transition metal complex structures but on the whole have also similar deficiencies.

The analytic gradients are available for all of these methods and can be used to produce reasonable molecular structures at low computational cost or to get preliminary insight in the behavior of the system under
There is also a mechanism for simplified input. Instead of giving values for Method and Version separately you can also assign the value that would normally belong to Method to Version. The program will recognize that and assign the correct values to both Method and Version.

%method
  # shortcut to Method=NDDO; and Version=AM1;
  Method AM1
end

- If you want you can also combine semiempirical methods with MP2 (energies only). For example use Method=AM1; and DoMP2=true; It is questionable if this makes the results of semiempirical calculations any better but at least it is possible in ORCA.

You can change the built-in semiempirical parameters in a straightforward fashion. For example:

! RHF ZINDO/S TightSCF DIIS NoRICO NoMOPrint

%cis    NRoots 20
  MaxDim 3 # Davidson expansion space = MaxDim * NRoots
end

%ndoparas P[6,25] 20
  P[6,26] 20
end

The %ndoparas block is there in order to let you input your favorite personal parameters. The “molecular” parameters are set using “INTFA” (“interaction factors”);

%ndoparas INTFA[PP_PI] 0.585
  # The interaction factors exist for
  # ss_sigma
  # sp_sigma
  # sd_sigma
  # pp_sigma
  # pd_sigma
  # dd_sigma
  # pp_pi
  # pd_pi
  # dd_pi

\(^{10}\)However, do not try to use ZINDO/S (or CNDO/S) for structure optimizations - it does not make sense and will lead to disastrous results because there is no accurate representation of nuclear repulsion in these methods.
All atomic parameters are collected in an array “P”. The first index is the atomic number of the element whose parameters you want to change. The second index identifies which parameter. The list of parameters follows below. Most of them will only be interesting for expert users. The most commonly modified parameters are the Beta’s (number 25 through 28). Note that most programs require a negative number here. In ORCA the resonance integrals are defined in a way that makes the Beta’s positive.
BF 28  # f shell beta
# Number of electrons in the g.s.
NEL 29  # total number of electrons (integer)
NS 30  # fractional occupation number of the s shell
NP 31  # fractional occupation number of the p shell
ND 32  # fractional occupation number of the d shell
NF 33  # fractional occupation number of the f shell
# The one center repulsion (gamma) integrals (in eV)
GSS 34
GSP 35
GSD 36
GSF 37
GPP 38
GPD 39
GPF 40
GDD 41
GDF 42
GFF 43
# The Slater Condon parameters (in eV)
F2PP 44
F2PD 45
F2DD 46
F4DD 47
G1SP 48
G1PD 49
G2SD 50
G3PD 51
R1SPPD 52
R2SDPP 53
R2SDDD 54
# The nuclear repulsion parameters for Dewar type models
NR1 55
NR2 56
NR3 57
NR4 58
NR5 59
NR6 60
NR7 61
NR8 62
NR9 63
NR10 64
NR11 65
NR12 66
NR13 67
# The nuclear attraction/repulsion parameter for MNDO/d
9.3 Choice of Basis Set

A fair number of reasonable basis sets is hardwired in the program as will be described in the next section. In addition, whole basis sets can be read from a file, basis sets can be assigned for all atoms of a given type or, at the highest resolution, basis sets can be assigned to individual atoms which is convenient if different parts of the molecule are to be treated at different levels of accuracy. All hard wired basis sets were obtained from the EMSL library [293] and the input format in ORCA is closely related to the “GAMESS-US” format.

As of ORCA version 4.0, the basis set handling has been significantly modified!
Please check your basis sets very carefully!

9.3.1 Built-in Basis Sets

The basis set is specified in the block [BASIS]. The format is straightforward.

As of ORCA 4.0, the basis set name has to be put in quotation marks, as well as the basis set name identifiers are the same as in the one-liner!

```
%basis

Basis "Def2-TZVP" # The orbital expansion basis set
Aux "Def2/J" # RI-J auxiliary basis set
AuxJK "Def2/JK" # RI-JK auxiliary basis set
AuxC "Def2-TZVP/C" # Auxiliary basis set for correlated calculations, e.g. RI-MP2
CABS "cc-pVDZ-F12-OptRI" # complementary auxiliary basis set
for F12 calculations

Decontract false # if chosen "true" the program will # decontract the basis set

end
```

WARNING:
• ORCA uses pure d and f functions (5D and 7F instead of Cartesian 6D and 10F) for all basis sets. This needs to be taken into account when results are compared with other programs, especially for Pople-style basis sets that were optimized with Cartesian (6D) functions.

• If you use Decontract: if your basis set arises from general contraction it will contain duplicate primitives in several contractions and these will be removed such that only unique primitives remain and there is no problem with redundancy.

A complete list of predefined basis sets and their availability is given in table 9.7.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Availability</th>
<th>Keyword</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital basis sets (Basis)</td>
<td>Orbital basis sets (Basis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STO-3G</td>
<td>H–I</td>
<td>cc-pVDZ</td>
<td>H–Ar, Ca–Kr</td>
</tr>
<tr>
<td>MINI</td>
<td>H–Ca</td>
<td>cc-pVTZ</td>
<td>H–Ar, Ca–Kr, Y, Ag, Au</td>
</tr>
<tr>
<td>MINIS</td>
<td>H–Ca</td>
<td>cc-pVQZ</td>
<td>H–Ar, Ca–Kr</td>
</tr>
<tr>
<td>MINIX</td>
<td>H–Rn</td>
<td>cc-pVSZ</td>
<td>H–Ar, Ca–Kr</td>
</tr>
<tr>
<td>MIDI</td>
<td>H–Na, Al–K</td>
<td>cc-pV6Z</td>
<td>H–He, Be–Ne, Al–Ar</td>
</tr>
<tr>
<td>3-21G</td>
<td>H–Cs</td>
<td>aug-cc-pVDZ</td>
<td>H–Ar, Sc–Kr</td>
</tr>
<tr>
<td>3-21GSP</td>
<td>H–Ar</td>
<td>aug-cc-pVTZ</td>
<td>H–Ar, Sc–Kr, Ag, Au</td>
</tr>
<tr>
<td>4-22GSP</td>
<td>H–Ar</td>
<td>aug-cc-pVQZ</td>
<td>H–Ar, Sc–Kr</td>
</tr>
<tr>
<td>6-31G</td>
<td>H–Zn</td>
<td>aug-cc-pVSZ</td>
<td>H–Ar, Sc–Kr</td>
</tr>
<tr>
<td>6-31G*</td>
<td>H–Zn</td>
<td>aug-cc-pV6Z</td>
<td>H–He, B–Ne, Al–Ar</td>
</tr>
<tr>
<td>m6-31G</td>
<td>Sc–Cu</td>
<td>cc-pVD(+)d/Z</td>
<td>Na–Ar</td>
</tr>
<tr>
<td>m6-31G*</td>
<td>Sc–Cu</td>
<td>cc-pVT(+)d/Z</td>
<td>Na–Ar</td>
</tr>
<tr>
<td>6-31G**</td>
<td>H–Zn</td>
<td>cc-pVQ(+)d/Z</td>
<td>Na–Ar</td>
</tr>
<tr>
<td>6-31G(d)</td>
<td>H–Zn</td>
<td>cc-pVS(+d)Z</td>
<td>Na–Ar</td>
</tr>
<tr>
<td>6-31G(2d)</td>
<td>H–Zn</td>
<td>cc-pCVDZ</td>
<td>Li–Ar, Ca, Ga–Kr</td>
</tr>
<tr>
<td>6-31G(2d,p)</td>
<td>H–Zn</td>
<td>cc-pCVTZ</td>
<td>Li–Ar, Ca, Ga–Kr</td>
</tr>
<tr>
<td>6-31G(2d,2p)</td>
<td>H–Zn</td>
<td>cc-pCVQZ</td>
<td>Li–Ar, Ca–Kr, Ag, Au</td>
</tr>
<tr>
<td>6-31G(2df)</td>
<td>H–Zn</td>
<td>cc-pCV5Z</td>
<td>Li–Ar, Ca–Kr</td>
</tr>
<tr>
<td>6-31G(2d,2p,2d)</td>
<td>H–Zn</td>
<td>cc-pCV6Z</td>
<td>Li–Ar, Ca–Kr</td>
</tr>
<tr>
<td>6-31G(2d,p)</td>
<td>H–Zn</td>
<td>aug-cc-pCVTZ</td>
<td>Li–Ar, Ga–Kr</td>
</tr>
<tr>
<td>6-31G(2d,p)</td>
<td>H–Zn</td>
<td>aug-cc-pCVQZ</td>
<td>Li–Ar, Ga–Kr</td>
</tr>
<tr>
<td>6-31G(2d)</td>
<td>H–Zn</td>
<td>aug-cc-pCV6Z</td>
<td>Li–Ar, Ga–Kr</td>
</tr>
<tr>
<td>6-31G(2d)</td>
<td>H–Zn</td>
<td>cc-pCVDZ</td>
<td>Li–Ar, Ga–Kr</td>
</tr>
<tr>
<td>6-31G(2d)</td>
<td>H–Zn</td>
<td>cc-pCVTZ</td>
<td>Li–Ar, Ca–Kr, Ag, Au</td>
</tr>
<tr>
<td>6-31G(2d,2p)</td>
<td>H–Zn</td>
<td>cc-pCVQZ</td>
<td>Li–Ar, Ca–Kr</td>
</tr>
<tr>
<td>6-31G(2df)</td>
<td>H–Zn</td>
<td>cc-pCV5Z</td>
<td>Li–Ar, Ca–Kr</td>
</tr>
<tr>
<td>6-31G(2df,2p)</td>
<td>H–Zn</td>
<td>aug-cc-pCVTZ</td>
<td>Li–Ar, Sc–Kr, Ag, Au</td>
</tr>
<tr>
<td>6-31G(2df,2p)</td>
<td>H–Zn</td>
<td>aug-cc-pCVQZ</td>
<td>Li–Ar, Sc–Kr</td>
</tr>
<tr>
<td>6-31G(2df,2p)</td>
<td>H–Zn</td>
<td>aug-cc-pCV5Z</td>
<td>Li–Ar, Sc–Kr</td>
</tr>
<tr>
<td>6-31G(2d,p)</td>
<td>H–Zn</td>
<td>aug-cc-pCVDZ</td>
<td>Li–Ar, Sc–Kr</td>
</tr>
<tr>
<td>6-31G(2d)</td>
<td>H–Zn</td>
<td>cc-pVDZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-31G(2d,2p)</td>
<td>H–Zn</td>
<td>cc-pVTZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-31G(2df,2p)</td>
<td>H–Zn</td>
<td>cc-pVQZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-31G(2df,2p,2d)</td>
<td>H–Zn</td>
<td>cc-pVSZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-311G</td>
<td>H–Br</td>
<td>aug-cc-pVDZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-311G*</td>
<td>H–Br</td>
<td>aug-cc-pVTZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-311G**</td>
<td>H–Br</td>
<td>aug-cc-pVQZ–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-311G(d)</td>
<td>H–Br</td>
<td>aug-cc-pV5Z–PP</td>
<td>Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra</td>
</tr>
<tr>
<td>6-311G(d,p)</td>
<td>H–Br</td>
<td>cc-pCVDZ–PP</td>
<td>Ca, Sr, Ba, Ra</td>
</tr>
<tr>
<td>6-311G(2d)</td>
<td>H–Br</td>
<td>cc-pCVTZ–PP</td>
<td>Ca, Sr, Ba, Ra</td>
</tr>
<tr>
<td>Basis Set Configuration</td>
<td>Elements</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>6-31G(2d,2p)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31G(2d,p)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31G(2df)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31G(2df,2p)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31G(3df)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31G(3df,3pd)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31G(3df,3pd)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(2df)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(2df,2p)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(2df,2pd)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(3df)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(3df,3pd)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(3df,3pd)</td>
<td>H–Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV(P)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZV</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZVP(p)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QZVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QZVP(p)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-SV(P)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-SVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-TZV(P)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-TZVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-TZVP(p)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-QZVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKH-QZVP(p)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-SV(P)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-SVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-TZV(P)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-TZVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-TZVP(p)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-QZVP</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZORA-QZVP(p)</td>
<td>H–Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-mSVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-mTZVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-SVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-TZVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-TZVP(-f)</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-QZVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-QZVP(p)</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cc-pCVQZ-PP</td>
<td>Ca, Sr, Ba, Ra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aug-cc-pCVQZ-PP</td>
<td>Ca, Sr, Ba, Ra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-mSVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-mTZVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-SVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-TZVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-TZVP(-f)</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-QZVP</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>def2-QZVP(p)</td>
<td>H–Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basis Set</td>
<td>Description</td>
<td>Elements Covered</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>def2-SV (1)</td>
<td>H–La, Hf–Rn</td>
<td>EPR-II H, B–F</td>
<td></td>
</tr>
<tr>
<td>def2-TZVP (1)</td>
<td>H–La, Hf–Rn</td>
<td>EPR-III H, B–F</td>
<td></td>
</tr>
<tr>
<td>def2-TZVPD (1)</td>
<td>H–La, Hf–Rn</td>
<td>IGLO-II H, B–F, Al–Cl</td>
<td></td>
</tr>
<tr>
<td>def2-QZVP (1)</td>
<td>H–La, Hf–Rn</td>
<td>IGLO-III H, B–F, Al–Cl</td>
<td></td>
</tr>
<tr>
<td>def2-QZVPD (1)</td>
<td>H–La, Hf–Rn</td>
<td>UGBS H–Th, Pu–Am, Cf–Lr</td>
<td></td>
</tr>
<tr>
<td>DKH-def2-SV(P) (1)</td>
<td>H–Kr</td>
<td>CP Sc–Zn</td>
<td></td>
</tr>
<tr>
<td>DKH-def2-SVP (1)</td>
<td>H–Kr</td>
<td>CP(PPP) Sc–Zn</td>
<td></td>
</tr>
<tr>
<td>DKH-def2-TZVP (1)</td>
<td>H–Kr</td>
<td>Wachters+f Sc–Cu</td>
<td></td>
</tr>
<tr>
<td>DKH-def2-TZVPD (1)</td>
<td>H–Kr</td>
<td>cc-pV TZ-F12 H–Ar</td>
<td></td>
</tr>
<tr>
<td>DKH-def2-QZVPP (1)</td>
<td>H–Kr</td>
<td>cc-pVQZ-F12 H–Ar</td>
<td></td>
</tr>
<tr>
<td>ZORA-def2-SV(P) (1)</td>
<td>H–Kr</td>
<td>cc-pVDZ-PP-F12 Ga–Kr, In–Xe, Tl–Rn</td>
<td></td>
</tr>
<tr>
<td>ZORA-def2-SVP (1)</td>
<td>H–Kr</td>
<td>cc-pVTZ-PP-F12 Ga–Kr, In–Xe, Tl–Rn</td>
<td></td>
</tr>
<tr>
<td>ZORA-def2-TZVP(-f) (1)</td>
<td>H–Kr</td>
<td>cc-pVQZ-PP-F12 Ga–Kr, In–Xe, Tl–Rn</td>
<td></td>
</tr>
<tr>
<td>ZORA-def2-TZVP (1)</td>
<td>H–Kr</td>
<td>cc-pCVTZ-F12 Li–Ar</td>
<td></td>
</tr>
<tr>
<td>ZORA-def2-TZVPP (1)</td>
<td>H–Kr</td>
<td>cc-pCVQZ-F12 Li–Ar</td>
<td></td>
</tr>
<tr>
<td>ma-def2-mSVP (2)</td>
<td>H–Rn</td>
<td>def2/J H–Rn</td>
<td></td>
</tr>
<tr>
<td>ma-def2-SV(P) (1)</td>
<td>H–Rn</td>
<td>def2-mTZVP/J H–Rn</td>
<td></td>
</tr>
<tr>
<td>ma-def2-SVP (1)</td>
<td>H–Rn</td>
<td>SARC/J H–Rn, Ac–No</td>
<td></td>
</tr>
<tr>
<td>ma-def2-TZVP (1)</td>
<td>H–Rn</td>
<td>def2/JK H–Ba, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>ma-def2-QZVP (1)</td>
<td>H–Rn</td>
<td>def2/JKsmall H–Ra, Th–Lr</td>
<td></td>
</tr>
<tr>
<td>ma-def2-QZVPP (1)</td>
<td>H–Rn</td>
<td>cc-pV TZ/JK H, B–F, Al–Cl, Ga–Br</td>
<td></td>
</tr>
<tr>
<td>ma-DKH-def2-SV(P) (1)</td>
<td>H–Kr</td>
<td>cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br</td>
<td></td>
</tr>
<tr>
<td>ma-DKH-def2-SVP (1)</td>
<td>H–Kr</td>
<td>cc-pVSZ/JK H, B–F, Al–Cl, Ga–Br</td>
<td></td>
</tr>
<tr>
<td>ma-DKH-def2-TZVP(-f) (1)</td>
<td>H–Kr</td>
<td>aug-cc-pV TZ/JK H, B–F, Al–Cl, Ga–Br</td>
<td></td>
</tr>
<tr>
<td>ma-DKH-def2-TZVP (1)</td>
<td>H–Kr</td>
<td>aug-cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br</td>
<td></td>
</tr>
<tr>
<td>ma-DKH-def2-TZVPP (1)</td>
<td>H–Kr</td>
<td>aug-cc-pVSZ/JK H, B–F, Al–Cl, Ga–Br</td>
<td></td>
</tr>
<tr>
<td>ma-DKH-def2-QZVPP (1)</td>
<td>H–Kr</td>
<td>SARC2-DKH-QZV/JK La–Lu</td>
<td></td>
</tr>
<tr>
<td>ma-ZORA-def2-SV(P) (1)</td>
<td>H–Kr</td>
<td>SARC2-DKH-QZVP/JK La–Lu</td>
<td></td>
</tr>
<tr>
<td>ma-ZORA-def2-SVP (1)</td>
<td>H–Kr</td>
<td>SARC2-ZORA-QZV/JK La–Lu</td>
<td></td>
</tr>
<tr>
<td>ma-ZORA-def2-TZVP(-f) (1)</td>
<td>H–Kr</td>
<td>SARC2-ZORA-QZVP/JK La–Lu</td>
<td></td>
</tr>
<tr>
<td>ma-ZORA-def2-TZVP (1)</td>
<td>H–Kr</td>
<td>def2-SV/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>ma-ZORA-def2-TZVPP (1)</td>
<td>H–Kr</td>
<td>def2-TZVP/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>old-SV (1)</td>
<td>H–I</td>
<td>def2-TZVPD/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>old-SV(P) (1)</td>
<td>H–I</td>
<td>def2-TZVPP/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>old-SVP (1)</td>
<td>H–I</td>
<td>def2-TZVPD/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>old-TZV (1)</td>
<td>H–I</td>
<td>def2-QZVPP/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>old-TZV(P) (1)</td>
<td>H–I</td>
<td>def2-QZVPPD/C H–La, Hf–Rn</td>
<td></td>
</tr>
<tr>
<td>old-TZVP (1)</td>
<td>H–I</td>
<td>cc-pVDZ/C H–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>old-TZVPP (1)</td>
<td>H–I</td>
<td>cc-pVTZ/C H–Ar, Sc–Kr</td>
<td></td>
</tr>
<tr>
<td>old-DKH-SV(P) (1)</td>
<td>H–I</td>
<td>cc-pVQZ/C H–Ar, Sc–Kr</td>
<td></td>
</tr>
<tr>
<td>old-DKH-SVP (1)</td>
<td>H–I</td>
<td>cc-pVSZ/C H–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>old-DKH-TZV(P) (1)</td>
<td>H–I</td>
<td>cc-pVSZ/C H–He, B–Ne, Al–Ar</td>
<td></td>
</tr>
<tr>
<td>old-DKH-TZVP (1)</td>
<td>H–I</td>
<td>aug-cc-pVDZ/C H–He, Be–Ne, Mg–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>old-DKH-TZVPP (1)</td>
<td>H–I</td>
<td>aug-cc-pVTZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr</td>
<td></td>
</tr>
<tr>
<td>old-ZORA-SV(P) (1)</td>
<td>H–I</td>
<td>aug-cc-pVQZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr</td>
<td></td>
</tr>
<tr>
<td>old-ZORA-SVP (1)</td>
<td>H–I</td>
<td>aug-cc-pVSZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr</td>
<td></td>
</tr>
<tr>
<td>old-ZORA-TZV(P) (1)</td>
<td>H–I</td>
<td>aug-cc-pV6Z/C H–He, Be–Ne, Al–Ar</td>
<td></td>
</tr>
<tr>
<td>old-ZORA-TZVP (1)</td>
<td>H–I</td>
<td>cc-pVDZ/C H–Ar, Al–Ga, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>old-ZORA-TZVPP (1)</td>
<td>H–I</td>
<td>cc-pVTZ/C H–Ne, Al–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>ANO-pVDZ (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>cc-pVDZ/C H–Ne, Al–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>ANO-pVTZ (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>cc-pVTZ/C H–Ne, Al–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>ANO-pVQZ (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>cc-pVQZ/C H–Ne, Al–Ar, Ga–Kr</td>
<td></td>
</tr>
<tr>
<td>ANO-pV5Z (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pVDZ/C H–Ne, Al–Ar, Ga–Kr</td>
<td></td>
</tr>
</tbody>
</table>

Auxiliary basis sets for correlated methods (AuxC)

<table>
<thead>
<tr>
<th>Auxiliary Basis Set</th>
<th>Description</th>
<th>Elements Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANO-pVDZ (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pVDZ/C H–Ne, Al–Ar, Ga–Kr</td>
</tr>
<tr>
<td>ANO-pVTZ (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pVTZ/C H–Ne, Al–Ar, Ga–Kr</td>
</tr>
<tr>
<td>ANO-pVQZ (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pVQZ/C H–Ne, Al–Ar, Ga–Kr</td>
</tr>
<tr>
<td>ANO-pV5Z (1)</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pV5Z/C H–Ne, Al–Ar, Sc–Kr</td>
</tr>
<tr>
<td>Basis Set</td>
<td>Elements</td>
<td>Choice of Basis Set</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ANO-pV6Z</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pwCVQZ/C</td>
</tr>
<tr>
<td>aug-ANO-pVDZ</td>
<td>H–Ar, Sc–Zn</td>
<td>B–Ne, Al–Ar, Ga–Kr</td>
</tr>
<tr>
<td>aug-ANO-pVTZ</td>
<td>H–Ar, Sc–Zn</td>
<td>aug-cc-pwCV5Z/C</td>
</tr>
<tr>
<td>aug-ANO-pVQZ</td>
<td>H–Ar, Sc–Zn</td>
<td>Li–Ne, Al–Ar</td>
</tr>
<tr>
<td>aug-ANO-pV5Z</td>
<td>H–Ar, Sc–Zn</td>
<td>cc-pVDZ-PP/C</td>
</tr>
<tr>
<td>saug-ANO-pVDZ</td>
<td>H–Ar, Sc–Zn</td>
<td>Cu–Kr, Y–Xe, Hf–Rn</td>
</tr>
<tr>
<td>saug-ANO-pVTZ</td>
<td>H–Ar, Sc–Zn</td>
<td>cc-pVTZ-PP/C</td>
</tr>
<tr>
<td>saug-ANO-pVQZ</td>
<td>H–Ar, Sc–Zn</td>
<td>Cu–Kr, Y–Xe, Hf–Rn</td>
</tr>
<tr>
<td>saug-ANO-pV5Z</td>
<td>H–Ar, Sc–Zn</td>
<td>cc-pVQZ-PP/C</td>
</tr>
<tr>
<td>ANO-RCC-DZP</td>
<td>H–Cm</td>
<td>aug-cc-pVDZ-PP/C</td>
</tr>
<tr>
<td>ANO-RCC-TZP</td>
<td>H–Cm</td>
<td>H–Ar</td>
</tr>
<tr>
<td>ANO-RCC-QZP</td>
<td>H–Cm</td>
<td>cc-pVQZ-PP/C</td>
</tr>
<tr>
<td>ANO-RCC-TP</td>
<td>H–Cm</td>
<td>aug-cc-pVTZ-PP/C</td>
</tr>
<tr>
<td>pc-0</td>
<td>H–Ca, Ga–Kr</td>
<td>cc-pVDZ-11-MP2Fit</td>
</tr>
<tr>
<td>pc-1</td>
<td>H–Kr</td>
<td>H–Ar</td>
</tr>
<tr>
<td>pc-2</td>
<td>H–Kr</td>
<td>cc-pVQZ-11-MP2Fit</td>
</tr>
<tr>
<td>pc-3</td>
<td>H–Kr</td>
<td>cc-pVDZ-11-MP2Fit</td>
</tr>
<tr>
<td>pc-4</td>
<td>H–Kr</td>
<td>aug-cc-pVDZ-11-MP2Fit</td>
</tr>
<tr>
<td>aug-pc-0</td>
<td>H–Ca, Ga–Kr</td>
<td>cc-pVTZ-11-MP2Fit</td>
</tr>
<tr>
<td>aug-pc-1</td>
<td>H–Kr</td>
<td>cc-pVQZ-11-MP2Fit</td>
</tr>
<tr>
<td>aug-pc-2</td>
<td>H–Kr</td>
<td>cc-pVDZ-11-MP2Fit</td>
</tr>
<tr>
<td>aug-pc-3</td>
<td>H–Kr</td>
<td>aug-cc-pVQZ-11-MP2Fit</td>
</tr>
<tr>
<td>aug-pc-4</td>
<td>H–Kr</td>
<td>aug-cc-pVDZ-11-MP2Fit</td>
</tr>
<tr>
<td>pcseg-0</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVDZ-11-OptRI</td>
</tr>
<tr>
<td>pcseg-1</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVTZ-11-OptRI</td>
</tr>
<tr>
<td>pcseg-2</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVQZ-11-OptRI</td>
</tr>
<tr>
<td>pcseg-3</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVDZ-11-OptRI</td>
</tr>
<tr>
<td>pcseg-4</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVTZ-11-OptRI</td>
</tr>
<tr>
<td>aug-pcseg-0</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVQZ-11-OptRI</td>
</tr>
<tr>
<td>aug-pcseg-1</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVDZ-11-OptRI</td>
</tr>
<tr>
<td>aug-pcseg-2</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVTZ-11-OptRI</td>
</tr>
<tr>
<td>aug-pcseg-3</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVQZ-11-OptRI</td>
</tr>
<tr>
<td>aug-pcseg-4</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVDZ-11-OptRI</td>
</tr>
<tr>
<td>pcSseg-0</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVDZ-11-OptRI</td>
</tr>
<tr>
<td>pcSseg-1</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVTZ-11-OptRI</td>
</tr>
<tr>
<td>pcSseg-2</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVQZ-11-OptRI</td>
</tr>
<tr>
<td>pcSseg-3</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVDZ-11-OptRI</td>
</tr>
<tr>
<td>pcSseg-4</td>
<td>H–He, B–Ne, Al–Ar</td>
<td>cc-pCVTZ-11-OptRI</td>
</tr>
</tbody>
</table>

1. Used with the Def2-ECP pseudopotentials (Kr–Rn).
2. Used with the SK-MCDHF-RSC pseudopotentials (Ca, Cu–Kr, Sr–Xe, Ba, Hf–Ra).
3. Used with the HayWadt pseudopotentials (Na–La, Hf–Bi, U–Pu).
A note on RI and auxiliary basis sets: one thing that is certainly feasible and reasonable if you do not want to depend on the RI approximation is to converge a RI-J calculation and then take the resulting orbitals as initial guess for a calculation with exact Coulomb term. This should converge within a few cycles and the total execution time should still be lower than just converging the calculation directly with exact Coulomb treatment.

**AutoAux.** If no auxiliary basis set is available for your chosen orbital basis set, one can be generated automatically by ORCA using the keyword `AutoAux`. This is specified as any other fitting basis set: as a separate keyword in the simple input line or as a value to the `AUX` variable in the `%basis` block ([AutoAux](#) can also be assigned to individual elements or atoms - see sections 9.3.2 and 9.3.3). The generated basis sets can be used for Coulomb, exchange and correlation fitting and are as accurate as the optimized auxiliary basis sets at the cost of being up to twice as large. The exact generation procedure is described elsewhere [294] but notably it has been significantly altered since ORCA 3.1 and will not produce the same results! For compatibility, the old version is still accessible via the setting `OldAutoAux true` in the `%basis` block. Some additional settings for `AutoAux` are given below with their default values.

```plaintext
%basis
 Aux "AutoAux" # Use AutoAux to generate the fitting basis set
 AutoAuxSize 1-3 # 1 (default) increases the maximal exponent
 # for the shells with low angular momenta.
 # 2 increases the maximal exponent for all shells
 # 3 directly uses the primitives and produces
 # the largest fitting basis
 AutoAuxLmax false # If true increase the maximal angular momentum of
 # the fitting basis set to the highest value
 # permitted by ORCA and by the orbital basis set.
 OldAutoAux false # If true selects the ORCA 3.1 generation procedure

Only change the defaults below if you know what you are doing

 AutoAuxF[0] 20.0 # The factor to increase the maximal s-exponent
 AutoAuxF[1] 7.0 # Same for the p-shell
 AutoAuxF[2] 4.0 # Same for the d-shell
 AutoAuxF[3] 4.0 # Same for the f-shell
 AutoAuxF[4] 3.5 # Same for the g-shell
 AutoAuxF[5] 2.5 # Same for the h-shell
 AutoAuxF[6] 2.0 # Same for the i-shell
 AutoAuxF[7] 2.0 # Same for the j-shell
 AutoAuxB[0] 1.8 # Even-tempered expansion factor for the s-shell
 AutoAuxB[1] 2.0 # Same for the p-shell
 AutoAuxB[2] 2.2 # Same for the d-shell
 AutoAuxB[3] 2.2 # Same for the f-shell
 AutoAuxB[4] 2.2 # Same for the g-shell
 AutoAuxB[5] 2.3 # Same for the h-shell
 AutoAuxB[6] 3.0 # Same for the i-shell
```
9.3 Choice of Basis Set

AutoAuxB[7] 3.0 # Same for the j-shell
AutoAuxTightB true # Only use B[l] for shells with high l and B[0] for the rest
end

9.3.2 Assigning or Adding Basis Functions to an Element

In order to assign a new basis set to a given element, use:

```plaintext
%basis
NewGTO 8 # new basis for oxygen.
NewGTO 0 # works as well
S 3
 1 910.10034975 0.03280967
 2 137.19711335 0.23422391
 3 30.85279077 0.81490980
S 2
 1 1.72885887 0.27389659
 2 0.39954770 0.79112437
P 1
 1 8.35065975 1.00000000
end
end
```

Note that for simplicity and consistency the input format is the same as that used in the basis set files. In this format the first line carries first the angular momentum of the shell to be added (s, p, d, f, g, h, i, j) and the number of primitives. Then for each primitive one line follows which has (a) the index of the primitive (1, 2, 3, . . .) (b) the exponent of the primitive and (c) the contraction coefficient (unnormalized). Note that ORCA always uses spherical harmonic gaussian functions. L-shells (not to be confused with angular momentum equal to 9) can only be dealt with as separate s- and p-shells. There also is the possibility to include a SCALE X statement after the number of primitives in the first line to indicate that the basis function exponents should be scaled.

In order to add basis functions to the basis of a given element (for example because you do not like the standard polarization functions) use AddGTO instead or NewGTO. In NewGTO or AddGTO you can also use the nicknames of internally stored basis sets. An example is:

```plaintext
%basis
NewGTO 8 # new basis for oxygen
 "6-31G"
 D 1
 1 0.4 1.0
end
end
```
In this example the 6-31G basis is assigned to oxygen and in addition a polarization function with exponent 0.4 is added to the oxygen basis.

Note that the **NewGTO** keyword does not change the ECP for the given element - you must use **NewECP** or **DelECP** (see section 9.3.6).

A similar mechanism was established for the auxiliary basis sets in RI calculations:

```plaintext
%basis
 NewAuxJGTO 8 # new auxiliary basis for oxygen
 s 1
 1 350 1.0
 ... etc
 end
 AddAuxJGTO 8 # add a shell to the auxiliary basis for oxygen
 D 1
 1 0.8 1.0
 end
end
```

New basis function can be specifically assigned to all auxiliary basis sets. The keywords **NewAuxCGTO**, **AddAuxCGTO**, **NewAuxJKGTO**, **AddAuxJKGTO**, **NewCABSgTO**, **AddCABSgTO** are used in the same way. The keywords **NewAuxGTO** and **AddAuxGTO** are the same as **NewAuxJGTO** and **AddAuxJGTO**, that is, they only influence the coulomb auxiliary basis (/J basis)!

### 9.3.3 Assigning or Adding Basis Functions to Individual Atoms

Sometimes you may want to not treat all carbon atoms with the same basis set but to assign a specific basis set to a specific atom in the molecules. This is also possible in ORCA and takes place in the section `[COORDS]`. The format is the same as described above. An example may help to make things clear:

```plaintext
%coords
 CTyp = Internal; # choose internal coordinates
 Units = Angs; # choose Angström units
 Charge = 0; # total charge
 Mult = 1; # spin multiplicity
 Coords # start coordinate assignments
 C(1) 0 0 0 0.00 0.0 0.00
 AddGTO
 D 1
 1 1.0 1.0
 end;
 O(2) 1 0 0 1.13 0.0 0.00
```
In this example an extra d-shell with exponent 1.0 is added to the first carbon atom and the basis for the oxygen atom is changed to 6-311G with an extra d-function of exponent 1.2 added.

Analogously, AUX basis functions can be assigned or added to individual atoms using the keywords NewAuxJGTO, AddAuxJGTO, NewAuxCGTO, AddAuxCGTO, NewAuxJKGTO, AddAuxJKGTO, NewCABSGTO, AddCABSGTO.

A note on the use of AutoAux: if you change the basis set on a given atom and want to generate a fitting basis, you have to specify it again in the COORDS section, even if AutoAux is already present in the simple input line or in the %basis block. For example:

Here the oxygen atom is assigned the Def2-SVP basis and the Def2/JK fitting basis, the first hydrogen atom is assigned the Def2-SVP basis and an automatically generated fitting basis and the second hydrogen atom is assigned the Def2-SVP basis with two additional polarization functions and a larger automatically generated fitting basis that accounts for these functions.
TIP

- When assigning custom basis sets it is always a good idea to print the basis set information (\%output print[p.basis] 2 end) and check that everything is correct.

### 9.3.4 Linear Dependence

The previous sections describe the assessment of a desired molecular basis set from appropriately parametrized functions at various locations within the molecule (normally centered on atoms). The parametrization of these functions is such that the chance for redundancy is minimal. Since however, one is limited to work with finite numerical precision, and furthermore these parameters also depend on the molecular geometry, redundancies cannot be completely eliminated in advance. Redundancy means that the subspace spanned by the given basis functions at given values of parameters (including geometry), can be identically spanned by a smaller number of linear independent basis functions. Linear dependent (redundant) function sets however may cause numerical instabilities. Linear dependence is normally identified by searching for zero eigenvalues of the overlap matrix. Note that the inverse of the overlap (or related matrices) are used for orthogonalization purposes, and it follows that if near zero eigenvalues are not treated properly, the inverse becomes ill-defined, and the SCF procedure numerically unstable.

From the previous discussion, it is evident that the crucial parameter for curing linear dependence is the threshold below which an overlap eigenvalue is considered zero. This parameter may be changed using the following keyword

```
%scf
 sthresh 1e-7 # default 1e-8
end
```

Although there is no strict limit for the value of the above parameter, it should reasonably be somewhere between 1e-5 and 1e-8 (the latter is the default). One may get away with 1e-9 or perhaps even lower without convergence problem, but there is a risk that the result is contaminated with noise caused by the near zero vectors. In difficult cases, an 1e-7 threshold was often found to work smoothly, and above that one risks throwing away more and more functions, which also influence comparability of results with other calculations. To monitor the behaviour of the small eigenvalues, one should look for the following block in the output

```
Diagonalization of the overlap matrix:
Smallest eigenvalue ... -1.340e-17
Time for diagonalization ... 0.313 sec
Threshold for overlap eigenvalues ... 1.000e-08
Number of eigenvalues below threshold ... 1
Time for construction of square roots ... 0.073 sec
Total time needed ... 0.387 sec
```

Here, the smallest eigenvalue is printed, along with the currently used overlap threshold, and the number of functions below this (which will be dropped). It is a recommended consistency check to look for an equal number of zero entries among orbital energies once the SCF procedure converged. Note that for functions belonging to zero eigenvalues no level shifts are applied!
9.3.5 Reading Orbital and Auxiliary Basis Sets from a File

By using the variables `GTOName` and `GTOAuxName` a basis set can be read from an ASCII file. The format is that used for “GAMESS-US” in the EMSL library [293].

To give an example of how this format looks like here is a part of the 3-21GSP basis of Buenker and coworkers [295, 296]:

```%basis
 # read an externally specified orbital basis
 GTOName = "MyBasis.bas";
 # read an externally specified basis for RI calculations
 GTOAuxName = "MyAuxBasis.bas";
 # for STO basis
 STOName = "MySTOBasis.bas"
end
```

In this way you can construct your favorite standard basis set and load it easily into the program. A word of caution: in C/C++ the backslashes in directory assignments must be given twice to be correctly understood! The file format for the auxiliary basis sets is exactly the same.

\[\text{11 In order to not confuse the program it is recommended to assign some value to} \ \text{Basis and Aux and then “overrule” this default with the external basis set. The externally specified basis set then takes priority.}\]
9.3.6 Advanced Specification of Effective Core Potentials

Library ECPs and Basis Sets

Besides the simple input line (section 6.3.3), assignment of ECPs can be done within the %basis block using the ECP and NewECP keywords as in the following example:

```
%basis
 ECP "def2-ECP" # All elements (for which the ECP is defined)
 NewECP Pt "def2-SD" end # Different ECP for Pt
end
```

A variant of the NewECP keyword can be used for individual atoms inside the geometry definition:

```
* xyz ...
 ...
 S 0.0 0.0 0.0 NewECP "SDD" end
 ...
*
```

Note that these keywords only affect the ECP and not the valence basis set!

In case the basis set for an element/atom has been changed using the NewGTO keyword (see sections 9.3.2 and 9.3.3 above) it may be necessary to remove the ECP from that element/atom. This can be done with the DelECP keyword in the %basis block or coordinates input, respectively:

```
! LANL2DZ # Uses HayWadt ECPs by default, starting from Na
%basis
 NewGTO S "Def2-TZVP" end # All-electron up to Kr
 DelECP S # Remove HayWadt ECP
end
* xyz ...
 ...
 Cu 0.0 0.0 0.0 DelECP # Remove HayWadt ECP
 NewGTO "Def2-QZVPP" end # All-electron up to Kr
 ...
*
```

Manual Input of ECP Parameters

To manually specify ECP parameters, the NewECP keyword is followed by the element for which an ECP is to be entered, the number of core electrons to be replaced (N_core) and the maximum angular momentum (lmax). The ECP specification is finished by giving the definitions of the individual shells that constitute the angular dependent potentials $U_l$. 
9.3 Choice of Basis Set

For each ECP shell, first the angular momentum \( l \) has to be given, followed by the number of primitives. The primitives themselves are then specified by giving a running index and the respective tuple of exponent \( a_{kl} \), expansion coefficient \( d_{kl} \) and radial power \( n_{kl} \).

As an example, consider the SD(10,MDF) for Vanadium. The name indicates a Stuttgart–Dresden type ECP that replaces 10 core electrons and is derived from a relativistic calculation for the neutral atom. It consists of 4 shells with angular momentum \( s \), \( p \), \( d \) and \( f \). Note that the \( f \) shell has an expansion coefficient of 0.0 and thus will not contribute at all to this effective core potential. This is typical for all SD potentials (but may be different for program packages like TURBOMOLE that do not support arbitrary angular momentum with respect to the ECP and therefore use reconstructions of the original parameter sets).

9.3.7 Embedding Potentials

Computations on cluster models sometimes require the presence of embedding potentials in order to account for otherwise neglected repulsive terms at the border [297]. In order to simplify these kind of calculations
with ORCA the ECP embedding can be accomplished quite easy:

```
* ...
atom> charge x y z optional ECP declaration
Zr> 4.0 0.0 0.0 0.0 NewECP "SDD" end
...
*
```

The declaration of such a coreless ECP centre takes place in the coordinates section by appending a bracket “>” to the element symbol. Note that embedding ECPs are treated as point charges in ORCA, so the charge has to be given next. The coordinates of the coreless ECP centre have to be specified as usual and may be followed by an optional ECP assignment. In general, calculations that employ an ECP embedding procedure should be single point calculations. However if the need arises to perform a geometry optimization, make sure to set up explicit Cartesian constraints for the coreless ECP centres.

### 9.4 Choice of Initial Guess and Restart of SCF Calculations

The initial guess is an important issue in each SCF calculation. If this guess is reasonable the convergence of the procedure will be much better. ORCA makes some effort to provide a good initial guess and give the user enough flexibility to tailor the initial guess to his or her needs.

The initial guess is also controlled via the `%scf` block and the variables `Guess`, `MOInp` and `GuessMode`.

```
%scf Guess HCore # One electron matrix
 Hueckel # Extended Hückel guess
 PAAtom # Polarized atomic densities
 PModel # Model potential
 MORead # Restart from an earlier calc.
 MOInp "Name.gbw" # orbitals used for MORead
 GuessMode FMatrix # FMatrix projection
 CMatrix # Corresponding orbital projection
 AutoStart true # try to use the orbitals from the existing
 # GBW file of the same name (if possible)
 # (default)
 false # don't use orbitals from existing GBW file
end
```

#### 9.4.1 AutoStart feature

Previous versions of ORCA always created a new GBW file at the beginning of the run no matter whether a file of the same name existed or perhaps contained orbitals. This philosophy was changed in version 2.5-03. The program now automatically checks if a .gbw file of the same name exists. If yes, the program checks if it contains orbitals and all other necessary information for a restart. If yes, the variable `Guess` is set
to MORead. The existing .gbw file is renamed to BaseName.ges and MOInp is set to this filename. If the AutoStart feature is not desired set AutoStart false in the %scf block or give the keyword !NoAutoStart in the simple input line.

9.4.2 One Electron Matrix Guess

The simplest guess is to diagonalize the one electron matrix to obtain starting orbitals. This guess is very simple but usually also a disaster because it produces orbitals that are far too compact.

9.4.3 Basis Set Projection

The remaining guesses (may) need the projection of initial guess orbitals onto the actual basis set. In ORCA there are two ways this can be done. GuessMode FMatrix and GuessMode CMatrix. The results from the two methods are usually rather similar. In certain cases GuessMode CMatrix may be preferable. GuessMode FMatrix is simpler and faster. In short the FMatrix projection defines an effective one electron operator:

\[
f = \sum_i \varepsilon_i a_i^\dagger a_i
\]

(9.46)

where the sum is over all orbitals of the initial guess orbital set, \(a_i^\dagger\) is the creation operator for an electron in guess MO \(i\), \(a_i\) is the corresponding destruction operator and \(\varepsilon_i\) is the orbital energy. This effective one electron operator is diagonalized in the actual basis and the eigenvectors are the initial guess orbitals in the target basis. For most wavefunctions this produces a fairly reasonable guess.

CMatrix is more involved. It uses the theory of corresponding orbitals to fit each MO subspace (occupied, partially occupied or spin-up and spin-down occupied) separately [298,299]. After fitting the occupied orbitals the virtual starting orbitals are chosen in the orthogonal complement of the occupied orbitals. In some cases, especially when restarting ROHF calculations this may be an advantage. Otherwise I have not met cases where CMatrix was grossly superior to FMatrix but that does not mean that such cases do not exist and they may not even be exotic.

9.4.4 PModel Guess

The PModel guess (chosen by Guess PModel in the %scf block or simply a keywordline with !PModel) is one that is usually considerably successful. It consists of building and diagonalizing a Kohn-Sham matrix with an electron density which consists of the superposition of spherical neutral atoms densities which are predetermined for both relativistic and nonrelativistic methods. This guess is valid for both Hartree-Fock and DFT methods but not for semiempirical models. However, due to the complexity of the guess it will also take a little computer time (usually less than one SCF iteration). The model densities are available for most atoms of the periodic table and consequently the PModel guess is usually the method of choice (particularly for molecules containing heavy elements) unless you have more accurate starting orbitals available.
9.4.5 Hückel and PAtom Guesses

The extended Hückel guess proceeds by performing a minimal basis extended Hückel calculation and projecting the MOs from this calculation onto the actual basis set using one of the two methods described above. The minimal basis is the STO-3G basis set. The Hückel guess may not be very good because the STO-3G basis set is so poor. There is also accumulating evidence that the superposition of atomic densities produces a fairly good initial guess. The critique of the atomic density method is that the actual shape of the molecule is not taken into account and it is more difficult to reliably define singly occupied orbitals for ROHF calculations or a reasonable spin density for UHF calculations. Therefore ORCA chooses a different way in the PAtom guess (which is the default guess) - the Hückel calculation is simply carried out for all electrons in a minimal basis of atomic SCF orbitals. These were determined once and for all and are stored inside the program. This means that the densities around the atoms are very close to the atomic ones, all orbitals on one center are exactly orthogonal, the initial electron distribution already reflects the molecular shape and there are well defined singly occupied orbitals for ROHF calculations. This guess has to the best of my knowledge not been described before.

9.4.6 Restarting SCF Calculations

To restart SCF calculations, it can be very helpful and time-saving to read in the orbital information of a previous calculation. To do this, specify:

```
! moread
% moinp "name.gbw"
```

Starting from version 2.5-03 of ORCA this is done by default if the .gbw file of the same name exists.

The program stores the current orbitals in every SCF cycle. Should a job crash, it can be restarted from the orbitals that were present at this time by just re-running the calculation to use the present .gbw file. In addition, an effort has been made to make .gbw files from different releases compatible with each other. If your input .gbw file is from an older release, use ! rescue moread noiter with % moinp "name.gbw" to produce an up-to-date .gbw. When the rescue keyword is invoked, only the orbital coefficients are read from the .gbw file, and everything else from the input file. Thus, make sure that the geometry and the basis set of the old .gbw file and the new input match.

Within the same ORCA version, neither the geometry nor the basis set stored in name.gbw need to match the present geometry or basis set. The program merely checks if the molecules found in the current calculation and name.gbw are consistent with each other and then performs one of the possible orbital projections. If the two basis sets are identical the program by default only reorthogonalizes and renormalizes the input orbitals. However, this can be overruled by explicitly specifying GuessMode in the % scf block as CMatrix or FMatrix.

For pre 2.5-03 versions of ORCA the input .gbw file from the earlier calculation must have a different name than the new calculation, because in the very beginning of a calculation, a new .gbw file is written. If the names are the same, the .gbw file from the earlier calculation is overwritten and all information is lost. Therefore, if you want to restart a calculation with an input file of the same name as the previous calculation, you have to rename the .gbw file first.
9.4 Choice of Initial Guess and Restart of SCF Calculations

There is an additional aspect of restarting SCF calculations — if you have chosen \texttt{SCFMode = Conventional} or \texttt{SCFMode = SemiDirect} the program stores a large number of integrals that might have been time consuming to calculate on disk. Normally the program deletes these integrals at the end of the calculation. However, if you want to do a closely related calculation that requires the same integrals (i.e. the \textit{geometry}, the \textit{basis set} and the \textit{threshold Thresh} are the same) it is faster to use the integrals generated previously. This is done by using \texttt{KeepInts = true} in the \texttt{% scf} block of the first calculation and then use \texttt{ReadInts = true} in the \texttt{% scf} block of the second calculation. If the second calculation has a different name than the first calculation you have to use \texttt{IntName = "FirstName"} to tell the program the name of the integral files. Note that the file containing the integrals does not have an extension — it is simply the name of the previous input file with \texttt{.inp} stripped off.

\begin{verbatim}
%scf
  KeepInts true # Keep integrals on disk
  ReadInts true  # Read integrals from disk
  IntName "MyInts" # Name of the integral files without extension
end
\end{verbatim}

Note that if you want to reuse the integrals for \texttt{SemiDirect} calculations it is forbidden to change the values of \texttt{TCost} and \texttt{TSize} in the \texttt{% scf} block. The program will not check for that but your results will be totally meaningless. In general, restarting calculations with old integral files requires the awareness and responsibility of the user. If properly used, this feature can save considerable amounts of time.

9.4.7 Changing the Order of Initial Guess MOs and Breaking the Initial Guess Symmetry

Occasionally you will want to change the order of initial guess MOs — be it because the initial guess yielded an erroneous occupation pattern or because you want to converge to a different electronic state using the orbitals of a previous calculation. Reordering of MOs and other tasks (like breaking the symmetry of the electronic wavefunction) are conveniently handled with the \texttt{Rotate} feature in ORCA. \texttt{Rotate} is a subblock of the SCF block that allows you to linearly transform pairs of MOs.

\begin{verbatim}
%scf
  Rotate
    { MO1, MO2, Angle }
    { MO1, MO2, Angle, Operator1, Operator2 }
end
end
\end{verbatim}

Here, \texttt{MO1} and \texttt{MO2} are the indices of the two MOs of interest. Recall that ORCA starts counting MOs with index 0, i.e. the MO with index 1 is the \textit{second} MO. \texttt{Angle} is the rotation angle in degrees. A rotation angle of 90° corresponds to flipping two MOs, an angle of 45° leads to a 50:50 mixture of two MOs, and a 180° rotation leads to a change of phase. \texttt{Operator1} and \texttt{Operator2} are the orbitals sets for the rotation. For UHF calculations spin-up orbitals belong to operator 0 and spin-down orbitals to operator 1. RHF and ROHF calculations only have a single orbital set.
The Rotate feature can be used to produce broken symmetry solutions say in transition metal dimers. In order to do that first perform a high-spin calculation, then find the pairs of MOs that are symmetric and antisymmetric combinations of each other. Take these MOs as the initial guess and use rotations of 45° for each pair to localize the startup MOs. If you are lucky and the broken symmetry solution exists, you have a good chance of finding it this way. The physical meaning of such a solution is a different question that will not be touched here.

### 9.5 SCF Convergence

SCF convergence is a pressing problem in any electronic structure package because the total execution times increases linearly with the number of iterations. Thus, it remains true that the best way to enhance the performance of an SCF program is to make it converge better. In some cases, especially for open-shell transition metal complexes, convergence may be very difficult. ORCA makes a dedicated effort to achieve reasonable SCF convergence for these cases without compromising efficiency. However, there are cases that do not converge, but find a list of things to try first before giving up in this chapter.

Another issue is whether the solution found by ORCA is stable, i.e. a minimum on the surface of orbital rotations. Especially for open-shell singlets it can be hard to achieve a broken-symmetry solution. The SCF stability analysis (section 9.7) may be able to help in such situations.

#### 9.5.1 Convergence Tolerances

Before discussing how to converge a SCF calculation it should be defined what is meant by “converged”. ORCA has a variety of options to control the target precision of the energy and the wavefunction that can be selected in the % scf block, or with a simple input line keyword that merges the criterion label with “SCF”, e.g. ! StrongSCF or ! VeryTightSCF:

```plaintext
%scf
Convergence # The default convergence is between medium and strong
Sloppy # very weak convergence
Loose # still weak convergence
Medium # intermediate accuracy
Strong # stronger
Tight # still stronger
VeryTight # even stronger
Extreme # close to numerical zero of the computer # in double precision arithmetic
end
```

Like other keys, Convergence is a compound key that assigns default values to a variety of other variables given in the box below. The default convergence criteria are reasonable and should be sufficient for most purposes. For a cursory look at populations weaker convergence may be sufficient, whereas other cases may require stronger than default convergence. Note that Convergence does not only affect the target convergence tolerances but also the integral accuracy as discussed in the section about direct SCF and alike. This is very
important: if the error in the integrals is larger than the convergence criterion, a direct SCF calculation cannot possibly converge.

The convergence criteria are always printed in the output. Given below is a list of the convergence criteria for !TightSCF, which is often used for calculations on transition metal complexes.

\[
\begin{align*}
\text{%scf} \\
\text{ToLE} & \quad 1e^{-8} \quad \# \text{energy change between two cycles} \\
\text{ToLRMSP} & \quad 5e^{-9} \quad \# \text{RMS density change} \\
\text{ToLMxP} & \quad 1e^{-7} \quad \# \text{maximum density change} \\
\text{ToLErr} & \quad 5e^{-7} \quad \# \text{DIIS error convergence} \\
\text{ToLG} & \quad 1e^{-5} \quad \# \text{orbital gradient convergence} \\
\text{ToIX} & \quad 1e^{-5} \quad \# \text{orbital rotation angle convergence} \\
\text{ConvCheckMode} & \quad 2 \quad \# = 0: \text{check all convergence criteria} \\
\text{ConvCheckMode} & \quad 1 \quad \# = 1: \text{stop if one of criterion is met, this is sloppy!} \\
\text{ConvCheckMode} & \quad 2 \quad \# = 2: \text{check change in total energy and in one-electron energy} \\
\text{ConvForced} & \quad \# = 0: \text{convergence not mandatory for next calculation step} \\
\text{ConvForced} & \quad \# = 1: \text{break, if you did not meet the convergence criteria} \\
\text{end}
\end{align*}
\]

If ConvCheckMode=0, all convergence criteria have to be satisfied for the program to accept the calculation as converged, which is a quite rigorous criterion. In this mode, the program also has mechanisms to decide that a calculation is converged even if one convergence criterion is not fulfilled but the others are overachieved. ConvCheckMode=1 means that one criterion is enough. This is quite dangerous, so ensure that none of the criteria are too weak, otherwise the result will be unreliable. The default ConvCheckMode=2 is a check of medium rigour — the program checks for the change in total energy and for the change in the one-electron energy. If the ratio of total energy and one-electron energy is constant, the self-consistent field does not fluctuate anymore and the calculation can be considered converged. If you have small eigenvalues of the overlap matrix, the density may not be converged to the number of significant figures requested by TolMaxP and TolRMSP.

ConvForced is a flag to prevent time consuming calculations on non-converged wave functions. It will default to ConvForced=1 for Post-HF methods, Excited States runs and Broken Symmetry calculations. You can overwrite this default behavior by setting ConvForced=0.

Irrespective of the ConvForced value that has been chosen, properties or numerical calculations (NumGrad, NumFreq) will not be performed on non-converged wavefunctions!

### 9.5.2 Dynamic and Static Damping

Damping is the oldest and simplest convergence aid. It was already invented by Douglas Hartree when he did his famous atomic calculations. Damping consists of mixing the old density with the new density as:

\[
P_{\text{new, damped}} = (1 - \alpha) P_{\text{new}} + \alpha P_{\text{old}}
\]  
(9.47)
where $\alpha$ is the damping factor, which must have a value of less than 1. Thus the permissible range (not checked by the program) is $0 \ldots 0.999999$. For $\alpha$ values larger than 1, the calculation cannot proceed since no new density is admixed. Damping is important in the early stages of a calculation where $P_{\text{old}}$ and $P_{\text{new}}$ are very different from each other and the energy is strongly fluctuating. Many schemes have been suggested that vary the damping factor dynamically to give strong damping in the beginning and no damping in the end of an SCF. The scheme implemented in ORCA is that by Hehenberger and Zerner \cite{300} and is invoked with \texttt{CNVZerner=true}. Static damping is invoked with \texttt{CNVDamp=true}. These convergers are mutually exclusive. They can be used in the beginning of a calculation when it is not within the convergence radius of DIIS or SOSCF. Damping works reasonably well, but most other convergers in ORCA are more powerful.

If damping used in conjunction with DIIS or SOSCF, the value of \texttt{DampErr} is important: once the DIIS error falls below \texttt{DampErr}, the damping is turned off. In case SOSCF is used, \texttt{DampErr} refers to the orbital gradient value at which the damping is turned off. The default value is 0.1 Eh. In difficult cases, however, it is a good idea to choose \texttt{DampErr} much smaller, e.g. 0.001. This is — to some extent — chosen automatically together with the keyword \texttt{! SlowConv}.

```%scf
 # control of the Damping procedure
 CNVDamp true # default: true
 CNVZerner false # default: false
 DampFac 0.98 # default: 0.7
 DampErr 0.05 # default: 0.1
 DampMin 0.1 # default: 0.0
 DampMax 0.99 # default: 0.98
 # more convenient:
 Damp fac 0.98 ErrOff 0.05 Min 0.1 Max 0.99 end
end
```

### 9.5.3 Level Shifting

Level shifting is a frequently used technique. The basic idea is to shift the energies of the virtual orbitals such that after diagonalization the occupied and virtual orbitals mix less strongly and the calculation converges more smoothly towards the desired state. Also, level shifting should prevent flipping of electronic states in near-degenerate cases. In a special context it has been shown by Saunders and Hillier \cite{301,302} to be equivalent to damping.

Similar to \texttt{DampErr} described in the previous section, \texttt{ShiftErr} refers to the DIIS error at which the level shifting is turned off.

```%scf
 # control of the level shift procedure
 CNVShift true # default: true
 LShift 0.1 # default: 0.25, energy unit is Eh.
 ShiftErr 0.1 # default: 0.0
 # more convenient:
```
9.5.4 Direct Inversion in Iterative Subspace (DIIS)

The Direct Inversion in Iterative Subspace (DIIS) is a technique that was invented by Pulay [303,304]. It has become the de facto standard in most modern electronic structure programs, because DIIS is robust, efficient and easy to implement. Basically DIIS uses a criterion to judge how far a given trial density is from self-consistency. The commutator of the Fock and density matrices \([F,[P]]\) is a convenient measure for this error. With this information, an extrapolated Fock matrix from the present and previous Fock matrices is constructed, which should be much closer to self-consistency. In practice this is usually true, and better than linear convergence has been observed with DIIS. In some rare (open-shell) cases however, DIIS convergence is slow or absent after some initial progress. As self-consistency is approached, the set of linear equations to be solved for DIIS approaches linear dependency and it is useful to bias DIIS in favor of the SCF cycle that had the lowest energy using the factor \(DIISBFac\). This is achieved by multiplying all diagonal elements of the DIIS matrix with this factor unless it is the Fock matrix/density which leads to the lowest energy. The default value for \(DIISBFac\) is 1.05.

The value of \(DIISMaxEq\) is the maximum number of old Fock matrices to remember. Values of 5-7 have been recommended, while other users store 10-15 Fock matrices. Should the standard DIIS not achieve convergence, some experimentation with this parameter can be worthwhile. In cases where DIIS causes problems in the beginning of the SCF, it may have to be invoked at a later stage. The start of the DIIS procedure is controlled by \(DIISStart\). It has a default value of 0.2 Eh, which usually starts DIIS after 0-3 cycles. A different way of controlling the DIIS start is adjusting the value \(DIISMaxIt\), which sets the maximum number of cycles after which DIIS will be started irrespective of the error value.

9.5.5 An alternative DIIS algorithm: KDIIS

An alternative algorithm that makes use of the DIIS concept is called KDIIS in ORCA. The KDIIS algorithm is designed to bring the orbital gradient of any energy expression to zero using a combination of DIIS extrapolation and first order perturbation theory. Thus, the method is diagonalization-free. In our hands it
Detailed Documentation is superior to the standard DIIS algorithm in many cases, but not always. The algorithm is invoked with the keyword !KDIIS and is available for RHF, UHF and CASSCF.

9.5.6 Approximate Second Order SCF (SOSCF)

SOSCF is an approximately quadratically convergent variant of the SCF procedure [305, 306]. The theory is relatively involved and will not be described here. In short – SOSCF computes an initial guess to the inverse orbital hessian and then uses the BFGS formula in a recursive way to update orbital rotation angles. As information from a few iterations accumulates, the guess to the inverse orbital hessian becomes better and better and the calculation reaches a regime where it converges superlinearly. As implemented, the procedure converges as well or slightly better than DIIS and takes a somewhat less time. However, it is also a lot less robust, so that DIIS is the method of choice for many problems (see also the description of the full Newton-Raphson procedure in the next section). On the other hand, SOSCF is useful when DIIS gets stuck at some error around $\sim 0.001$ or 0.0001. Such cases were the primary motive for the implementation of SOSCF into ORCA.

The drawback of SOSCF is the following: in the beginning of the SCF, the orbital gradient (the derivative of the total energy with respect to rotations that describe the mixing of occupied and virtual MOs) is large, so that one is far from the quadratic regime. In such cases, the procedure is not successful and may even wildly diverge. Therefore it is recommended to only invoke the SOSCF procedure in the very end of the SCF where DIIS may lead to “trailing” convergence. SOSCF is controlled by the variables SOSCFStart and SOSCFMaxIt. SOSCFStart is a threshold for the orbital gradient. When the orbital gradient, or equivalently the DIIS Error, fall below SOSCFStart, the SOSCF procedure is initiated. SOSCFMaxIt is the latest iteration to start the SOSCF even if the orbital gradient is still above SOSCFStart.

```
%scf
 # control of the SOSCF procedure
 CNVSOSCF true # default: false
 SOSCFStart 0.1 # default: 0.01
 SOSCFMaxIt 5 # default: 1000
 # more convenient:
 SOSCFStart 0.1 MaxIt 5 end
end
```

For many calculations on transition metal complexes, it is a good idea to be conservative in the startup criterion for SOSCF, it may diverge otherwise. A choice of 0.01 or lower can be recommended.

9.5.7 Full Second Order SCF (Newton-Raphson SCF)

The Newton–Raphson (NR) procedure is quite powerful once the calculations is within its radius of convergence: it then usually converges extremely fast and to high accuracy. It should be considered that the time requirement for a NR iteration is much higher than that for a regular SCF calculation. However, this may be overcompensated by the reduced number of cycles (see section 8.1.5 for a numerical example). For a “normal” well-behaved molecule which converges in 10–15 iterations with the DIIS procedure, it is unlikely
that invoking the NR converger pays off. For more problematic cases it is more likely that it will. Another area where NR-SCF may be useful is when you desire accurate SCF solutions, for example for numerical frequency calculations. In these cases, a different option is to decrease the convergence tolerance of the CP-SCF solver (Z_{Tol}).

In version 2.4.45 the full Newton–Raphson method (and its augmented Hessian analogue) was implemented for converging closed-shell or spin-unrestricted Hartree–Fock and density functional calculations.

The NR solver itself has two options, which are very similar to the analogous SOSCF options:

```
%scf
 # no Newton-Raphson by default
 NRMaxIt 10 # iteration at which NR is switched on, default 150
 NRStart 0.05 # DIIS error at which NR is switched on, default 0.0033
end
```

As soon as the Newton–Raphson procedure starts within one SCF procedure, all other convergers are switched off. After convergence is achieved, the orbitals are canonicalized again through a single diagonalization of the Fock operator. In order to help the convergence of the CP-SCF procedure, the orbitals are quasi-canonical in between iterations. This means that after the orbital update, the occ–occ and virt–virt blocks of the Fock operator are diagonalized separately and the occupied and virtual orbitals are chosen to be eigenfunctions of these parts of the Fock operator.

There is a shortcut to the NR-converger. If !NRSCF is chosen, this will invoke the NRSCF once the DIIS error falls below 0.02 (the default value). If SlowConv is also specified, the NR converger will only be switched on at a DIIS error of 0.002. This is more conservative since the NR-solver may also have convergence problems otherwise.

In particularly difficult cases, the Newton–Raphson step may run into trouble if the orbital Hessian is singular or nearly singular. It is then preferable to take a more cautious step, by invoking the augmented-Hessian method which was implemented for such cases. This method is called by !AHSCF. It sets the same values as NRSCF but puts an augmented Hessian solver into operation. It will not always help, but in some difficult situations this feature has already been successful.

Technically speaking, the program solves a large set of linear equations in each NR iteration. It turns out that the equations to be solved are precisely equivalent to the CP-SCF equations for an electric-field-like equation but with the right hand side being replaced by the occupied/virtual blocks of the Fock operator in the MO basis. Thus, the implementation calls the CP-SCF program in each SCF iteration. The converged CP-SCF first order wavefunction coefficients are then used to update the current orbitals. Thus, the cost of each NR iteration can be precisely specified as the cost of one electric field type CP-SCF calculation for a single perturbation on the same system.

One important aspect of the NR implementation is that the NR solver checks itself for convergence. The orbital gradient is calculated before the CP-SCF program is called. If the orbital gradient is below its threshold (TolG), convergence is signaled irrespective of what the other convergence indicators are. The orbital gradient is a rigorous criterion and therefore the results are considered reliable. If tighter convergence is desired, the thresholds TolG and TolX should be lowered.
The following example for a “normal” case of a Hartree–Fock geometry optimization converges in 5 cycles:

```plaintext
! RHF TZVPP Opt VeryTightSCF

* xyz 0 1
N 0 0 0
N 0 0 1
*
```

With the alternative first order SCF it also takes 5 cycles, but in each geometry optimization step there are more SCF iterations. In these examples, the total time for the calculations is comparable (less than 30 seconds), but that may be different for other cases.

```plaintext
! RHF TZVPP Opt TightSCF
! NRSCF

* xyz 0 1
N 0 0 0
N 0 0 1
*
```

The CP-SCF program is called with the convergence and method flags that are also used in Z-vector calculations (e.g. in MP2 or CIS/TD-DFT gradient calculations). They are accessible through the `%method` block:

```plaintext
%method Z_solver Pople # Pople's solver. Usually great!
CG # conjugate gradient
DIIS # Pulays DIIS
AugHess # Augmented Hessian (for SCF only)
Z_MaxIter 64 # maximum number of CP-SCF iterations
Z_MaxDIIS 10 # for DIIS: maximum number of expansion vectors
Z_Shift 0.3 # for DIIS: level shift
Z_Tol 1e-6 # convergence tolerance on residual
end
```

The range of applicability of the NR method is precisely the same as that of the CP-SCF program itself and the SCF program will immediately benefit from any improvement made in the CP-SCF module.

### 9.5.8 Finite Temperature HF/KS-DFT

A finite temperature can be used to apply a Fermi-like occupation number smearing over the orbitals of the system, which may sometimes help to get convergence of the SCF equations in near hopeless cases.
Through the smearing, the electrons are distributed according to Fermi statistics among the available orbitals. The “chemical potential” is found through the condition that the total number of electrons remains correct. Gradients can be computed in the presence of occupation number smearing.

```
%scf SmearTemp 5000 # 'temperature' in Kelvin
end
```

NOTE:

- Finite temperature SCF (fractional occupation numbers or FOD analysis, see 9.5.8.1 and 9.5.8.2, respectively) cannot be used together with the CNV Rico or SOSCF methods.

### 9.5.8.1 Fractional Occupation Numbers

Only a very basic implementation of fractional occupation numbers is presently provided. It is meant to deal with orbitally degenerate states in the UHF/UKS method. Mainly it was implemented to avoid symmetry breaking in DFT calculations on orbitally degenerate molecules and atoms. The program checks the orbital energies of the initial guess orbitals, finds degenerate sets and averages the occupation numbers among them. Currently the criterion for degenerate orbitals is $10^{-3}\text{ Eh}$. The fractional occupation number option is invoked by:

```
%scf FracOcc true
end
```

Clearly, the power of fractional occupation numbers goes far beyond what is presently implemented in the program and future releases will likely make more use of them. The program prints a warning whenever it uses fractional occupation numbers. The fractionally occupied orbitals should be checked to ensure they are actually the intended ones.

NOTE:

- Using `GuessMode = CMatrix` will cause problems because there are no orbital energies for the initial guess orbitals. The program will then average over all orbitals — which makes no sense at all.

### 9.5.8.2 Fractional Occupation Number Weighted Electron Density (FOD)

Many approximate QC methods do not yield reliable results for systems with significant static electron correlation (SEC) but it is often difficult to predict if the system in question suffers from SEC or not. Existing scalar SEC diagnostics (e.g., the $T_1$ diagnostic) do not provide any information where the SEC is located in the molecule. Furthermore, often quite expensive calculations have to be performed first (e.g., CCSD) in order to judge the reliability of the results based on a single number. Molecular systems with strong SEC (e.g. covalent bond-breaking, biradicals, open-shell transition metal complexes) are usually characterized by small energy gaps between frontier orbitals, and hence, the appearance of many equally important determinants in their electronic wavefunction. This finding is used in the FOD analysis [307] which is based on finite temperature
KS-DFT where the fractional occupation numbers are determined from the Fermi distribution (“Fermi smearing”)

\[ f_i = \frac{1}{e^{(\epsilon_i - E_F)/kT_{el}} + 1} \]

The central quantity of the FOD analysis is the fractional occupation number weighted electron density \((\rho_{\text{FOD}})\), a real-space function of the position vector \(r\):

\[ \rho_{\text{FOD}}(r) = \sum_i (\delta_1 - \delta_2 f_i)|\varphi_i(r)|^2 \]

(\(\delta_1\) and \(\delta_2\) are unity if the level is lower than \(E_F\) while they are 0 and \(-1\), respectively, for levels higher than \(E_F\)). The \(f_i\) represent the fractional occupation numbers \((0 \leq f_i \leq 1;\ \text{sum over all electronic single-particle levels})\) obtained by solving self-consistently the KS-SCF equations minimizing the free-electronic energy).

\(\rho_{\text{FOD}}\) can be plotted using a pre-defined contour surface value (see 9.32.2.2). FOD plots only show the contribution of the ‘hot’ (strongly correlated) electrons and can thus be used to choose a suitable QC method for the system in question based on some rules of thumb (see 9.32.2.2). Mulliken reduced orbital charges based on \(\rho_{\text{FOD}}\) (see 9.31.2) offer a fast alternative to get the informations of the FOD plot.

The integration of \(\rho_{\text{FOD}}\) over all space yields as additional information a single size-extensive number termed \(N_{\text{FOD}}\) which correlates well with other scalar SEC diagnostics and can be used to globally quantify SEC effects in the molecule.

\(\rho_{\text{FOD}}\) (and \(N_{\text{FOD}}\)) strongly depend on the orbital energy gap which itself depends almost linearly on the amount of the non-local Fock exchange admixture \(a_x\). The following (empirical) function of the optimal electronic temperature \(T_{el}\) on \(a_x\)

\[ T_{el} = 20000\ K \times a_x + 5000\ K \]

is used to ensure that similar results of the FOD analysis are obtained with various functionals. For example, the SmearTemp has to be 5000 K for TPSS \((a_x = 0)\), 9000 K for B3LYP \((a_x = 20\%)\), 10000 K for PBE0 \((a_x = 25\%)\), and 15800 K for M06-2x \((a_x = 54\%)\). The result of the FOD analysis is not strongly dependent on the employed basis set (see supplementary information of the original publication [307]). TPSS/def2-TZVP/TightSCF was chosen as the default since it is fast and robust. The FOD analysis is a very efficient and practicable tool to get informations about the amount and localization of SEC in the system of question. It is called by a simple keyword:

```
ground state of p-benzyne
! FOD
* xyz 0 1
 C 0.0000000 1.2077612 0.7161013
 C 0.0000000 0.0000000 1.3596219
 C 0.0000000 -1.2077612 0.7161013
 C 0.0000000 -1.2077612 -0.7161013
 C 0.0000000 0.0000000 -1.3596219
```
The respective output reads:

```
ozone molecule

! UKS B3LYP def2-TZVP TightSCF

%scf

SmearTemp 9000

end

* xyz 0 1
0 0.00000000017911 0.00000000000000 0.43702029765776
0 -1.09512651993192 0.00000000000000 -0.21851064888325
0 1.09512651975281 0.00000000000000 -0.21851064877451
*
```

The FOD analysis may also be useful for finding a suitable active space for e.g. CASSCF calculations.

**NOTE:**

- The FOD analysis will be always printed (including Mulliken reduced orbital charges based on $\rho^{FOD}$) if SmearTemp > 0 K $\rho^{FOD}$ is stored on disk in the file Basename.scfp.fod).
固体文档内容如下：

- Since the the $S^2$ expectation value is not defined for fractional occupation numbers, its printout is omitted.

### 9.6 Choice of Wavefunction and Integral Handling

#### 9.6.1 Choice of Wavefunction Type

The basic variable that controls the type of wavefunction to be computed is the variable HFTyp in the %scf block. If nothing is specified for HFTyp, the program will check the multiplicity given in the input: for closed-shell molecules with multiplicity 1, RHF/RKS is assumed; for open shell molecules with multiplicity larger than 1, UHF/UKS is invoked. RHF will lead to a spin restricted closed-shell type computation [59]. For DFT calculations, RKS, UKS and ROKS can be used as synonyms for RHF, UHF and ROHF. The restricted open-shell DFT method (ROKS) is only operative for high-spin states that have $n$ unpaired electrons and $S = n/2$. UKS wavefunctions will not be spin-purified.

```plaintext
%scf HFTyp RHF # closed-shell (RKS for DFT)
 UHF # unrestricted open-shell (UKS for DFT)
 ROHF # restricted open-shell (ROKS for DFT)
 CASSCF # complete active space SCF
end
```

In certain cases you may want to run open-shell molecules with RHF/RKS to get a “half-electron” type wavefunction [308]. The total energy is not corrected! Sometimes these half-electron computations lead to acceptable convergence, and the resulting orbitals may be used as input for ROHF, UHF or MRCI calculations. Especially for transition metal complexes the orbitals are quite different from ROHF or UHF orbitals, so that it is not recommended to over-interpret the wavefunctions from such calculations. The calculation is set up in the following way:

```plaintext
%method AllowRHF true end
or simply: ! AllowRHF
```

For ROHF calculations [309–317] the program will try to figure out what type of open-shell situation is present on the basis of the initial guess orbitals and their energies. Most “simple” cases are well recognized but sometimes a little help from the user is needed. The ROHF code has a very powerful feature that goes back to insights of Mike Zerner [318,319]. It can average over either all states of a given configuration (CAHF) or all states of a given spin for a given configuration (SAHF). Especially the SAHF feature gives you easy access to most degenerate high symmetry situations and the orbitals resulting from such calculations will be very convenient as input for CI calculations. In this way one can approach results from MCSCF calculations.

The input variables described above are accessed in the %scf block. ROHFOPT Case User is a convenient way to input details. For example for the high spin case with three electrons in three orbitals gives two operators with vector coupling coefficients $a = 1$ and $b = 2$ (Zerner convention).
The hypothetical example below could represent an excited state of an octahedral $d^3$ transition metal complex. In this case there are five open-shell orbitals. The first three open-shell orbitals contain two electrons and the last two one electron. The input for a SAHF calculation is identical, just replace CAHF with SAHF.

For a ROHF case HighSpin calculation an analogous input can be used, but the number of operators is always two (one closed and one open-shell), therefore:

One awkward feature of the ROHF theory is that the Fock operator is somewhat arbitrarily defined. Different choices lead to the same wavefunction, but have different convergence properties that may vary from system to system. ORCA thus lets the user choose the desired variant. Playing around with these choices may turn a divergent or slowly converging ROHF calculation into a successful calculation!

The ROHF Restrict feature is another feature that may be useful. If you suspect that the ROHF calculation does not converge because an open-shell and a closed-shell orbital are flipping back and forth, you can try to avoid this behavior by choosing ROHF Restrict = true. Of course there is no guarantee that it will work,
and no guarantee that the system stays in the desired state. However, it decreases the chances of large, uncontrolled steps.

```
%scf ROHF_Mode 0 # construct F according to Pulay (default)
 1 # construct F as in the Gamess program
 2 # construct F according to Kollmar

ROHF_Restrict false # restrict orbital interchanges and off-diagonal elements
 # (default=false)

a complete list of ROHF variables

ROHFOP Case User # manual input of ROHF variables
 Nop 2 # number of operators
 Norb[1] 3 # number of open-shell orbitals
 Nel[1] 3 # number of open-shell electrons
 A[1,1] 1 # Coulomb vector in the open shell
 B[1,1] 2 # Exchange vector in the open shell
 Mode 2 # use the Kollmar operator
 Restrict false # do not restrict

end
```

### 9.6.2 UHF Natural Orbitals

The program can produce the UHF natural orbitals (UNOs). With these, the open-shell wavefunction can be pictured conveniently. The syntax is simple:

```
%scf UHFNO true
end
or simply: ! UNO
```

There are various printing options for UNOs described in the output section 9.31. The UNOs can also be plotted as described in the plots section 9.32. In general the program stores a file `BaseName.uno`, where `BaseName` is by default the name of your input file with `.inp` stripped off. Accordingly, the gbw file is named `BaseName.gbw`. The `.uno` file is a normal gbw file that contains the geometry, basis set and the UNO orbitals. It could be used, for example, to start a ROHF calculation.

### 9.6.3 Integral Handling (Conventional, Direct, SemiDirect)

As the number of nonzero integrals grows very rapidly and reaches easily hundreds of millions even with medium sized basis sets in medium sized molecules, storage of all integrals is not generally feasible. This desperate situation prevented SCF calculations on larger molecules for quite some time, so that Almlöf [320–322] made the insightful suggestion to repeat the integral calculation, which was already the dominant step, in every SCF cycle to solve the storage problem. Naively, one would think that this raises the effort for the calculation to \( n_{\text{iter}}t_{\text{integrals}} \) (where \( n_{\text{iter}} \) is the number of iterations and \( t_{\text{integrals}} \) is the time needed to generate
the nonzero integrals). However, this is not the case because only the change in the Fock matrix is required from one iteration to the next, but not the Fock matrix itself. As the calculations starts to converge, more and more integrals can be skipped. The integral calculation time will still dominate the calculation quite strongly, so that ways to reduce this burden are clearly called for. An important contribution to this subject was made by Häser and Ahlrichs [323] who suggested to store some of the integrals and to only recalculate the remaining ones in the direct SCF calculation. Obvious candidates for storage are those integrals that are expensive to calculate. As integrals are calculated in batches the cost of evaluating the given batch of shells $p, q, r, s$ may be estimated as:

$$\text{cost} \approx n_p n_q n_r n_s (2l_p + 1) (2l_q + 1) (2l_r + 1) (2l_s + 1)$$

(9.48)

Here, $n_p$ is the number of primitives involved in shell $p$, and $l_p$ is the angular momentum for this shell. Large integrals are also good candidates for storage, because small changes in the density that multiply large integrals are likely to give a nonzero contribution to the changes in the Fock matrix.

ORCA thus features three possibilities for integral handling, which are controlled by the variable SCFMode. In the mode Conventional, all integrals above a given threshold are stored on disk (in a compressed format that saves much disk space). In the mode Direct, all two-electron integrals are recomputed in each iteration. In the mode SemiDirect, the Häser/Ahlrichs-type hybrid method as described above is implemented.

Two further variables are of importance: In the Conventional and SemiDirect modes the program may write enormous amounts of data to disk. To ensure this stays within bounds, the program first performs a so-called “statistics run” that gives a pessimistic estimate of how large the integral files will be. Oftentimes, the program will overestimate the amount of disk space required by a factor of two or more. The maximum amount of disk space that is allowed for the integral files is given by MaxDisk (in Megabytes).

On the other hand, if the integral files in Conventional and SemiDirect runs are small enough to fit into the central memory, it is faster to do this since it avoids I/O bottlenecks. The maximum amount of memory allocated for integrals in this way is specified by MaxIntMem (in Megabytes). If the integral files are larger than MaxIntMem, no integrals will be read into memory.

| %scf |
MaxIter 100	# Max. no. of SCF iterations
SCFMode Direct	# default, other choices: Conventional, SemiDirect
Thresh 1e-8	# Threshold for neglecting integrals / Fock matrix contributions
# Depends on the chosen convergence tolerance (in Eh).	
TCut 1e-10	# Threshold for neglecting primitive batches. If the prefactor
# in the integral is smaller than TCut, the contribution of the	
# primitive batch to the total batch is neglected.	
TCost 100	# Threshold for considering integrals as costly in
# SemiDirect SCF. Batches with Cost > TCost are stored.	
TSize 0.01	# In SemiDirect SCF: stores integrals with estim. size = TSize

12 A batch is a set of integrals that arises from all components of the shells involved in the integral. For example a $\langle pp| pp\rangle$ batch gives rise to $3 \times 3 \times 3 \times 3 = 81$ integrals due to all possible combinations of $p_x, p_y$ and $p_z$ functions in the four shells. Computations based on batches lead to great computational advantages because the 81 integrals involved in the $\langle pp| pp\rangle$ batch share many common intermediate quantities.
The flag `UseCheapInts` has the following meaning: In a `Direct` or `SemiDirect` SCF calculation, the oscillations in the total energy and density are initially quite large. High accuracy in the integrals is therefore not crucial. If `UseCheapInts` is switched on, the program loosens the threshold for the integrals and thus saves a lot of computational time. After having obtained a reasonable initial convergence, the thresholds are tightened to the target accuracy. One pitfall with this method is that the number of cycles required to reach convergence may be larger relative to a calculation with full integral accuracy throughout.\footnote{This might be an undesirable feature of the current implementation.} When restarting calculations that are close to convergence, it is recommended to switch `UseCheapInts` off. `UseCheapInts` has no meaning in a conventional SCF.

The value of `DirectResetFreq` sets the number of incremental Fock matrix builds after which the program should perform a full Fock matrix build in a `Direct` or `SemiDirect` SCF calculation. To prevent numerical instabilities that arise from accumulated errors in the recursively build Fock matrix, the value should not be too large, since this will adversely affect the SCF convergence. If the value is too small, the program will update more frequently, but the calculation will take considerably longer, since a full Fock matrix build is more expensive than a recursive one.

The thresholds `TCut` and `Thresh` also deserve a closer explanation. `Thresh` is a threshold that determines when to neglect two-electron integrals. If a given integral is smaller than `Thresh Eh`, it will not be stored or used in Fock matrix construction. Additionally, contributions to the Fock matrix that are smaller than `Thresh Eh` will not be calculated in a `Direct` or `SemiDirect` SCF.

Clearly, it would be wasteful to calculate an integral, then find out it is good for nothing and thus discard it. A useful feature would be an efficient way to estimate the size of the integral before it is even calculated, or even have an estimate that is a rigorous upper bound on the value of the integral. Häser and Ahlrichs\cite{323} were the first to recognize that such an upper bound is actually rather easy to calculate. They showed that:

\[ |\langle ij | kl \rangle| \leq \sqrt{\langle ij | ij \rangle \langle kl | kl \rangle} \]  

(9.49)

where:

\[ \langle ij | kl \rangle = \int \int \phi_i (\vec{r}_1) \phi_j (\vec{r}_1) r_1^{-\frac{1}{2}} \phi_k (\vec{r}_2) \phi_l (\vec{r}_2) d\vec{r}_1 d\vec{r}_2 \]  

(9.50)

Thus, in order to compute an upper bound for the integral only the right hand side of this equation must be known. This involves only two index quantities, namely the matrix of two center exchange integrals $\langle ij | ij \rangle$. These integrals are easy and quick to calculate and they are all $\geq 0$ so that there is no trouble with the square root. Thus, one has a powerful device to avoid computation of small integrals. In an actual calculation, the Schwartz prescreening is not used on the level of individual basis functions but on the level of shell batches.
because integrals are always calculated in batches. To realize this, the largest exchange integral of a given exchange integral block is looked for and its square root is stored in the so called pre-screening matrix $K$ (that is stored on disk in ORCA). In a direct or semidirect SCF this matrix is not recalculated in every cycle, but simply read from disk whenever it is needed. The matrix of exchange integrals on the level of individual basis function is used in conventional or semidirect calculations to estimate the disk requirements (the “statistics” run).

Once it has been determined that a given integral batch survives it may be calculated as:

$$
\langle ij | kl \rangle = \sum_p d_{pi} \sum_q d_{qj} \sum_r d_{kr} \sum_s d_{sl} \langle i_p j_q | k_r l_s \rangle
$$

(9.51)

where the sums $p, q, r, s$ run over the primitive gaussians in each basis function $i, j, k, l$ and the $d$’s are the contraction coefficients. There are more powerful algorithms than this one and they are also used in ORCA. However, if many terms in the sum can be skipped and the total angular momentum is low, it is still worthwhile to compute contracted integrals in this straightforward way. In equation 9.51, each primitive integral batch $\langle i_p j_q | k_r l_s \rangle$ contains a prefactor $I_{pqrs}$ that depends on the position of the four gaussians and their orbital exponents. Since a contracted gaussian usually has orbital exponents over a rather wide range, it is clear that many of these primitive integral batches will contribute negligibly to the final integral values. In order to reduce the overhead, the parameter $TCut$ is introduced. If the common prefactor $I_{pqrs}$ is smaller than $TCut$, the primitive integral batch is skipped. However, $I_{pqrs}$ is not a rigorous upper bound to the true value of the primitive integral. Thus, one has to be more conservative with $TCut$ than with $Thresh$. In practice it appears that choosing $TCut=0.01*Thresh$ provides sufficient accuracy, but the user is encouraged to determine the influence of $TCut$ if it is suspected that the accuracy reached in the integrals is not sufficient.

HINT:

- If the direct SCF calculation is close to convergence but fails to finally converge, this maybe related to a numerical problem with the Fock matrix update procedure – the accumulated numerical noise from the update procedure prevents sharp convergence. In this case, set $Thresh$ and $TCut$ lower and/or let the calculation more frequently reset the Fock matrix ($DirectResetFreq$).

NOTE:

- For a Direct or SemiDirect calculation, there is no way to have $Thresh$ larger than $TolE$. If the errors in the Fock matrix are larger than the requested convergence of the energy, the change in energy can never reach $TolE$. The program checks for that.

- In a SemiDirect SCF, the number of stored integrals increases with molecular size. It may be necessary to increase $TSize$ and $TCost$ to make storage possible. It is usually not a good idea to produce integral files many gigabytes in size, because this will lead to quite some I/O penalty, especially in the late stages of a calculation. Within reasonable bounds however, SemiDirect calculations can be quite a bit faster than Direct calculations.

- The actual disk space used for all temporary files may easily be larger than $MaxDisk$. $MaxDisk$ only pertains to the two-electron integral files. Other disk requirements are not currently checked by the program and appear to be uncritical.
9.7 SCF Stability Analysis

The SCF stability analysis evaluates the electronic Hessian (with respect to orbital rotations) at the point indicated by the SCF solution to determine the lowest eigenvalues of the Hessian. If one or more negative eigenvalues are found, the SCF solution corresponds to a saddle point and not a true local minimum in the space considered in the analysis. A typical case are stretched bonds of diatomics, where the symmetry of the initial guess leads to a restricted solution instead of the often preferred unrestricted one. Several spaces are theoretically possible [139], however, ORCA limits itself to the analysis RHF/RKS in the space of UHF/UKS or UHF/UKS in the space of UHF/UKS. As such, it is available for the SCF parts of DFT and HF. [140]

In the following, HF is used to indicate both HF and KS. Consider the following input (unless indicated otherwise, default values are shown):

```
! BHLYP def2-SVP NORI

%scf
 guess hcore # for illustrative purposes only
 HFTyp UHF # default based on spin multiplicity
 STABPerform true # default false
 STABRestartUHFifUnstable true # restart the UHF-SCF if unstable
 STABNRoots 3 # number of eigenpairs sought
 STABMaxDim 3 # Davidson expansion space = MaxDim * NRoots
 STABMaxIter 100 # maximum number of Davidson iterations
 STABNGuess 4096 # size of initial guess matrix: 4096 x 4096
 STABRTol 0.0001 # convergence criterion from iteration to iteration
 STABEWIN -5.0, 5.0 # lower and upper cutoff in Eh for automatic freezing

alternative specification using a sub-block:
stab
 NRoots 3
 MaxDim 3 # etc.
end

* xyz 0 1
 h 0.0 0.0 0.0
 h 0.0 0.0 1.4
*
```

The determination of the electronic Hessian is structurally comparable to the TDHF/CIS/TDDFT procedure. Thus, many options are very similar and the user is encouraged to read the section on TDDFT (section 9.19) to clarify some of the options given here. Since one is usually only interested in the qualitative determination “stable or not?”, three roots should be sufficient to find the lowest eigenvalue. By the same philosophy,
MaxDim, MaxIter, NGuess and the convergence criteria were chosen. lambda refers to the \( \lambda \) of equation 37 of reference 139, which determines the mixing of the original SCF solution and the new orbitals to yield a new guess. Choosing this value is not trivial, since positive and negative values can lead to different new solutions (at least in principle). The convergence of the ensuing SCF depends on it, as well, since all SCF procedures require a sufficiently good guess to converge in a decent number of iterations (or even at all).

The orbital window and the energy window can be specified. Note that the EWIN will be overridden by the appropriate ORBWIN values. The automatic determination is also influenced by the \%method FrozenCore settings. Tests have shown that significant curtailing of the actual orbital window can drastically influence the results to the point of qualitative failure.

Current limitations on the method are:

- Only single-point-like calculations are supported. For geometry optimizations etc., one must use the guess MORead feature 9.4 to employ the guess obtained here. Likewise, one must extract a geometry and run a separate calculation if one is interested in the SCF stability.

- As for TDDFT, NORI, RIJONX, and RIJCOSX are supported. RI-JK is not supported.

- No solvation models are currently implemented to work with the stability analysis.

- Other, more advanced features like finite-temperature calculations and relativistic calculations (beside ECPs) are not possible at this time.

Overall, the user is cautioned against using the stability analysis blindly without critically evaluating the result in terms of energy difference and by investigating the orbitals (by the printout or by plotting). Its usefulness cannot be denied, but it is certainly not black-box.

### 9.8 Frozen Core Options

The frozencore (FC) approximation is usually applied in correlated calculation and consists in neglecting correlation effects for electrons in the low-lying core orbitals. The FC approximation and the number of core electrons per element can be adjusted in the \%method block. The default number of core electrons per element is listed in Table 9.8.

For systems containing heavy elements, core electrons might have higher orbital energies compared to the orbital energies of valence MOs of some lighter elements. In that case, core electrons might be included in the correlation calculation, which ultimately leads to large errors in correlation energy. In order to prevent this, the MO ordering is checked after the SCF calculation: Do all lower energy MOs in the core region have core electron character, i.e. are they strongly localized on the individual elements? If core orbitals are found in the valence region, while more delocalized orbitals are found in the core region, the corresponding MO pairs are swapped. The check for a correct frozen core can be switched off in the \%method block.
Table 9.8: Default values for number of frozen core electrons.

<table>
<thead>
<tr>
<th>Element</th>
<th>Frozen Core</th>
<th>Elements</th>
<th>Frozen Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>0</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>Be</td>
<td>0</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>Na</td>
<td>2</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>Mg</td>
<td>2</td>
<td>O</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>10</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>Ca</td>
<td>10</td>
<td>Ne</td>
<td>2</td>
</tr>
<tr>
<td>Sc</td>
<td>10</td>
<td>Al</td>
<td>10</td>
</tr>
<tr>
<td>Ti</td>
<td>10</td>
<td>Si</td>
<td>10</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td>P</td>
<td>10</td>
</tr>
<tr>
<td>Cr</td>
<td>10</td>
<td>S</td>
<td>10</td>
</tr>
<tr>
<td>Mn</td>
<td>10</td>
<td>Cl</td>
<td>10</td>
</tr>
<tr>
<td>Fe</td>
<td>10</td>
<td>Ar</td>
<td>10</td>
</tr>
<tr>
<td>Co</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tc</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rh</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ra</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lr</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Db</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sg</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bh</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ds</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rg</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cn</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanides</td>
<td></td>
<td>Actinides</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>36</td>
<td>Ac</td>
<td>68</td>
</tr>
<tr>
<td>Ce</td>
<td>36</td>
<td>Th</td>
<td>68</td>
</tr>
<tr>
<td>Pr</td>
<td>36</td>
<td>Pa</td>
<td>68</td>
</tr>
<tr>
<td>Nd</td>
<td>36</td>
<td>U</td>
<td>68</td>
</tr>
<tr>
<td>Pm</td>
<td>36</td>
<td>Np</td>
<td>68</td>
</tr>
<tr>
<td>Sm</td>
<td>36</td>
<td>Pu</td>
<td>68</td>
</tr>
<tr>
<td>Eu</td>
<td>36</td>
<td>Am</td>
<td>68</td>
</tr>
<tr>
<td>Gd</td>
<td>36</td>
<td>Cm</td>
<td>68</td>
</tr>
<tr>
<td>Tb</td>
<td>36</td>
<td>Bk</td>
<td>68</td>
</tr>
<tr>
<td>Dy</td>
<td>36</td>
<td>Cl</td>
<td>68</td>
</tr>
<tr>
<td>Ho</td>
<td>36</td>
<td>Es</td>
<td>68</td>
</tr>
<tr>
<td>Er</td>
<td>36</td>
<td>Fm</td>
<td>68</td>
</tr>
<tr>
<td>Tm</td>
<td>36</td>
<td>Md</td>
<td>68</td>
</tr>
<tr>
<td>Yb</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### %method FrozenCore FC_ELECTRONS # Freeze all core electrons

### FC_EWIN # Freeze selected core electrons via !mp2 EWin EMin,EMax

### FC_NONE # full MP2

### NewNCore Bi 68 end # set the number of core electrons for # Bi to 68

### CheckFrozenCore true # check whether frozen core orbitals are # ordered correctly

### -n # freezes n electrons

end

### NOTE

- The FrozenCore options are applied to all post Hartree-Fock methods.
- If including all electrons is desired, the !NoFrozenCore keyword can be simply inserted. For MP2: Frozen virtual orbitals are not allowed in gradient runs or geometry optimization!
- If ECPs are used, the number for NewNCore has to include the electrons represented by the ECPs as well. E.g. if an element is supposed to have 60 electrons in the ECP and additional 8 electrons should be frozen in the correlation calculation, NewNCore should be 68.
- In ORCA we use rather conservative frozencore settings, i.e. a large number of electrons are included in the correlation treatment. Therefore, we recommend to use properly optimized correlating functions in all cases.
- For DLPNO calculations the virtual space for core-core and core-valence correlation is adjusted by default, which is described in detail in section 9.10.4.1.
• In general, **NewNCore** only has an effect in calculations with FC,ELECTRONS. In calculations using the DLPNO approximation (except DLPNO-NEVPT2), NewNCore has also an effect in the other cases, as is described in section 9.10.4.1.

9.9 The Second Order Many Body Pertubation Theory Module (MP2)

Throughout this section, indices \( i, j, k, \ldots \) refer to occupied orbitals in the reference determinant, \( a, b, c, \ldots \) to virtual orbitals and \( p, q, r, \ldots \) to general orbitals from either set while \( \mu, \nu, \kappa, \tau, \ldots \) refer to basis functions.

9.9.1 Standard MP2

The standard (or full accuracy) MP2 module has two different branches. One branch is used for energy calculations, the other for gradient calculations.

For standard MP2 energies, the program performs two half-transformations and the half-transformed integrals are stored on disk in compressed form. This appears to be the most efficient approach that can also be used for medium sized molecules. The module should parallelize acceptably well as long as I/O is not limiting.

For standard MP2 gradients, the program performs four quarter transformations that are ordered by occupied orbitals. Here, the program massively benefits from large core memory (\( %\text{maxcore} \)) since this minimizes the number of batches that are to be done. I/O demands are minimal in this approach.

In “memory mode” (\( Q1\text{Opt}>0 \)) basically the program treats batches of occupied orbitals at the same time. Thus, there must be at least enough memory to treat a single occupied MO at each pass. Otherwise the MP2 module will fail. Thus, potentially, MP2 calculations on large molecules take significant memory and may be most efficiently done through the RI approximation.

Alternatively, in the “disk based mode” (\( Q1\text{Opt}=-1 \)) the program performs a half transformation of the exchange integrals and stores the transformed integrals on disk. A bin-sort then leads to the AO operator \( \Sigma_{ij}^{(\mu, \nu)} = (i\mu | j\nu) \) in (11|22) integral notation. These integrals are then used to make the final \( K_{ij}(a,b) \) (\( a,b=\)virtual MOs) and the EMP2 pair energy contributions. In many cases, and in particular for larger molecules, this algorithm is much more efficient than the memory based algorithm. It depends, however, much more heavily on the I/O system of the computer that you use. It is important, that the program uses the flags \( \text{CFLOAT}, \text{UCFLOAT}, \text{CDOUBLE} \) or \( \text{UCDOUBLE} \) in order to store the unsorted and sorted AO exchange integrals. Which flag is used will influence the performance of the program and to some extent the accuracy of the result (float based single precision results are usually very slightly less accurate; \( \mu \text{Eh-range deviations from the double precision result}^{14} \)). Finally, gradients are presently only available for the memory based algorithm since in this case a much larger set of integrals is required.

The ! MP2 command does the following: (a) it changes the Method to HFGTO and (b) it sets the flag DoMP2 to true. The program will then first carry out a Hartree-Fock SCF calculation and then estimate the correlation energy by MP2 theory. RHF, UHF and high-spin ROHF reference wavefunctions are permissible and the type of MP2 calculation to be carried out (for high-spin ROHF the gradients are not available) is automatically chosen based on the value of HFTyp. If the SCF is carried out conventionally, the MP2 calculation will also

14 However, sometimes, and in particular when transition metals and core orbitals are involved we have met unpleasantly large errors. So – be careful and double check when using floats!
be done in a conventional scheme unless the user forces the calculation to be direct. For $\text{SCFMode}=$Direct or $\text{SCFMode}=$SemiDirect the MP2 energy evaluation will be fully in the integral direct mode.

The following variables can be adjusted in the block for conventional MP2 calculations:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMin</td>
<td>-1.5</td>
<td>orbital energy cutoff that defines the frozen core in Eh</td>
</tr>
<tr>
<td>EMax</td>
<td>1.0e3</td>
<td>orbital energy cutoff that defines the neglected virtual orbitals in Eh</td>
</tr>
<tr>
<td>EWin</td>
<td>EMin,EMax</td>
<td>the same, but accessed as array (respects settings in %method block!)</td>
</tr>
<tr>
<td>MaxCore</td>
<td>256</td>
<td>maximum amount of memory (in MB) to be used for integral buffering</td>
</tr>
<tr>
<td>ForceDirect</td>
<td>false</td>
<td>Force the calculation to be integral direct</td>
</tr>
<tr>
<td>RI</td>
<td>false</td>
<td>use the RI approximation</td>
</tr>
<tr>
<td>F12</td>
<td>false</td>
<td>apply F12 correction</td>
</tr>
<tr>
<td>Q1Opt</td>
<td>-1</td>
<td>For non-RI calculations a flag how to perform the first quarter transformation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 - Use a disk based algorithm. This respects the flags UCFLOAT, CFLOAT, UCDOUBLE and CDOUBLE. (but BE CAREFUL with FLOAT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(default for energy runs)</td>
</tr>
<tr>
<td>PrintLevel</td>
<td>2</td>
<td>How much output to produce. PrintLevel 3 produces also pair correlation energies and other info.</td>
</tr>
<tr>
<td>DoSCS</td>
<td>false</td>
<td>use spin-component scaling</td>
</tr>
<tr>
<td>Ps</td>
<td>1.2</td>
<td>scaling factor for ab pairs</td>
</tr>
<tr>
<td>Pt</td>
<td>0.333</td>
<td>scaling factor for aa and bb pairs</td>
</tr>
<tr>
<td>Densities</td>
<td>none</td>
<td>no density construction</td>
</tr>
<tr>
<td></td>
<td>unrelaxed</td>
<td>only “unrelaxed densities”</td>
</tr>
<tr>
<td></td>
<td>relaxed</td>
<td>full relaxed densities</td>
</tr>
<tr>
<td>NatOrbs</td>
<td>false</td>
<td>calculate natural orbitals</td>
</tr>
</tbody>
</table>

### 9.9.2 RI-MP2

The RI-MP2 module is of a straightforward nature. The program first transforms the three-index integrals $(ia|\tilde{P})$, where “$i$” is a occupied, “$a$” is a virtual MO and “$\tilde{P}$” is an auxiliary basis function that is orthogonalized...
against the Coulomb metric. These integrals are stored on disk, which is not critical, even if the basis has several thousand functions. The integral transformation is parallelized and has no specifically large core memory requirements.

In the next step, the integrals are read ordered with respect to the occupied labels and the exchange operators $K^{ij}(a, b) = (ia|jb) = \sum_{P}^{N_{Aux}} (ia|\tilde{P})(\tilde{P}|jb)$ are formed in the rate limiting $O(N^5)$ step. This step is done with high efficiency by a large matrix multiplication and parallelizes well. From the exchange operators, the MP2 amplitudes and the MP2 energy is formed. The program mildly benefits from large core memory ($\%\text{maxcore}$) as this minimizes the number of batches and hence reads through the integral list.

The RI-MP2 gradient is also available. Here, all necessary intermediates are made on the fly.

In the RI approximation, one introduces an auxiliary fitting basis $\eta_P(r)$ and then approximates the two-electron integrals in the Coulomb metric as:

\[
(pq|rs) \approx \sum_{PQ} (pq|P)V_{PQ}^{-1}(Q|rs) \quad (9.52)
\]

where $V_{PQ} = (P|Q)$ is a two-index electron-electron repulsion integral. As first discussed by Weigend and Häsler, the closed-shell case RI-MP2 gradient takes the form:

\[
E_{\text{RI-MP2}}^{\text{e}} = 2\sum_{\mu\nu P} (\mu\nu|P)^{(x)} \sum_{i} c_{\mu i} \Gamma_{i\nu}^{P} + \sum_{RS} V_{RS}^{e} \left( V^{-1/2} \gamma V^{-1/2} \right)_{RS} + \langle DF^{x} \rangle \quad (9.53)
\]

The $F$-matrix derivative terms are precisely handled as in the non-RI case and need not be discussed any further. $\Gamma_{i\nu}^{P}$ is a three-index two-particle “density”:

\[
\Gamma_{i\nu}^{P} = \sum_{jQ} (1 + \delta_{ij}) \bar{e}_{ab}^{j} V_{PQ}^{e}^{-1/2} (Q|jb) \quad (9.54)
\]

Which is partially transformed to the AO basis by:

\[
\Gamma_{i\nu}^{P} = \sum_{a} c_{\nu a} \Gamma_{i\nu}^{P} \quad (9.55)
\]

The two-index analogue is given by:

\[
\gamma_{PQ} = \sum_{iaR} \Gamma_{ia}^{Q} (ia|R) V_{RP}^{e}^{-1/2} \quad (9.56)
\]

The RI contribution to the Lagrangian is particularly convenient to calculate:

\[
L_{aoi}^{RI} = \sum_{\mu} c_{\mu a} \left[ 2 \sum_{PQ\nu} \Gamma_{i\nu}^{P} (\mu\nu|Q) V_{PQ}^{e}^{-1/2} \right] \quad (9.57)
\]
In a similar way, the remaining contributions to the energy weighted density matrix can be obtained efficiently. Note, however, that the response operator and solution of the CP-SCF equations still proceed via traditional four-index integrals since the SCF operator was built in this way. Thus, while the derivatives of the three-index integrals are readily and efficiently calculated, one still has the separable contribution to the gradient, which requires the derivatives of the four-index integrals.

The RI-MP2 energy and gradient calculations can be drastically accelerated by employing the RIJCOSX or the RIJDX approximation.

9.9.3 "Double-Hybrid" Density Functional Theory

A slightly more general form is met in the double-hybrid DFT gradient. The theory is briefly described below.

The energy expression for perturbatively and gradient corrected hybrid functionals as proposed by Grimme is:

$$\begin{align*}
E &= V_{NN} + \langle \Phi^+ \rangle + \frac{1}{2} \int \int \frac{\rho_1(r_1) \rho_2(r_2)}{|r_1 - r_2|} dr_1 dr_2 - \frac{1}{2} a_x \sum_{\mu \nu \kappa \tau} P_{\mu \nu}^\sigma P_{\kappa \tau}^\sigma (\mu \nu | \kappa \tau) + c_{DF} E_{XC} \rho_\alpha, \rho_\beta + c_{PT} E_{PT} \\
&= E_{SCF} + c_{PT} E_{PT} 
\end{align*}$$

(9.58)

(9.59)

Here $V_{NN}$ is the nuclear repulsion energy and $\eta_{\mu \nu}$ is a matrix element of the usual one-electron operator which contains the kinetic energy and electron-nuclear attraction terms ($\langle ab \rangle$ denotes the trace of the matrix product $ab$). As usual, the molecular spin-orbitals are expanded in atom centered basis functions ($\sigma = \alpha, \beta$):

$$\psi_p^\sigma (r) = \sum_c c_{\mu \rho}^\sigma \varphi_\mu (r)$$

(9.60)

with MO coefficients $c_{\mu \rho}^\sigma$. The total density is given by (real orbitals are assumed throughout):

$$\rho (r) = \sum_{i \sigma} |\psi_i^\sigma (r)|^2 = \sum_{\mu \nu \sigma} P_{\mu \nu}^\sigma \varphi_\mu (r) \varphi_\nu (r) = \rho^\alpha (r) + \rho^\beta (r)$$

(9.61)

Where $P = P^\alpha + P^\beta$ and $P_{\mu \nu}^\sigma = \sum_{i \sigma} c_{\mu \rho}^\sigma c_{\nu \rho}^\sigma$.

The second term of eq. 9.59 represents the Coulombic self-repulsion. The third term represents the contribution of the Hartree-Fock exchange with the two-electron integrals being defined as:

$$(\mu \nu | \kappa \tau) = \int \int \phi_\mu (r_1) \phi_\nu (r_1) \phi_\kappa (r_2) \phi_\tau (r_2) d r_1 d r_2$$

(9.62)

The mixing parameter $a_x$ controls the fraction of Hartree-Fock exchange and is of a semi-empirical nature. The exchange correlation contribution may be written as:
9.9 The Second Order Many Body Pertubation Theory Module (MP2)

\[ E_{XC} [\rho_\alpha, \rho_\beta] = (1 - a_X) E^{\text{GGA}}_{\alpha} [\rho_\alpha, \rho_\beta] + b E^{\text{GGA}}_{\beta} [\rho_\alpha, \rho_\beta] \]  

(9.63)

Here, \( E^{\text{GGA}}_{\alpha} [\rho_\alpha, \rho_\beta] \) is the exchange part of the XC-functional in question and \( E^{\text{GGA}}_{\beta} [\rho_\alpha, \rho_\beta] \) is the correlation part. The parameter \( b \) controls the mixing of DFT correlation into the total energy and the parameter \( c_{\text{DF}} \) is a global scaling factor that allows one to proceed from Hartree-Fock theory (\( a_X = 1, c_{\text{DF}} = 0, c_{\text{PT}} = 1 \)) to MP2 theory (\( a_X = 1, c_{\text{DF}} = 0, c_{\text{PT}} = 1 \)) to pure DFT (\( a_X = 1, c_{\text{DF}} = 1, c_{\text{PT}} = 0 \)) and finally to the general perturbatively corrected methods discussed in this work (\( 0 < a_X < 1, c_{\text{DF}} = 1, 0 < c_{\text{PT}} < 1 \)). As discussed in detail by Grimme, the B2-PLYP functional uses the Lee-Yang-Parr (LYP) functional as correlation part, the Becke 1988 (B88) functional as GGA exchange part and the optimum choice of the semi-empirical parameters was determined to be \( a_X = 0.53, c_{\text{PT}} = 0.27, c_{\text{DF}} = 1, b = 1 - c_{\text{PT}} \). For convenience, we will suppress the explicit reference to the parameters \( a_X \) and \( b \) in the XC part and rewrite the gradient corrected XC energy as:

\[ E_{XC} [\rho^\alpha, \rho^\beta] = \int f (\rho^\alpha, \rho^\beta, \gamma^{\alpha \alpha}, \gamma^{\beta \beta}, \gamma^{\alpha \beta}) \, dr \]  

(9.64)

with the gradient invariants \( \gamma^{\sigma \sigma'} = \vec{\nabla} \rho^\sigma \vec{\nabla} \rho^{\sigma'} \). The final term in eq (48) represents the scaled second order perturbation energy:

\[ E^{\text{PT2}} = \frac{1}{2} \sum_{i_s < j_a} \langle t^{i_s j_a} \hat{K}^{i_a j_a +} \rangle + \frac{1}{2} \sum_{i_s < j_b} \langle t^{i_s j_b} \hat{K}^{i_b j_b +} \rangle + \sum_{i_s j_b} \langle t^{i_s j_b} \hat{K}^{i_a j_a +} \rangle \]  

(9.65)

The PT2 amplitudes have been collected in matrices \( t^{i_s j_b} \) with elements:

\[ t^{i_s j_b} = \hat{K}^{i_s j_b} (e^\sigma_a + e^\sigma_b - e^\sigma_a - e^\sigma_b)^{-1} \]  

(9.66)

Where the orbitals were assumed to be canonical with orbital energies \( e^\sigma_p \). The exchange operator matrices are \( K^{i_a j_a}_{\alpha \beta} = (i_\sigma a_\alpha j_\sigma b_\beta) \) and the anti-symmetrized exchange integrals are defined as \( \hat{K}^{i_s j_a}_{\alpha \beta} = (i_\sigma a_\alpha j_\sigma b_\beta) - \delta_{\sigma \sigma'} (i_\sigma b_\beta | j_\sigma a_\alpha) \).

The orbitals satisfy the SCF equations with the matrix element of the SCF operator given by:

\[ F^\sigma_{\mu \nu} = h_{\mu \nu} + \sum_{\kappa \tau} P_{\mu \nu \kappa \tau} (\mu \nu | \kappa \tau) - a_X P^\sigma_{\mu \nu \kappa \tau} (\mu \kappa | \nu \tau) + c_{\text{DF}} \langle \mu | V_{\text{XC}}^\sigma | \nu \rangle \]  

(9.67)

The matrix elements of the XC-potential for a gradient corrected functional are: [59]

\[ \langle \mu | V_{\text{XC}}^\sigma | \nu \rangle = \int \left\{ \frac{\delta f}{\delta \rho_\alpha} (r) (\varphi_\mu \varphi_\nu) + 2 \frac{\delta f}{\delta \gamma_{\alpha \alpha}} \vec{\nabla} \rho_\alpha \vec{\nabla} (\varphi_\mu \varphi_\nu) + \frac{\delta f}{\delta \gamma_{\alpha \beta}} \vec{\nabla} \rho_\beta \vec{\nabla} (\varphi_\mu \varphi_\nu) \right\} \, dr \]  

(9.68)

The energy in equation 9.59 depends on the MO-coefficients, the PT2-amplitudes and through \( V_{\text{NN}}, V_{\text{eN}} \) (in \( h \)) and the basis functions also explicitly on the molecular geometry. Unfortunately, the energy is only stationary with respect to the PT2 amplitudes since they can be considered as having been optimized through the minimization of the Hylleraas functional:
\[ E_{PT2} = \min_t \left\{ \frac{1}{2} \sum_{i_\alpha < j_\alpha} \langle t^{i_\alpha j_\alpha} \mathbf{R}^{i_\alpha j_\alpha^+} \rangle + \frac{1}{2} \sum_{i_\beta < j_\beta} \langle t^{i_\beta j_\beta} \mathbf{R}^{i_\beta j_\beta^+} \rangle + \sum_{i_\alpha j_\alpha} \langle t^{i_\alpha j_\alpha} \mathbf{R}^{i_\alpha j_\alpha^+} \rangle + \langle D^{\alpha^+} \mathbf{F}^{\alpha^+} \rangle + \langle D^{\beta^+} \mathbf{F}^{\beta^+} \rangle \right\} \]

(9.69)

The unrelaxed PT2 difference density is defined as:

\[ D^{\alpha}_{ij} = -\frac{1}{2} \sum_{k_\alpha} \langle t^{i_\alpha k_\alpha} t^{k_\alpha j_\alpha} \rangle - \sum_{k_\beta} \langle t^{i_\beta k_\beta} t^{k_\beta j_\alpha} \rangle \]

(9.70)

\[ D^{\alpha}_{ab} = \sum_{i_\alpha < j_\alpha} t^{i_\alpha j_\alpha} t^{i_\alpha j_\alpha^+} + \sum_{i_\beta j_\alpha} t^{i_\beta j_\alpha} t^{i_\beta j_\alpha^+} \]

(9.71)

With analogous expressions for the spin-down unrelaxed difference densities. Minimization of this functional with respect to the amplitudes yields the second order perturbation energy. The derivative of the SCF part of equation 9.59 with respect to a parameter “x” is straightforward and well known. It yields:

\[ E^{x}_{SCF} = V^{x}_{NN} + \langle \mathbf{P}^{x} \rangle + \langle \mathbf{W}^{SCF} \mathbf{S}^{(x)} \rangle + \sum_\mu_\nu_\kappa_\tau \Gamma^{x}_{\mu\nu\kappa\tau} (\mu^x \kappa^x \tau^x) + \sum_\sigma \int \{ \delta f \delta \rho^{(x)} + 2 \delta f \delta \gamma^{(x)} \rho^{(x)} + \delta f \delta \gamma^{(x)} \rho^{(x)} \} \, dx \]

(9.72)

Superscript “x” refers to the derivative with respect to some perturbation “x” while a superscript in parentheses indicates that only the derivative of the basis functions with respect to “x” is to be taken. For example:

\[ \rho^{(x)}_\sigma = \sum_{\mu_\nu} P^{x}_{\mu_\nu} \left\{ \frac{\partial \varphi_\mu}{\partial x} \varphi_\nu + \frac{\partial \varphi_\nu}{\partial x} \varphi_\mu \right\} \]

\[ h^{x}_{\mu_\nu} = \left( \frac{\partial \varphi_\mu}{\partial x} \right)^x \hat{h} \left( \varphi_\nu \right) + \left( \varphi_\mu \right)^x \hat{h} \left( \frac{\partial \varphi_\nu}{\partial x} \right) \]

(9.73)

In equation 9.72, S is the overlap matrix and \( \mathbf{W}^{SCF} \) the energy weighted density:

\[ W^{SCF}_{\mu_\nu} = W^{x,SCF}_{\mu_\nu} + W^{\beta,SCF}_{\mu_\nu} = - \sum_\sigma \epsilon_{\mu_\nu}^{\alpha} \epsilon_{\alpha}^{\sigma} \epsilon_{\nu}^{\sigma} \]

(9.74)

At this point, the effective two-particle density matrix is fully separable and reads:

\[ \Gamma^{x}_{\mu\nu\kappa\tau} = \frac{1}{2} \beta^{x}_{\mu\nu} P^{x}_{\kappa\tau} - \frac{1}{2} \beta^{x}_{\mu\kappa} P^{x}_{\nu\tau} - \frac{1}{2} \beta^{x}_{\nu\tau} P^{x}_{\mu\kappa} \]

(9.75)

The derivative of the PT2 part is considerably more complex, since \( E_{PT2} \) is not stationary with respect to changes in the molecular orbitals. This necessitates the solution of the coupled-perturbed SCF (CP-SCF) equations. We follow the standard practice and expand the perturbed orbitals in terms of the unperturbed ones as:
ψ_σ^{\pi x} (r) = \sum_q U_{qp}^{\sigma x} \psi_q^{\sigma} (r) \quad (9.76)

The occupied-occupied and virtual-virtual blocks of $U$ are fixed, as usual, through the derivative of the orthonormality constraints:

$$U_{ij}^{\sigma x} = -\frac{1}{2} S_{ij}^{\sigma(x)} \quad (9.77)$$

$$U_{ab}^{\sigma x} = -\frac{1}{2} S_{ab}^{\sigma(x)} \quad (9.78)$$

$$U_{ia}^{\sigma x} = -S_{ia}^{\sigma(x)} - U_{ai}^{\sigma x} \quad (9.79)$$

Where $S_{pq}^{\sigma(x)} = \sum_{\mu\nu} c_{\mu q} c_{\nu p} S_{\mu\nu}^{\sigma(x)}$. The remaining virtual-occupied block of $U$ must be determined through the solution of the CP-SCF equations. However, as shown by Handy and Schaefer, this step is unnecessary and only a single set of CP-SCF equations (Z-vector equations) needs to be solved. To this end, one defines the Lagrangian:

$$L_\alpha^{ai} = R_\alpha (D')_{ai} + 2 \sum_{j\alpha} (a_{\alpha} c_{\alpha} | j_{\alpha} b_{\alpha}) t_{ai}^{j_{\alpha} a_{\alpha}} - 2 \sum_{j\alpha} (k_{\alpha} i_{\alpha} | j_{\alpha} b_{\alpha}) t_{bk}^{k_{\alpha} i_{\alpha}} + 2 \sum_{j\beta} (a_{\alpha} c_{\alpha} | j_{\beta} b_{\beta}) t_{ai}^{j_{\beta} a_{\alpha}} - 2 \sum_{j\beta} (k_{\alpha} i_{\alpha} | j_{\beta} b_{\beta}) t_{bk}^{k_{\alpha} i_{\alpha}} \quad (9.80)$$

An analogous equation holds for $L_\beta^{ai}$. The matrix elements of the response operator $R_\alpha (D')$ are best evaluated in the AO basis and then transformed into the MO basis. The AO basis matrix elements are given by:

$$R_\alpha (D')_{\mu\nu} = \sum_{\alpha\tau} 2 D_{\alpha\tau}^{\prime} \mu\nu \left[ (\mu\kappa|\nu\tau) + (\nu\kappa|\mu\tau) \right]$$

$$+ \sum \zeta \int \left[ \frac{\delta f}{\delta \rho_\alpha} \zeta (D') (\phi_\mu \phi_\nu) + \left( \frac{\delta f}{\delta \rho_\alpha} \zeta (D') \left( \rho_\mu \phi_\nu \phi_\alpha \right) \frac{\delta f}{\delta \rho_\beta} \zeta (D') \left( \phi_\mu \phi_\nu \right) \right] \left( \phi_\mu \phi_\nu \right) d\mathbf{r}$$

where

$$\zeta (D') = \gamma_{\alpha\alpha}^{D'} | \gamma_{\beta\beta}^{D'} | \gamma_{\alpha\beta}^{D'} \gamma_{\beta\alpha}^{D'} \quad (9.81)$$

The $\zeta$-gradient-parameters are evaluated as a mixture of PT2 difference densities and SCF densities. For example:

$$\gamma_{\alpha\alpha}^{D'} = 2 \nabla \rho_\alpha^{D'} \nabla \rho_\alpha^{D'} \quad (9.82)$$

With

$$\rho_\alpha^{D'} (r) = \sum_{\mu\nu} D_{\mu\nu}^{\alpha} \phi_\mu (r) \phi_\nu (r) \quad (9.83)$$
After having solved the Z-vector equations, all parts of the energy weighted difference density matrix can be readily calculated:

\[
\rho_P^a (r) = \sum_{\mu\nu} P_{\mu\nu}^a \phi_\mu (r) \phi_\nu (r)
\]  

(9.84)

Having defined the Lagrangian, the following CP-SCF equations need to be solved for the elements of the "Z-vector":

\[
(\varepsilon_a^\sigma - \varepsilon_i^\sigma) Z_{ai}^\sigma + R^\sigma (Z)_{ai} = -L_a^\sigma
\]  

(9.85)

The solution defines the occupied-virtual block of the relaxed difference density, which is given by:

\[
D^\sigma = D'^\sigma + Z^\sigma
\]  

(9.86)

For convenience, \(D^\sigma\) is symmetrized since it will only be contracted with symmetric matrices afterwards. After having solved the Z-vector equations, all parts of the energy weighted difference density matrix can be readily calculated:

\[
W_{ij}^{\alpha,\text{PT2}} = -\frac{1}{2} D_{ij}^{\alpha} (\varepsilon_i^\alpha + \varepsilon_j^\alpha) - \frac{1}{2} R (D)_{ij} - \sum_{k_a b_a} (i_a a_\alpha | k_a b_\alpha) t_{a_\alpha k_a}^{i_\alpha j_\alpha} - \sum_{k_j b_j} (i_a a_\alpha | k_j b_\beta) t_{b_\beta a_\alpha}^{k_j j_\alpha}
\]  

(9.87)

\[
W_{ab}^{\alpha,\text{PT2}} = -\frac{1}{2} D_{ab}^{\alpha} (\varepsilon_i^\alpha + \varepsilon_j^\alpha) - \sum_{k_a c_a} (i_a a_\alpha | j_a c_\alpha) t_{c_\alpha a_\alpha}^{i_\alpha j_\alpha} - \sum_{k_j c_j} (i_a a_\alpha | j_\alpha c_\beta) t_{j_\beta a_\alpha}^{k_\beta k_\alpha}
\]  

(9.88)

\[
W_{ai}^{\alpha,\text{PT2}} = -2 \sum_{k_a b_a} (k_a i_\alpha | j_a b_\alpha) t_{a_\alpha j_\alpha}^{k_\alpha j_\alpha} - 2 \sum_{j_\beta k_\beta} (k_\alpha i_\alpha | j_\beta b_\beta) t_{b_\beta a_\alpha}^{j_\beta k_\alpha}
\]  

(9.89)

\[
W_{ia}^{\alpha,\text{PT2}} = -\varepsilon_i^\sigma Z_{ai}^\sigma
\]  

(9.90)

Once more, analogous equations hold for the spin-down case. With the relaxed difference density and energy weighted density matrices in hand, one can finally proceed to evaluate the gradient of the PT2 part as \(W_{\text{PT2}} = W^{\alpha,\text{PT2}} + W^{\beta,\text{PT2}}\):

\[
E_{\text{PT2}} = \langle \partial H^2 \rangle + \langle W_{\text{PT2}} S (\varepsilon) \rangle + \sum_{\mu\nu\kappa\tau} \Gamma_{\mu\nu\kappa\tau}^{\text{PT2}} (\mu\nu|\kappa\tau) (x) + \sum_{\sigma} \int \left\{ \frac{\delta f}{\delta \rho^\sigma (x)} \rho^\sigma + 2 \frac{\delta f}{\delta \rho^\sigma (x)} \nabla \rho^\sigma \nabla \rho^\sigma + \frac{\delta f}{\delta \rho^\sigma (x)} \nabla \rho^\sigma \nabla \rho^\sigma \right\} dr
\]  

(9.91)

The final derivative of eq. 9.59 is of course the sum \(E_{\text{SCF}}^2 + c_{\text{PT}} E_{\text{PT2}}^2\). Both derivatives should be evaluated simultaneously in the interest of computational efficiency.

Note that the exchange-correlation contributions to the gradient take a somewhat more involved form than might have been anticipated. In fact, from looking at the SCF XC-gradient (eq. 9.72) it could have been speculated that the PT2 part of the gradient is of the same form but with \(\rho_P^{\sigma(x)}\) being replaced by \(\bar{H}\), the relaxed PT2 difference density. This is, however, not the case. The underlying reason for the added complexity...
apparent in equation 9.91 is that the XC contributions to the PT2 gradient arise from the contraction of the relaxed PT2 difference density with the derivative of the SCF operator. Since the SCF operator already contains the first derivative of the XC potential and the PT2 energy is not stationary with respect to changes in the SCF density, a response type term arises which requires the evaluation of the second functional derivative of the XC-functional. Finally, as is well known from MP2 gradient theory, the effective two-particle density matrix contains a separable and a non-separable part:

\[
\Gamma^{\text{PT2}}_{\mu\nu\kappa\tau} = D^{\alpha\alpha}_{\mu\nu} P^{\alpha\alpha}_{\kappa\tau} - D^{\beta\beta}_{\mu\nu} P^{\beta\beta}_{\kappa\tau} + \Gamma^{\text{NS}}_{\mu\nu\kappa\tau}
\]

(9.92)

\[
\Gamma^{\text{NS}}_{\mu\nu\kappa\tau} = \sum_{i,j,a,b,a,a} c^{\alpha\alpha}_{\mu i} c^{\alpha\alpha}_{\nu a} c^{\alpha\alpha}_{\kappa j} c^{\alpha\alpha}_{\tau b} a_{a}b_{b} + \sum_{i,j,a,b,a} c^{\beta\beta}_{\mu i} c^{\beta\beta}_{\nu a} c^{\beta\beta}_{\kappa j} c^{\beta\beta}_{\tau b} a_{a}b_{b} + 2 \sum_{i,j,a,b,a} c^{\alpha\alpha}_{\mu i} c^{\beta\beta}_{\nu a} c^{\beta\beta}_{\kappa j} c^{\beta\beta}_{\tau b} a_{a}b_{b}
\]

(9.93)

Thus, the non-separable part is merely the back-transformation of the amplitudes from the MO to the AO basis. It is, however, important to symmetrize the two-particle density matrix in order to be able to exploit the full permutational symmetry of the AO derivative integrals.

### 9.9.4 Orbital Optimized MP2

The MP2 energy can be regarded as being stationary with respect to the MP2 amplitudes, since they can be considered as having been optimized through the minimization of the Hylleraas functional:

\[
E_{\text{MP2}} = \min_t \left\{ 2 \langle \Psi_1 | \hat{H} | \Psi_0 \rangle + \langle \Psi_1 | \hat{H}_0 - E_0 | \Psi_1 \rangle \right\}
\]

(9.94)

\(\hat{H}\) is the 0\textsuperscript{th} order Hamiltonian as proposed by Møller and Plesset, \(\Psi_0\) is the reference determinant, \(\Psi_1\) is the first-order wave function and \(E_0 = E_{\text{HF}} = \langle \Psi_{\text{HF}} | \hat{H} | \Psi_{\text{HF}} \rangle\) is the reference energy. The quantities \(t\) collectively denote the MP2 amplitudes.

The fundamental idea of the OO-MP2 method is to not only minimize the MP2 energy with respect to the MP2 amplitudes, but to minimize the total energy additionally with respect to changes in the orbitals. Since the MP2 energy is not variational with respect to the MO coefficients, no orbital relaxation due to the correlation field is taken into account. If the reference determinant is poor, the low-order perturbative correction then becomes unreliable. This may be alleviated to a large extent by choosing better orbitals in the reference determinant. Numerical evidence for the correctness of this assumption will be presented below.

In order to allow for orbital relaxation, the Hylleraas functional can be regarded as a functional of the wavefunction amplitudes \(t\) and the orbital rotation parameters \(R\) that will be defined below. Through a suitable parameterization it becomes unnecessary to ensure orbital orthonormality through Lagrange multipliers. The functional that we minimize reads:

\[
L \{ t, R \} = E_0 [R] + 2 \langle \Psi_1 | \hat{H} | \Psi_0 \rangle + \langle \Psi_1 | \hat{H}_0 - E_0 | \Psi_1 \rangle
\]

(9.95)

\(\Psi_0\) is the reference determinant. However, it does no longer correspond to the Hartree-Fock (HF) determinant. Hence, the reference energy \(E_0[R] = \langle \Psi_0[R] | \hat{H} | \Psi_0[R] \rangle\) also changes during the variational process and is no
longer stationary with respect to the HF MO coefficients. Obviously, $E_0 [R] \geq E_{HF}$ since the HF determinant is, by construction, the single determinant with the lowest expectation value of the full Hamiltonian.

The reference energy is given as:

$$E_0 [R] = \sum_i \langle i | h | i \rangle + \frac{1}{2} \sum_{ij} \langle ij | ij \rangle$$  \hspace{1cm} (9.96)

The first-order wave function excluding single excitations is:

$$|\Psi_1 \rangle = \frac{1}{4} \sum_{ijab} \langle ij | ab \rangle_{ij}$$  \hspace{1cm} (9.97)

A conceptually important point is that Brillouin’s theorem [324] is no longer obeyed since the Fock matrix will contain off-diagonal blocks. Under these circumstances the first-order wavefunction would contain contributions from single excitations. Since the orbital optimization brings in all important effects of the singles we prefer to leave them out of the treatment. Any attempt to the contrary will destroy the convergence properties. We have nevertheless contemplated to include the single excitations perturbatively:

$$E^{(2)}_{\text{Singles}} = - \sum_{ia} |F_{ia}|^2 \frac{\epsilon_a - \epsilon_i}{\epsilon_a - \epsilon_i}$$  \hspace{1cm} (9.98)

The perturbative nature of this correction would destroy the stationary nature of the total energy and is hence not desirable. Furthermore, results with inclusion of single excitation contributions represent no improvement to the results reported below. They will therefore not be documented below and henceforth be omitted from the OO-MP2 method by default.

The explicit form of the orbital-optimized MP2 Hylleraas functional employing the RI approximation (OO-RI-MP2) becomes:

$$L_\infty [t, R] = \sum_i \langle i | h | i \rangle + \frac{1}{2} \sum_{ij} \langle ij | ij \rangle + \sum_{iaP} (ia|P) \Gamma^{iP}_{ia} + \sum_{ij} D_{ij} F_{ij} + \sum_{ab} D_{ab} F_{ab}$$  \hspace{1cm} (9.99)

with:

$$\Gamma^{iP}_{ia} = \sum_Q V_{PQ}^{-1} \sum_{jb} (Q|jb \rangle t_{ab}^{ij}$$  \hspace{1cm} (9.100)

$$\langle ia | P \rangle = \int \int \psi_i (r_1) \psi_a (r_1) \frac{1}{|r_1 - r_2|} \eta_P (r_2) dr_1 dr_2$$  \hspace{1cm} (9.101)

$$\langle P | Q \rangle = \int \int \eta_P (r_1) \frac{1}{|r_1 - r_2|} \eta_Q (r_2) dr_1 dr_2$$  \hspace{1cm} (9.102)

Here, $\{\psi\}$ is the set of orthonormal molecular orbitals and $\{\eta\}$ denotes the auxiliary basis set. $F_{pq}$ denotes a Fock matrix element.
\[ F_{pq} = \langle p | \hat{h} | q \rangle + \sum_k \langle pk || qk \rangle \] (9.103)

and it is insisted that the orbitals diagonalize the occupied and virtual subspaces, respectively:

\[ F_{ij} = \delta_{ij} F_{ii} = \delta_{ij} \varepsilon_i \]
\[ F_{ab} = \delta_{ab} F_{aa} = \delta_{ab} \varepsilon_a \] (9.104)

The MP2 like density blocks are,

\[ D_{ij} = -\frac{1}{2} \sum_{kab} t_{ik}^{ab} t_{jk}^{ab} \]
\[ D_{ab} = \frac{1}{2} \sum_{ijc} t_{ij}^{ac} t_{ij}^{bc} \] (9.105)

where the MP2 amplitudes in the case of a block diagonal Fock matrix are obtained through the condition \( \frac{\partial \mathcal{L}}{\partial \tau_{ab}} = 0 \):

\[ t_{ij}^{ab} = -\frac{\langle ij || ab \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j} \] (9.106)

The orbital changes are parameterized by an anti-Hermitian matrix \( \mathbf{R} \) and an exponential Ansatz,

\[ \mathbf{c}^{\text{new}} = \mathbf{c}^{\text{old}} \exp(\mathbf{R}) \]
\[ \mathbf{R} = \begin{pmatrix} 0 & \mathbf{R}_{ia} \\ -\mathbf{R}_{ai} & 0 \end{pmatrix} \] (9.107)

The orbitals changes to second order are,

\[ \exp(\mathbf{R}) |i\rangle = |i\rangle + \sum_a \mathbf{R}_{ai} |a\rangle - \frac{1}{2} \sum_{jb} \mathbf{R}_{ba} \mathbf{R}_{bj} |j\rangle + \ldots \]
\[ \exp(\mathbf{R}) |a\rangle = |a\rangle - \sum_i \mathbf{R}_{ai} |i\rangle - \frac{1}{2} \sum_{jb} \mathbf{R}_{aj} \mathbf{R}_{bj} |b\rangle + \ldots \] (9.108)

Through this Ansatz it is ensured that the orbitals remain orthonormal and no Lagrangian multipliers need to be introduced. The first-order expansion of the Fock operator due to the orbital rotations are:

\[ F_{pq} \begin{bmatrix} R \end{bmatrix} = F_{pq} \begin{bmatrix} 0 \end{bmatrix} + R^{(1)}_{pq} + \sum_r R_{rp} F_{rq} \begin{bmatrix} 0 \end{bmatrix} + R_{rq} F_{pr} \begin{bmatrix} 0 \end{bmatrix} \] (9.109)

\[ R^{(1)}_{pq} = \sum_{kc} R_{ck} \{ \langle pc || qk \rangle + \langle pk || qc \rangle \} \] (9.110)

The first-order energy change becomes \( \left( h_{pq} \equiv \langle p | \hat{h} | q \rangle, g_{pqrs} \equiv \langle pq || rs \rangle \right) \):
\[ L_\infty [t, R] = \sum_{ic} R_{ci} (h_{ci} + h_{ic}) + \frac{1}{2} \sum_{ij} R_{ci} (g_{cij} + g_{ijc}) + R_{cj} (g_{cij} + g_{ijc}) + 2 \sum_{ia \beta} R_{ci} (ac \beta | P) \Gamma^{\beta P}_{ia} - 2 \sum_{iak \beta} R_{ak} (ik | P) \Gamma^{\beta P}_{ia} \]
\[ - \sum_{ij} D_{ij} \left( R_{ij}^{(1)} + \sum_c (R_{cj} F_{ci} + R_{cj} F_{ic}) \right) + \sum_{ab} D_{ab} \left( R_{ab}^{(1)} - \sum_k (R_{ak} F_{kb} + R_{bk} F_{ak}) \right) \]

(9.111)

The condition for the energy functional to be stationary with respect to the orbital rotations \( \frac{\partial L_\infty [t, R]}{\partial R_{ai}} = 0 \), yields the expression for the orbital gradient and hence the expression for the OO-RI-MP2 Lagrangian.

\[ \frac{\partial L_\infty [t, R]}{\partial R_{ai}} \equiv g_{ai} = 2 F_{ai} + 2 \sum_j D_{ij} F_{aj} - 2 \sum_b D_{ab} F_{ib} + R_{ai} (D)_{ai} \]
\[ + 2 \sum_{cP} (ac | P) \Gamma^{P}_{ia} - 2 \sum_{kP} (ik | P) \Gamma^{P}_{ia} \]

(9.112)

The goal of the orbital optimization process is to bring this gradient to zero. There are obviously many ways to achieve this. In our experience, the following simple procedure is essentially satisfactory. We first build a matrix \( B \) in the current MO basis with the following structure:

\[ B_{ij} = \delta_{ij} F_{ii} \]

\[ B_{ab} = \delta_{ab} (F_{aa} + \Delta) \]

\[ B_{ai} = B_{ia} = g_{ai} \]

(9.113)

where \( \Delta \) is a level shift parameter. The occupied/occupied and virtual/virtual blocks of this matrix are arbitrary but their definition has a bearing on the convergence properties of the method. The orbital energies of the block diagonalized Fock matrix appear to be a logical choice. If the gradient is zero, the \( B \)-matrix is diagonal. Hence one obtains an improved set of orbitals by diagonalizing \( B \).

In order to accelerate convergence a standard DIIS scheme is used. However, in order to carry out the DIIS extrapolation of the \( B \)-matrix it is essential that a common basis is used that does not change from iteration to iteration. Since the \( B \)-matrix itself is defined in the molecular orbitals of the current iteration we choose as a common set of orthonormal orbitals the MOs of the HF calculation. The extrapolation is carried out in this basis and the extrapolated \( B \)-matrix is transformed back to the current set of MOs prior to diagonalization. Obviously, the same strategy can be used for orbital optimization in any method for which an orbital gradient is available.

For well behaved cases this simple scheme converges in 5-10 iterations. Transition metals and more complicated molecules may require up to 20 iterations and level shifting in order to achieve convergence.

Upon convergence the sum of the matrix \( D \) and the density of the reference determinant \( P_{\mu \nu} = \sum_i c_{\mu i} c_{\nu i} \) form the true one-particle density matrix of the OO-MP2 approach that can be used for property or gradient calculations.
9.9.5 RIJCOSX-RI-MP2 Gradients

Additional grids are introduced for the RIJCOSX-MP2 gradient. They have sensible default settings and therefore do not usually require any intervention from the user. However, a number of expert options are available, as described below.

The RIJCOSX-SCF procedure employs three grids: a small grid for the initial iterations, a medium grid for the final iterations, and a large grid to evaluate the energy more accurately after the iterations have converged. By default, the Z-vector equations are solved on a grid identical to the small grid in the SCF procedure. However, any of the other SCF grids can be selected for the CPSCF procedure in the method block as follows:

```
%method
 Z_GridX 1 # small SCF grid (default)
 2 # medium SCF grid
 3 # large SCF grid
end
```

Yet another grid is used to evaluate basis functions derivatives. Appropriate parameters are chosen through ! GridXn (in addition to the three SCF grids), but there are several ways to override this setting. Firstly, the grid can be chosen with ! MP2GridXn (n = 1–3), where the default is MP2GridX2. Secondly, the angular (GridX) and radial (IntAccX) parameters can be specified explicitly through:

```
%mp2 GridX 2 # default 2: angular Lebedev grid 110
 IntAccX 4.34 # radial grid
end
```

9.9.6 MP2 and RI-MP2 Second Derivatives

Analytical second-order properties with the MP2, RI-MP2 and double-hybrid DFT methods are available in ORCA for calculations without frozen core orbitals. Hessians can be calculated with MP2 and RI-MP2. The most expensive term in the second derivative calculations is the four-external contribution which can be evaluated either via an AO direct (default) or a semi-numerical Chain-of-Spheres approach. In case that the latter approach is chosen, appropriate grid parameters are defined through the ! GridXn settings. However, a more fine-grained specification is available to expert users as follows:

```
%mp2 KCOpt _AOBLAS # (default) AO direct with BLAS routines
 _COSX # semi-numerical evaluation using the COSX method
 KC_GridX 2 # default 2: angular Lebedev grid 110
 KC_IntAccX 3.34 # radial grid
end
```

Alternatively, all the grid settings can be defined in the %method block. The first three entries define the three SCF grids, the fourth entry the MP2 grid for basis function derivatives (refer to section 9.9.5) and the fifth entry the grid for the four-external contribution.
%method
IntAccX Acc1, Acc2, Acc3, Acc4, Acc5
GridX Ang1, Ang2, Ang3, Ang4, Ang5
UseFinalGridX true
end

9.9.7 Local MP2

In analogy to the domain-based local pair natural orbital coupled-cluster methods, there is also a local linear scaling version of MP2 (DLPNO-MP2) implemented in ORCA. Its default thresholds are chosen to reproduce about 99.9\% of the total RI-MP2 correlation energy, resulting in an accuracy of a fraction of 1 kcal/mol for energy differences. The theory has been described in the literature. [75, 76]

Further information of local correlation methods in ORCA can be found in section 9.10.4. The local MP2 method becomes truly beneficial for very large molecules and can be used to compute energies of systems containing several hundred atoms. Figure 9.2 shows the scaling behavior for linear alkane chains. Note that this represents an idealized situation. For three-dimensional molecules the crossover with canonical RI-MP2 is going to occur at a later point.

![Figure 9.2: Scaling of the DLPNO-MP2 method with default thresholds for linear alkane chains in def2-TZVP basis. Shown are also the times for the corresponding Hartree-Fock calculations with RIJCOSX and for RI-MP2.](image)

In the following, the most important design principles of the RHF-DLPNO-MP2 are pointed out.

- Unlike in the 2013 version of the DLPNO methodology, domains are selected by means of the differential overlap $\sqrt{\int i^2(r)\tilde{\mu}^2(r)dr}$ between localized MOs $i$ and projected atomic orbitals (PAOs) $\tilde{\mu}'$ which are normalized to unity. The default value for the corresponding cutoff is $T_{\text{CutDO}} = 10^{-2}$. 
• MP2 amplitudes for each pair of localized orbitals $ij$ are expressed in a basis of pair natural orbitals (PNOs) $\tilde{a}_{ij}$. PNOs are obtained from diagonalization of an approximate, “semicanonical” MP2 pair density $D^{ij}$. Only PNOs with an occupation number $> T_{\text{CutPNO}}$ are retained, with a default value of $T_{\text{CutPNO}} = 10^{-8}$ for DLPNO-MP2. The pair density is given by:

$$D^{ij} = T^{ij}T^{ij\dagger} + T^{ij\dagger}T^{ij}$$

where

$$T^{ij} = (1 + \delta_{ij})^{-1} \left( 4T^{ij} - 2T^{ij\dagger} \right)$$

(9.114)

• Since the occupied block of the Fock matrix is not diagonal in the basis of localized orbitals, the MP2 amplitudes $T^{ij}$ are obtained by solving the following set of residual equations iteratively (where subscripts of PNOs have been dropped):

$$R^{ij}_{ab} = \left( \tilde{a}_{i} | \tilde{b}_{j} \right) + \left( \tilde{e}_{i} + \tilde{e}_{j} - F_{ii} - F_{jj} \right) T^{ij}_{ab} - \sum_{k \neq i} \sum_{cd} F_{ik} S^{ij}_{ac} T_{cd}^k S^{kj}_{db} - \sum_{k \neq j} \sum_{cd} F_{kj} S^{ij}_{ac} T_{cd}^k S^{kj}_{db} = 0$$

(9.115)

• The largest part of the error relative to canonical RI-MP2 is controlled by these two thresholds, which should be adequate for most applications. If increased accuracy is needed (e.g. for studying weak interactions), tighter truncation criteria can be invoked by means of the ! TightPNO keyword. Conversely, a less accurate but faster calculation can be performed with the ! LoosePNO keyword. For more details refer to table 9.9.

• Fitting domains are determined by means of orbital Mulliken populations with a threshold $T_{\text{CutMKN}} = 10^{-3}$. This threshold results in an error contribution that is typically about an order of magnitude smaller than the overall total energy deviation from RI-MP2.

• Prior to performing the local MP2 calculation, pairs of localized molecular orbitals $ij$ are prescreened using an MP2 energy estimate with a dipole approximation, and the differential overlap integral between orbitals $i$ and $j$. This procedure has been chosen conservatively and leads to minimal errors.

• Residual evaluation can be accelerated significantly by neglecting terms with associated Fock matrix elements $F_{ik}$ and $F_{kj}$ below $F_{\text{Cut}} = 10^{-5}$. Errors resulting from this approximation are typically below $1 \mu E_h$, and thus negligible.

• Sparsity of the MO and PAO coefficient matrices in atomic orbital basis is exploited to accelerate integral transformations for large systems. Truncation of the coefficients is controlled by a parameter $T_{\text{CutC}}$. Neglect of these coefficients has to be performed very carefully in order to avoid uncontrollable errors. The threshold has been chosen so as to make the errors essentially vanish.

• By default, core orbitals are frozen in the MP2 module. However, if core orbitals are subject to an MP2 treatment, it is necessary to use a tighter PNO cutoff for pairs involving at least one core orbital. For this purpose core orbitals and valence orbitals are localized separately. The cutoff for pairs involving core orbitals is given by $T_{\text{CutPNO}} \times T_{\text{ScalePNOCore}}$, where $T_{\text{ScalePNOCore}} = 0.01$ by default. For more details refer to section 9.10.4.1.

The UHF-DLPNO-MP2 implementation differs somewhat from the RHF case, particularly regarding construction of PNOs, as described below.

• A separate set of PAOs $\tilde{\mu}_{\alpha}$ and $\tilde{\mu}_{\beta}$ is obtained for each spin case.
For \( \alpha \beta \) pairs, separate pair domains of PAOs need to be determined for each spin case. For example, the \( \alpha \) pair domain \([i_{\alpha}, j_{\alpha}]_{\alpha}\) is the union of the domains \([i_{\alpha}]_{\alpha}\) and \([j_{\alpha}]_{\alpha}\). The latter domain \([j_{\beta}]_{\alpha}\) is determined by evaluating the spatial differential overlap between \(j_{\beta}\) and \(\alpha\)-spin PAOs \(\tilde{\mu}_\alpha\).

One set of PNOs is needed for each same-spin pair. Opposite-spin pairs require a set of \(\alpha\)-PNOs and a set of \(\beta\)-PNOs. In total this results in four types of PNO sets.

Semicanonical amplitudes are obtained as follows, where \(i, j\) are spin orbitals and \(\tilde{\mu}\tilde{\nu}\) are nonredundant spin PAOs.

\[
T^{ij}_{\mu\nu} = -\frac{\langle ij|\tilde{\mu}\tilde{\nu}\rangle}{\varepsilon_\mu + \varepsilon_\nu - F_{ii} - F_{jj}}
\]

(9.116)

In the same-spin case \(\langle i_{\alpha} j_{\alpha}|\tilde{\mu}_\alpha \tilde{\nu}_\alpha\rangle = \langle ij|\tilde{\mu}\tilde{\nu}\rangle - \langle ij|\tilde{\nu}\tilde{\mu}\rangle\), while in the opposite-spin case \(\langle i_{\alpha} j_{\beta}|\tilde{\mu}_\alpha \tilde{\nu}_\beta\rangle = \langle ij|\tilde{\mu}\tilde{\nu}\rangle\).

For opposite-spin pairs, \(\alpha\)-PNOs and \(\beta\)-PNOs are obtained from diagonalisation of \(T^{ij}T^{ji}\) and \(T^{ij}T^{ji}\), respectively. For same-spin pairs the pair density is symmetric and only one set of PNOs is needed. PNOs are discarded whenever the absolute value of their natural occupation number if below the threshold \(T_{\text{CutPNO}}\).

The following residual equations need to be solved for the cases \(R^{i_{\alpha} j_{\alpha}}_{a_{\alpha} b_{\alpha}}\), \(R^{i_{\beta} j_{\beta}}_{a_{\beta} b_{\beta}}\) and \(R^{i_{\alpha} j_{\beta}}_{a_{\alpha} b_{\beta}}\):

\[
R^{i_{\alpha\beta}}_{a_{\alpha} b_{\beta}} = \left\langle ij \right| \hat{a}\hat{b} \right\rangle + (\varepsilon_\alpha + \varepsilon_\beta - F_{ii} - F_{jj}) T^{ij}_{\alpha\beta} - \sum_{k \neq i_\alpha} \sum_{c_{\alpha} d_{\alpha}} F_{ik} S^{i_{\alpha\beta}}_{\alpha c} T^{kj}_{\beta d} S^{k_{\alpha\beta}}_{\alpha d} - \sum_{k \neq j_\beta} \sum_{c_{\alpha} d_{\alpha}} F_{kj} S^{i_{\alpha\beta}}_{\alpha c} T^{ik}_{\beta d} S^{k_{\alpha\beta}}_{\alpha d} = 0
\]

(9.117)

Most approximations are consistent between the RHF and UHF schemes, with the exception of the PNO truncation. This means that results would match for closed-shell molecules with \(T_{\text{CutPNO}}\) = 0 (provided both Hartree-Fock solutions are identical), but this is not true whenever the PNO space is truncated. Therefore, UHF-DLPNO-MP2 energies should only be compared to other UHF-DLPNO-MP2 energies, even for closed-shell species.

We found it necessary to use tighter PNO thresholds for UHF-DLPNO-MP2. With NormalPNO settings the default value is \(T_{\text{CutPNO}} = 10^{-9}\). For an overview of accuracy settings refer to table 9.9. As in the RHF implementation, the PNO cutoff for pairs involving core orbitals is scaled with \(T_{\text{ScalePNO CORE}}\).

<table>
<thead>
<tr>
<th>Setting</th>
<th>(T_{\text{CutDO}})</th>
<th>(T_{\text{CutPNO (RHF)}})</th>
<th>(T_{\text{CutPNO (UHF)}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoosePNO</td>
<td>(2 \times 10^{-2})</td>
<td>(10^{-7})</td>
<td>(10^{-8})</td>
</tr>
<tr>
<td>NormalPNO</td>
<td>(1 \times 10^{-2})</td>
<td>(10^{-8})</td>
<td>(10^{-9})</td>
</tr>
<tr>
<td>TightPNO</td>
<td>(5 \times 10^{-3})</td>
<td>(10^{-9})</td>
<td>(10^{-10})</td>
</tr>
</tbody>
</table>

Options specific to DLPNO-MP2 are listed below.
9.10 The Single Reference Correlation Module

ORCA features a variety of single-reference correlation methods for single point energies (restricted to a RHF or RKS determinant in the closed-shell case and a UHF or UKS determinant in the open-shell case; quasi-restricted orbitals (QROs) [161] are also supported in the open-shell case). They are all fairly expensive but maybe be used in order to obtain accurate results in the case that the reference determinant is a good starting point for the expansion of the many-body wavefunction. The module is called orca_mdci for “matrix driven configuration interaction”. This is a rather technical term to emphasize that if one wants to implement these methods (CCSD, QCISD etc.) efficiently, one needs to write them in terms of matrix operations which pretty much every computer can drive at peak performance. Let us first briefly describe the theoretical background of the methods that we have implemented in ORCA.

9.10.1 Theory

We start from the full CI hierarchy in which the wavefunction is expanded as:
\[ |\Psi\rangle = |0\rangle + |S\rangle + |D\rangle + |T\rangle + |Q\rangle + ... \]  

(9.118)

where \(|0\rangle\) is a single-determinant reference and S, D, T, Q, . . . denote the single, double, triple quadruple and higher excitations relative to this determinant at the spin-orbital level. As usual, labels \(i, j, k, l\) refer to occupied orbitals in \(|0\rangle\), \(a, b, c, d\) to unoccupied MOs and \(p, q, r, s\) to general MOs. The action of the second quantized excitation operators \(a_i^\dagger a_i\) on \(|0\rangle\) lead to excited determinants \(|\Phi_a^i\rangle\) that enter \(|\Psi\rangle\) with coefficients \(C_i^a\). The variational equations are:

\[
\langle \Phi_i^a | H - E_0 | 0 + S + D \rangle = E_CC_a^i - \langle \Phi_i^a | H - E_0 | T \rangle
\]  

(9.119)

\[
\langle \Phi_{ij}^{ab} | H - E_0 | 0 + S + D \rangle = E_CC_{ab}^{ij} - \langle \Phi_{ij}^{ab} | H - E_0 | T + Q \rangle
\]  

(9.120)

Further equations coupling triples with singles through pentuples etc.

The total energy is the sum of the reference energy \(E_0 = \langle 0|H|0 \rangle\) and the correlation energy

\[ E_C = \langle 0|H|S + D \rangle \]  

(9.121)

which requires the exact singles- and doubles amplitudes to be known. In order to truncate the series to singles- and doubles one may either neglect the terms containing the higher excitations on the right hand side (leading to CISD) or approximate their effect thereby losing the variational character of the CI method (CCSD, QCISD and CEPA methods). Defining the one- and two-body excitation operators as \(\hat{C}_1 = \sum_i C_i^a a_i^\dagger\), \(\hat{C}_2 = \frac{1}{4} \sum_{ijab} C_{ij}^{ab} a_i^\dagger a_j^\dagger\) one can proceed to approximate the triples and quadruples by the disconnected terms:

\[ |T\rangle = \hat{C}_1 \hat{C}_2 |0\rangle \]  

(9.122)

\[ |Q\rangle = \frac{1}{2} \hat{C}_2^2 |0\rangle \]  

(9.123)

As is well known, the CCSD equations contain many more disconnected contributions arising from the various powers of the \(\hat{C}_1\) operator (if one would stick to CC logics one would usually label the cluster amplitudes with \(t_i^a, t_{ij}^{ab}\) . . . and the \(n\)-body cluster operators with \(T_n\); we take a CI point of view here). In order to obtain the CEPA type equations from (9.119-9.123), it is most transparent to relabel the singles and doubles excitations with a compound label \(P\) for the internal indices \((i)\) or \((ij)\) and \(x\) for \((a)\) or \((ab)\). Then, the approximations are as follows:

\[
\frac{1}{2} \langle \Phi_{x}^P | (H - E_0) \hat{C}_2^2 | 0 \rangle = \frac{1}{2} \sum_{QRyz} C_y^Q C_z^R \left\langle \Phi_{x}^P | H - E_0 | \Phi_{PQ}^{yz} \right\rangle
\]  

(9.124)

\[
\approx C_x^P \sum_{Qy} C_y^Q \left\langle \Phi_{x}^P | H | \Phi_{PQ}^{xy} \right\rangle
\]  

(9.125)
Here the second line contains the approximation that only the terms in which either \( Q_y \) or \( R_z \) are equal to \( P_x \) are kept (this destroys the unitary invariance) and the fourth line contains the approximation that only “exclusion principle violating” (EPV) terms of internal labels are considered. The notation \( Q_y \cup P_x \) means “\( Q_y \) joint with \( P_x \)” (containing common orbital indices) and \( \varepsilon_Q \) is the pair correlation energy. The EPV terms must be subtracted from the correlation energy since they arise from double excitations that are impossible due to the fact that an excitation out of an occupied or into an empty orbital of the reference determinant has already been performed. Inserting eq. 9.127 into eq. 9.120 \( C_P^x E_C \) cancels and effectively is replaced by the “partial correlation energy” \( \sum_{Q_y \cup P_x} \varepsilon_Q \).

The resulting equations thus have the appearance of a diagonally shifted (“dressed”) CISD equation

\[
\langle \Phi_x | H - E_0 + \Delta | 0 + S + D \rangle = 0.
\]

If the second approximation mentioned above is avoided Malrieu’s (SC)\(^2\)-CISD arises. [179, 280–283] Otherwise, one obtains CEPA/3 with the shift:

\[
- \Delta_{ij} = \sum_k (\varepsilon_{ik} + \varepsilon_{jk}) - \varepsilon_{ij}
\]

CEPA/2 is obtained by \(- \Delta_{ab} = \varepsilon_{ij} \) and CEPA/1 is the average of the CEPA/2 and CEPA/3. As mentioned by Ahlrichs, [325] no consensus appears to exist in the literature for the appropriate shift on the single excitations. If one proceeds straightforwardly in the same way as above, one obtains:

\[
\langle \Phi^a_i | (H - E_0) \hat{C}_1 \hat{C}_2 | 0 \rangle \approx C_a^i \left( E_C - 2 \sum_k \varepsilon_{ik} \right)
\]

as the appropriate effect of the disconnected triples on the singles. In has been assumed here that only the singles \( | \Phi^a_i \rangle \) in \( \hat{C}_1 \) contribute to the shift. If \( | 0 \rangle \) is a HF determinant, the effect of the disconnected triples in the doubles projection vanishes under the same CEPA approximations owing to Brillouin’s theorem. Averaged CEPA models are derived by assuming that all pair correlation energies are equal (except \( \varepsilon_{ii} = 0 \). As previously discussed by Gdanitz [326], the averaging of CEPA/1 yields \( \frac{2}{n} E_C \) and CEPA/3 \( E_C \frac{4n - 6}{n(n-1)} \) where \( n \) is the number of correlated electrons. These happen to be the shifts used for the averaged coupled-pair functional (ACPF [327]) and averaged quadratic coupled-cluster (AQCC [328]) methods respectively. However, averaging the singles shift of eq. 9.129 gives \( \frac{4}{n} E_C \). The latter is also the leading term in the expansion of the AQCC shift for large \( n \). In view of the instability of ACPF in certain situations, Gdanitz has proposed to use the AQCC shift for the singles and the original ACPF shift for the doubles and called his new method ACPF/2 [327]. Based on what has been argued above, we feel that it would be most consistent with the ACPF approach to simply use \( \frac{4}{n} E_C \) as the appropriate singles shift. We refer to this as NACPF.

It is readily demonstrated that the averaged models may be obtained by a variation of the modified correlation energy functional:

\[
\begin{align*}
&= C_{Q_y}^x \sum_{Q_y} C_{Q_y} \left( \langle 0 | H | \Phi_y^Q \rangle - C_{Q_y}^x \sum_{Q_y \cup P_x} C_{Q_y} \langle 0 | H | \Phi_y^Q \rangle \right) \\
&\approx C_{Q_y}^x \left( E_C - \sum_{Q_y \cup P_x} \varepsilon_Q \right)
\end{align*}
\]
with $g_S$ and $g_D$ being the statistical factors $\frac{4}{n} + \frac{2}{n} + \frac{4n-6}{n(n-1)}$, as appropriate for the given method. Thus, unlike the CEPA models, the averaged models fulfill a stationarity principle and are unitarily invariant. However, if one thinks about localized internal MOs, it appears evident that the approximation of equal pair energies must be one of rather limited validity and that a more detailed treatment of the electron pairs is warranted. Maintaining a stationarity principle while providing a treatment of the pairs that closely resembles that of the CEPA methods was achieved by Ahlrichs and co-workers in an ingenious way with the development of the CPF method [80]. In this method, the correlation energy functional is written as:

$$E_C = \frac{\langle 0 + S + D | H - E_0 | 0 + S + D \rangle}{1 + g_s \langle S | S \rangle + g_D \langle D | D \rangle}$$

(9.130)

with $g_s$ and $g_D$ being the statistical factors $\frac{4}{n} + \frac{2}{n} + \frac{4n-6}{n(n-1)}$, as appropriate for the given method. Thus, unlike the CEPA models, the averaged models fulfill a stationarity principle and are unitarily invariant. However, if one thinks about localized internal MOs, it appears evident that the approximation of equal pair energies must be one of rather limited validity and that a more detailed treatment of the electron pairs is warranted. Maintaining a stationarity principle while providing a treatment of the pairs that closely resembles that of the CEPA methods was achieved by Ahlrichs and co-workers in an ingenious way with the development of the CPF method [80]. In this method, the correlation energy functional is written as:

$$E_C = 2 \sum_{Pz} \frac{\langle \Phi_p^z | H | 0 \rangle}{N_P} + \sum_{PQxy} \frac{\langle \Phi_p^x | H - E_0 | \Phi_q^y \rangle}{\sqrt{N_P N_Q}}$$

(9.131)

with

$$N_P = 1 + \sum_Q T_{PQ} \sum_y (C_Q^y)^2$$

(9.132)

The topological matrix for pairs $P=(ij)$ and $Q=(kl)$ is chosen as: [226]

$$T_{PQ} = \frac{\delta_{ik}}{2n_i} + \frac{\delta_{il}}{2n_j}$$

(9.133)

with $n_i$ being the number of electrons in orbital $i$ in the reference determinant. The singles out of orbital $i$ are formally equated with $P=(ii)$. At the spin-orbital level, $n_i = 1$, for closed shells $n_i = 2$. Using the same topological matrix in $\Delta P = \sum_Q T_{PQ} \epsilon_Q$, one recovers the CEPA/1 shifts for the doubles in eq. 9.129. It is straightforward to obtain the CPF equivalents of the other CEPA models by adjusting the $T_{PQ}$ matrix appropriately. In our program, we have done so and we refer below to these methods as CPF/1, CPF/2 and CPF/3 in analogy to the CEPA models (CPF/1 ≡ CPF). In fact, as discussed by Ahlrichs and co-workers, variation of the CPF-functional leads to equations that very closely resemble the CEPA equation and can be readily implemented along the same lines as a simple modification of a CISD program. Ahlrichs et al. argued that the energies of CEPA/1 and CPF/1 should be very close. We have independently confirmed that in the majority of cases, the total energies predicted by the two methods differ by less than 0.1 mEh.

An alternative to the CPF approach which is also based on variational optimization of an energy functional is the VCEPA method [329]. The equations resulting from application of the variational principle to the VCEPA functional are even closer to the CEPA equations than for CPF so that the resulting energies are practically indistinguishable from the corresponding CEPA values. The VCEPA variants are referred to as VCEPA/1, VCEPA/2, and VCEPA/3 in analogy to CEPA and CPF. A strictly size extensive energy functional (SEOI) which is invariant with respect to unitary transformations within the occupied and virtual orbital subspaces is also available [330] (an open-shell version is not implemented yet).

Again, a somewhat critical point concerns the single excitations. They do not account for a large fraction of the correlation energy. However, large coefficients of the single excitations lead to instability and deterioration
of the results. Secondly, linear response properties are highly dependent on the effective energies of the singles and their balanced treatment is therefore important. Since the CEPA and CPF methods amount to shifting down the diagonal energies of the singles and doubles, instabilities are expected if the effective energy of an excitation approaches the reference energy of even falls below it. In the CPF method this would show up as denominators $N_P$ that are too small. The argument that the CPF denominators are too small has led Chong and Langhoff to the proposal of the MCPF method which uses a slightly more elaborate averaging than $(N_P N_Q)^{1/2}$ [79]. However, their modification was solely based on numerical arguments rather than physical or mathematical reasoning. In the light of eq. 9.129 and the performance of the NACPF, it appears to us that for the singles one should use twice the $T_{PQ}$ proposed by Ahlrichs and co-workers. The topological matrix $T_{PQ}$ is modified in the following way for the (very slightly) modified method to which we refer to as NCPF/1:

$$T_{ij,kl} = \frac{\delta_{ik} + \delta_{il}}{2n_i} + \frac{\delta_{jk} + \delta_{jl}}{2n_j}$$  \hspace{1cm} (9.134)

$$T_{ij,k} = 0$$  \hspace{1cm} (9.135)

$$T_{i,kl} = 2\frac{\delta_{ik} + \delta_{il}}{n_i}$$  \hspace{1cm} (9.136)

$$T_{i,k} = 0$$  \hspace{1cm} (9.137)

(note that $T_{PQ} \neq T_{QP}$ for this choice). Thus, the effect of the singles on the doubles is set to zero based on the analysis of the CEPA approximations and the effect of the singles on the singles is also set to zero. This is a sensible choice since the product of two single excitations is a double excitation which is already included in the SD space and thus none of them can belong to the outer space. It is straightforward to adapt this reasoning about the single excitations to the CEPA versions as well as to NCPF/2 and NCPF/3.

The aforementioned ambiguities arising from the use of single excitations in coupled-pair methods can be avoided by using correlation-adapted orbitals instead of Hartree-Fock orbitals thus eliminating the single excitations. There are two alternatives: (a) Brueckner orbitals and (b) optimized orbitals obtained from the variational optimization of the electronic energy with respect to the orbitals. Both approaches have already been used for the coupled-cluster doubles (CCD) method [331,332] and later been extended to coupled-pair methods [333]. In the case of CCD, orbital optimization requires the solution of so-called Λ (or Z vector) equations [334]. There is, however, a cheaper alternative approximating the Z vector by a simple analytical formula [335].

Furthermore, the parametrized coupled-cluster (pCCSD) method of Huntington and Nooijen [336], which combines the accuracy of coupled-pair type methods for (usually superior to CCSD, at least for energies and energy differences) with the higher stability of the coupled-cluster methods, is an attractive alternative. Comprehensive numerical tests [337] indicate that particularly pCCSD(-1,1,1) (or pCCSD/1a) and pCCSD (-1.5,1,1) (or pCCSD/2a) have great potential for accurate computational thermochemistry. These methods can be employed by adding the “simple” keywords pCCSD/1a or pCCSD/2a to the first line of input. As this method – although it has been rather extensively used in the past – is not implemented in ORCA. We recommend to use our NCPF/1 instead.
mentioned in section 8.1.3.8, the LPNO variants of the pCCSD methods are also available for RHF and UHF references via usage of the simple keywords LPNO-pCCSD/1a and LPNO-pCCSD/2a.

9.10.2 Closed-Shell Equations

Proceeding from spin-orbitals to the spatial orbitals of a closed-shell determinant leads to the actual working equations of this work. Saebo, Meyer and Pulay have exploited the generator state formalism to arrive at a set of highly efficient equations for the CISD problem [94]. A similar set of matrix formulated equations for the CCSD and QCISD cases has been discussed by Werner and co-workers [338] and the MOLPRO implementation is widely recognized to be particularly efficient. Equivalent explicit equations for the CISD and CCSD methods were published by Scuseria et al. [339].

The doubles equations for the residual “vector” \( \sigma \) are (\( i \leq j, \) all \( a, b \)):

\[
\sigma_{ab}^{ij} = K_{ab}^{ij} + K (C_{ab}^{ij}) + \{F^V C_{ab}^{ij} + C_{ab}^{ij} F^V\} + \sum_k \left\{ F_{jk} C_{ab}^{ik} + F_{ik} C_{ab}^{kj} \right\} + \sum_{kl} K_{kl}^{ij} C_{ab}^{kl} + \sum_k \left\{ (2C_{ik} - C_{ik}^{k+}) (K_{kj}^{k+} - \frac{1}{2} J_{kj}^{k+}) + (K_{ik}^{k} - \frac{1}{2} J_{ik}^{k}) (2C_{kj}^{k} - C_{kj}^{k+}) \right\} + C_{a}^{ij} F_{b}^{j} + C_{b}^{ij} F_{a}^{i} - \sum_k \left\{ K_{ka}^{ij} C_{b}^{kj} + K_{kb}^{ij} C_{a}^{k} + \{ K_{ia}^{k} C_{b}^{ij} + K_{ja}^{k} C_{a}^{ij} \} \right\} - \Delta_{ij} C_{ab}^{ij} \tag{9.138}
\]

The singles equations are:

\[
\sigma_{a}^{i} = F_{a}^{i} + \{F^V C_{a}^{i}\} + \sum_j F_{ij} C_{a}^{j} - \sum_{jk} \left\{ 2K_{jk}^{ik} - J_{jk}^{ik} \right\} C_{ba}^{k} + \sum_j \left\{ (2K_{ij} - J_{ij}) C_{ij}^{j} + F_{j}^{j} (2C_{ij}^{j} - C_{ij}) + \{ (2K_{ia} - K_{ia}^{k+}) C_{ij}^{j+} \} \right\} - \Delta_{a} C_{a}^{i} \tag{9.139}
\]

The following definitions apply:

\[
K (C_{ab}^{ij}) = \sum_{cd} (ac|bd) C_{cd}^{ij} \tag{9.140}
\]

\[
K_{pq}^{rs} = (pr|qs) \tag{9.141}
\]

\[
J_{pq}^{rs} = (pq|rs) \tag{9.142}
\]

\[
\langle AB \rangle = \sum_{pq} A_{pq} B_{qp} \tag{9.143}
\]

\(^{16}\)Our coupled-cluster implementation is largely based on this nice paper. The equations there have been extensively verified to be correct.
The two-electron integrals are written in (11|22) notation and $\mathbf{F}$ is the closed-shell Fock operator with $\mathbf{F}^V$ being its virtual sub-block. We do not assume the validity of Brillouin's theorem. The amplitudes $C_{ab}^i$, $C_{ab}^{ij}$ have been collected in vectors $\mathbf{C}^i$ and matrices $\mathbf{C}^{ij}$ wherever appropriate. The shifts $\Delta^i$ and $\Delta^{ij}$ are dependent on the method used and are defined in Table 9.10 for each method implemented in ORCA.

Table 9.10: Summary of the diagonal shifts used in various singles- and doubles methods discussed in this chapter. The quantities $\epsilon_i$ and $\epsilon_{ij}$ are the correlation energy increments brought about by the single- and the double excitations respectively. The partial denominators for the CPF type methods $N_i$ and $N_{ij}$ are specified in eq. 9.132.

<table>
<thead>
<tr>
<th>Method</th>
<th>Doubles Shift</th>
<th>Singles Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISD</td>
<td>$E_C$</td>
<td>$E_C$</td>
</tr>
<tr>
<td>CEPA/0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CEPA/1</td>
<td>$\frac{1}{2}(\epsilon_i + \epsilon_j) + \frac{1}{2} \sum_k (\epsilon_{ik} + \epsilon_{jk})$</td>
<td>$\frac{1}{2} \epsilon_i + \frac{1}{2} \sum_k \epsilon_{ik}$</td>
</tr>
<tr>
<td>CEPA/2</td>
<td>$\delta_{ij} \epsilon_i + \epsilon_{ij}$</td>
<td>$\epsilon_i + \epsilon_{ij}$</td>
</tr>
<tr>
<td>CEPA/3</td>
<td>$(\epsilon_i + \epsilon_j) - \delta_{ij} \epsilon_i - \epsilon_{ij} + \frac{1}{2} \sum_k (\epsilon_{ik} + \epsilon_{jk})$</td>
<td>$\epsilon_i + \sum_k \epsilon_{ik}$</td>
</tr>
<tr>
<td>NCEPA/1</td>
<td>$\frac{1}{4} \sum_k (\epsilon_{ik} + \epsilon_{jk})$</td>
<td>$\epsilon_{ii} + \sum_k \epsilon_{ik}$</td>
</tr>
<tr>
<td>NCEPA/2</td>
<td>$\epsilon_{ij} - \epsilon_{ij} + \frac{1}{2} \sum_k (\epsilon_{ik} + \epsilon_{jk})$</td>
<td>$2\epsilon_{ii}$</td>
</tr>
<tr>
<td>NCEPA/3</td>
<td>$\frac{1}{2} \sum_k (\epsilon_{ik} + \epsilon_{jk})$</td>
<td>$2 \sum_k \epsilon_{ik}$</td>
</tr>
<tr>
<td>CPF/1</td>
<td>$N_{ij} \left{ \frac{1}{2} \left( \frac{\epsilon_i}{N_i} + \frac{\epsilon_j}{N_j} \right) + \frac{1}{2} \sum_k \left( \frac{\epsilon_{ik}}{N_{ik}} + \frac{\epsilon_{jk}}{N_{jk}} \right) \right}$</td>
<td>$N_i \left{ \frac{\epsilon_i}{N_i} + \frac{1}{2} \sum_k \frac{\epsilon_{ik}}{N_{ik}} \right}$</td>
</tr>
<tr>
<td>CPF/2</td>
<td>$N_{ij} \left{ \delta_{ij} \frac{\epsilon_i}{N_i} + \frac{\epsilon_{ij}}{N_{ij}} \right}$</td>
<td>$N_i \left{ \frac{\epsilon_i}{N_i} + \sum_k \frac{\epsilon_{ik}}{N_{ik}} \right}$</td>
</tr>
<tr>
<td>CPF/3</td>
<td>$N_{ij} \left{ \frac{\epsilon_i}{N_i} (1 - \delta_{ij}) + \frac{\epsilon_j}{N_j} - \frac{\epsilon_{ij}}{N_{ij}} + \frac{1}{2} \sum_k \left( \frac{\epsilon_{ik}}{N_{ik}} + \frac{\epsilon_{jk}}{N_{jk}} \right) \right}$</td>
<td>$N_i \left{ \frac{\epsilon_i}{N_i} + \sum_k \frac{\epsilon_{ik}}{N_{ik}} \right}$</td>
</tr>
<tr>
<td>NCPF/1</td>
<td>$\frac{1}{2} N_{ij} \sum_k \left( \frac{\epsilon_{ik}}{N_{ik}} + \frac{\epsilon_{jk}}{N_{jk}} \right)$</td>
<td>$N_i \left{ \frac{\epsilon_i}{N_i} + \sum_k \frac{\epsilon_{ik}}{N_{ik}} \right}$</td>
</tr>
<tr>
<td>NCPF/2</td>
<td>$N_{ij} \frac{\epsilon_{ij}}{N_{ij}}$</td>
<td>$2N_i \frac{\epsilon_{ii}}{N_i}$</td>
</tr>
<tr>
<td>NCPF/3</td>
<td>$N_{ij} \left{ - \frac{\epsilon_{ij}}{N_{ij}} + \frac{1}{2} \sum_k \left( \frac{\epsilon_{ik}}{N_{ik}} + \frac{\epsilon_{jk}}{N_{jk}} \right) \right}$</td>
<td>$2N_i \sum_k \frac{\epsilon_{ik}}{N_{ik}}$</td>
</tr>
<tr>
<td>ACPF</td>
<td>$\frac{\epsilon_i}{N_i} E_C$</td>
<td>$\frac{\epsilon_i}{N_i} E_C$</td>
</tr>
<tr>
<td>ACPF/2</td>
<td>$\frac{\epsilon_i}{N_i} E_C$</td>
<td>$\frac{1}{2} \frac{\epsilon_i}{N_i} E_C$</td>
</tr>
<tr>
<td>NACPF</td>
<td>$\frac{\epsilon_i}{N_i} E_C$</td>
<td>$\frac{1}{2} \frac{\epsilon_i}{N_i} E_C$</td>
</tr>
<tr>
<td>AQCC</td>
<td>$1 - \frac{\left( n - 3 \right) \left( n - 2 \right)}{n \left( n - 1 \right)} E_C$</td>
<td>$1 - \frac{\left( n - 3 \right) \left( n - 2 \right)}{n \left( n - 1 \right)} E_C$</td>
</tr>
</tbody>
</table>

The QCISD method requires some slight modifications. We found it most convenient to think about the effect of the nonlinear terms as a “dressing” of the integrals occurring in equations 9.138 and 9.139. This attitude is close to the recent arguments of Heully and Malrieu and may even open interesting new routes towards the calculation of excited states and the incorporation of connected triple excitations. [340] The dressed integrals are given by:

$$ F_{ik} = F_{ik} + \sum_l \left( \mathbf{C}^{il} \left( 2\mathbf{K}^{kl} - \mathbf{K}^{kl+i} \right) \right) $$

(9.144)
\[ F_{ab} = F_{ab} - \sum_{kl} \{ C^{kl} (2K^{kl} - K^{kl+}) \}_{ab} \] (9.145)

\[ \bar{F}_{kc} = F_{kc} + \sum_l (2K^{kl} - K^{kl+}) C^l \] (9.146)

\[ \bar{K}^{\alpha ij} = K^{\alpha ij} + \langle K^{\alpha ij} T^{\alpha ij} \rangle \] (9.147)

\[ \bar{K}_{ij} = K_{ij} + \sum_k \{ C^{ik} \left( K^{kj} - \frac{1}{2} K^{jk} \right) + C^{ki} K^{kj} \} \] (9.148)

\[ \bar{J}_{ij} = J_{ij} + \sum_k \{ C^{kij} K^{kij} \} \] (9.149)

The CCSD method can be written in a similar way but requires 15 additional terms that we do not document here. They may be taken conveniently from our paper about the LPNO-CCSD method [82].

A somewhat subtle point concerns the definition of the shifts in making the transition from spin-orbitals to spatial orbitals. For example, the CEPA/2 shift becomes in the generator state formalism:

\[ -\langle \tilde{\Phi}_{ij} | \Delta | \Psi \rangle = C_{ab} \left( \frac{1}{3} \zeta^{\alpha i j} + \frac{2}{3} \zeta^{\alpha j i} \right) + C_{ba} \left( -\frac{1}{3} \zeta^{\alpha i j} + \frac{1}{3} \zeta^{\alpha j i} \right) \] (9.150)

(\tilde{\Phi}_{ij} is a contravariant configuration state function, see Pulay et al. [334].) The parallel and antiparallel spin pair energies are given by:

\[ \zeta^{\alpha i j} = \frac{1}{2} \sum_{ab} \left[ K^{\alpha ij}_{ab} - K^{\alpha j i}_{ba} \right] \left( C^{\alpha ij}_{ab} - C^{\alpha ji}_{ba} \right) \] (9.151)

\[ \zeta^{\alpha j i} = \frac{1}{2} \sum_{ab} K^{\alpha ji}_{ab} C^{\alpha ij}_{ab} \] (9.152)

This formulation would maintain the exact equivalence of an orbital and a spin-orbital based code. Only in the (unrealistic) case that the parallel and antiparallel pair correlation energies are equal the CEPA/2 shift of 9.10 arise. However, we have not found it possible to maintain the same equivalence for the CPF method since the electron pairs defined by the generator state formalism are a combination of parallel and antiparallel spin pairs. In order to maintain the maximum degree of internal consistency we have therefore decided to follow the proposal of Ahlrichs and co-workers and use the topological matrix \( T_{PQ} \) in equation 9.133 and the equivalents thereof in the CEPA and CPF methods that we have programmed.
9.10.3 Open-Shell Equations

We have used a non-redundant set of three spin cases ($\alpha\alpha$, $\beta\beta$, $\alpha\beta$) for which the doubles amplitudes are optimized separately. The equations in the spin-unrestricted formalism are straightforwardly obtained from the corresponding spin orbital equations by integrating out the spin. For implementing the unrestricted QCISD and CCSD method, we applied the same strategy (dressed integrals) as in the spin-restricted case. The resulting equations are quite cumbersome and will not be shown here explicitly [88].

Note that the definitions of the spin-unrestricted CEPA shifts differ from those of the spin-restricted formalism described above (see Kollmar et al. [88]). Therefore, except for CEPA/1 and VCEPA/1 (and of course CEPA/0), for which the spin-adaptation of the shift can be done in a consistent way, CEPA calculations of closed-shell molecules yield slightly different energies for the spin-restricted and spin-unrestricted versions. Since variant 1 is also the most accurate among the various CEPA variants [85], we recommend to use variant 1 for coupled-pair type calculations. For the variants 2 and 3, reaction energies of reactions involving closed-shell and open-shell molecules simultaneously should be calculated using the spin-unrestricted versions only.

A subtle point for open-shell correlation methods is the choice of the reference determinant [341]. Single reference correlation methods only yield reliable results if the reference determinant already provides a good description of the systems electronic structure. However, an UHF reference wavefunction suffers from spin-contamination which can spoil the results and lead to convergence problems. This can be avoided if quasi-restricted orbitals (QROs) are used [161,340] since the corresponding zeroth-order wavefunction is an eigenfunction of the $\hat{S}^2$ operator and thus, no severe spin-contamination will appear. The coupled-pair and coupled-cluster equations will be still solved in a spin-unrestricted formalism but the energy will be slightly higher compared to the results obtained with a spin-polarized UHF reference determinant. Furthermore, especially for more difficult systems like e.g. transition metal complexes, it is often advantageous to use Kohn-Sham (KS) orbitals instead of HF orbitals.

9.10.4 Local correlation

As described in previous sections of the manual, ORCA features the extremely powerful LPNO and DLPNO methods. “LPNO” stands for “local pair natural orbital” approximation and DLPNO for “domain based LPNO”. These methods are designed to provide results as close as possible to the canonical coupled-cluster results while gaining orders of magnitude of efficiency through a series of well-controlled approximations. In fact, typically about 99.8% to 99.9% of the canonical correlation energy is recovered in such calculations. Even higher accuracy is achievable but will ultimately come at much higher computational cost. The default cut-offs are set such that the vast majority of chemically meaningful energy differences are reproduced to better than 1 kcal/mol relative to the canonical results with the same basis set. Of the LPNO and DLPNO methods, the LPNO is the older one and will eventually be discarded from ORCA. It has some higher order scaling steps (up to $N^5$) while DLPNO is linear scaling and of similar accuracy. Amongst the DLPNO methods, the first generation implementation of the DLPNO methods (DLPNO2013) is only near-linear scaling, while the DLPNO implementation since ORCA 4.0 is linear scaling.

It is important to understand that the LPNO and DLPNO implementations are intimately tied to the RI approximation. Hence, in these calculations one must specify a fitting basis set. The same rules as for
RI-MP2 apply: the auxiliary basis sets optimized for MP2 are just fine for PNO calculations. You can specify several aux bases for the same job and the program will sort it out correctly.

The theory of the LPNO methods has been thoroughly described in the literature in a number of original research papers. [82,86,89,90]

Hence, it is sufficient to only point to a few significant design principles and features of these methods:

1. The correlation energy of any molecule can be written as a sum over the correlation energies of pairs of electrons, labelled by the internal indices \((ij)\) of pairs of orbitals that are occupied in the reference determinant. If the orbitals \((i)\) and \((j)\) are localized, the pair correlation energy \(\epsilon_{ij}\) falls off very quickly with distance, quite typically by about an order of magnitude per chemical bond that is separating orbitals \((i)\) and \((j)\). Hence, by using a suitable cut-off for a reasonable pair correlation energy estimate many electron pairs can be removed from the high-level treatment and only a linear scaling number of electron pairs will make a significant contribution to the correlation energy.

2. The natural estimate for the pair correlation energy comes from second order many body perturbation theory (MP2). However, canonical MP2 is scaling with the fifth power of the molecular size and is hence not really attractive from a theoretical and computational point of view. Owing to the small pre-factor RI-MP2 goes a long way to provide reasonably cheap estimates for pair correlation energies. However, if one uses localized internal orbitals, then the MP2 energy expression must be cast in form of linear equations. However, if one uses canonical virtual orbitals together with localized internal orbitals and neglects the coupling terms coming from purely internal Fock matrix elements \(F(i,k)\) and \(F(k,j)\) then one ends up with a fair approximation that is termed “semi-canonical MP2” in ORCA. It serves as a guess in the older LPNO method. For DLPNO this method is also not attractive.

3. In DLPNO, the guess is more sophisticated. Here the virtual spaces is spanned by projected atomic orbitals (PAOs) that are assigned to domains of atoms that are associated with each local internal orbital \((i)\) and with the union of two such domains \((i)\) and \((j)\) for the electron pair \((ij)\). One applies the semi-local approximation, one obtains an excellent approximation to the semi-canonical MP2 energy. This is called the “semi-local” approximation and it is linearly scaling with respect to computational effort. If one iterates these equations to self-consistency to eliminate the coupling terms \(F(i,k)\) and \(F(k,j)\) then one obtains the full local MP2 method (LMP2 or L-MP2). If the domains are made large enough the results approach the canonical MP2 energy to arbitrary accuracy while still being linear scaling with respect to computational resources. This method is the default for the DLPNO method.

4. Basically, the high-spin open-shell version of the DLPNO uses the same strategy as the closed-shell variant to efficiently generate the open-shell PNOs in a consistent manner to the closed-shell formalism. Through the development of the UHF-LPNO-CCSD method, we have realized that use of unrestricted MP2 (UMP2) approach to define the open-shell PNOs introduces a few complexities; (1) the PNOs for \(\beta\) spin orbitals cannot be defined for \(\alpha-\alpha\) electron pairs and vice versa, (2) the diagonal PNOs for singly occupied orbitals cannot be properly defined, and (3) the PNO space does not become identical to that in the closed-shell LPNO framework in the closed-shell limit. However, to program all the unrestricted CCSD terms in the LPNO basis, those PNOs are certainly necessary. Therefore, in the UHF-LPNO-CCSD implementation, several terms, which, in many cases, give rather minor contributions in the correlation energy are omitted. Due to these facts, the UHF-LPNO-CCSD does not give identical results to that of RHF-LPNO-CCSD in the closed-shell limit. In addition, screening of the weak pairs on the basis of the semi-canonical UMP2 pair-energy results in somewhat unbalanced
treatment of the closed- and open-shell states in some cases, leading to rather larger errors in the reaction energies. To overcome those issues, in the high-spin open-shell DLPNO-CCSD method, the PNOs are generated in the framework of semi-canonical NEVPT2 which smoothly converges to the RHF-MP2 counterpart in the closed-shell limit. The open-shell DLPNO-CCSD, which is made available from ORCA 4.0, includes a full set of the open-shell CCSD equations and is designed as a natural extension to the RHF-DLPNO-CCSD.

5. Screening of the electron pairs according to a truncation parameter (in ORCA it is called $T_{\text{CutPairs}}$) is not sufficient to obtain a highly performing local electronic structure method. The original work of Pulay suggested to limit excitations out of the internal orbitals ($i$) and ($j$) to the domain associated with the pair ($ij$). While this works well and has been implemented to perfection by Werner, Schütz and co-workers over the years, the pre-factor of such calculations is high, since the domains have to be chosen large in order to recover 99.9% or more of the canonical correlation energy.

6. The ORCA developers have therefore turned to an approach that has been used with a high degree of success in the early 1970s by Meyer, Kutzelnigg, Staemmler and their co-workers, namely the method of “pair natural orbitals” (PNOs). As shown by Loewdin in his seminal paper from 1955, natural orbitals (the eigenfunctions of the one-particle density matrix) provide the fastest possible convergence of the correlated wavefunction with respect to the number of one-particle functions included in the virtual space. It has been amply established that approximate natural orbitals are almost as successful as the true natural orbitals (which would require the knowledge of the exact wavefunction) in this respect. While the success of approximate correlation treatments of many particle systems that use approximate natural orbitals of the whole systems are somewhat limited, this is not the case for pair natural orbitals. The latter have first been suggested as a basis for correlation calculations by England and co-workers and, at the time, were given the name “pseudonatural orbitals”, a term that was used by Meyer throughout his pioneering work.

7. The PNOs are approximate natural orbitals of a given electron pair. In order to generate them one requires a one particle pair density matrix $D_{ij}$ the eigenfunctions of which are the PNOs themselves while the corresponding eigenvalues are the PNO occupation numbers. While there are many creative possibilities that can lead to slightly different PNO sets, a quite useful and natural approximation is to generate such a density from the MP2 amplitudes as an expectation value (the “unrelaxed” MP2 density. One then uses a second threshold (in ORCA $T_{\text{CutPNO}}$) that controls the PNOs to be included in the calculation. PNOs with an occupation number $<T_{\text{CutPNO}}$ are neglected.

8. PNOs of a given electron pair form an orthonormal set. However, PNOs belonging to different electron pairs are not orthonormal and hence they overlap. This non-orthogonality leads to surprisingly few complications because the PNOs stay orthogonal to all occupied orbitals. In practice, the equations for PNO based correlation calculations are hardly more complex than the canonical equations.

9. The nice feature of these pair densities is that they become small when the pair interaction becomes small. Hence weak pairs are correlated by very few PNOs. Therefore, the PNO expansion of the wavefunction is extremely compact and there only is a linear scaling number of significant excitation amplitudes that need to be considered.

10. A great feature of the PNOs is that they are “self-adapting” to the correlation situation that they are supposed to describe. Hence, they are as delocalized as required by the physics and there is no ad-hoc assumption about their location in space. However, it is clear that the PNOs are located in the same
region of space as the internal orbitals that they correlate because otherwise they would not contribute to the correlation energy.

11. Capitalizing on this feature one can define generous domains and expand the PNOs in terms of the PAOs and auxiliary fit functions (for the RI approximations) that are contained in these domains. In ORCA this is controlled by the third significant truncation parameter $T_{\text{CutMKN}}$. This is the basis of the DLPNO method. In the older LPNO method, the PNOs are expanded in terms of the canonical virtual orbitals and $T_{\text{CutMKN}}$ is only used for a local fit to the PNOs. In the linear-scaling DLPNO implementation the domains expanding the PNOs in terms of the PAOs are controlled via $T_{\text{CutDO}}$.

12. PNO expansion have the amazing advantage that the PNOs converge to a well-defined set as the basis set is approaching completeness. Hence, the increase in the number of PNOs per electron pair is very small upon enlargement of the orbital basis. In other words, correlation calculations with large basis sets are not that much more expensive than correlation calculations with small basis sets. Thus, the advantage of PNO over canonical calculations increases with the size of the basis set. This is a great feature as large and flexible basis sets are a requirement for meaningful correlation calculations.

13. In summary, DLPNO and LPNO calculations are controlled by only three cut-off parameters with well-defined meanings: a) $T_{\text{CutPairs}}$, the cut-off for the electron pairs to be included in the coupled-pair or coupled-cluster iterations, b) $T_{\text{CutPNO}}$ which controls how many PNOs are retained for a given electron pair and c) $T_{\text{CutMKN}}$ that controls how large the domains are that the PNOs expand over. For the linear-scaling DLPNO calculations the domain sizes are controlled via $T_{\text{CutDO}}$.

14. It is clear that owing to the truncations a certain amount of error is introduced in the results. However, having the LMP2 results available, one can compensate for the errors coming from $T_{\text{CutPairs}}$ and $T_{\text{CutPNO}}$. This is done in ORCA and the correction is added to the final correlation energy, thus bringing it very close (to mEh accuracy or better) to the canonical result. $T_{\text{CutMKN}}$ is best dealt with by making it conservative (at $10^{-3}$ to $10^{-4}$ the domains are about 20–30 atoms large, which is sufficient for an accurate treatment).

15. Note that the LPNO and DLPNO methods do not introduce any real space cut-offs. We refrain from doing so and insist in our method development by making all truncations based on wavefunction or energy parameters. We feel that this is the most unbiased approach and it involves no element of “chemical intuition” or “prejudice”. Other researchers have decided differently and we do not criticize their choices.

16. In the DLPNO method a highly efficient screening mechanism is operative. In this method one first obtains a (quadratically scaling) multipole estimate for the pair correlation energy that is extremely fast to compute (a few seconds, even for entire proteins). Only if this estimate is large enough, a given electron pair is even considered for a LMP2 treatment. Quite typically pairs with energy contributions of $10^{-6}$ Eh and smaller are very well described by the dipole-dipole estimate. Specifically, we drop pairs with estimated energies $< 0.01 \times T_{\text{CutPairs}}$ and add their multipole energy sum to the final correlation energy. These corrections tend to be extremely small, even for large molecules and are insignificant for the energy. However, importantly, the multipole estimate ensures linear scaling in the MP2 treatment. The pairs that then do not survive the pair-prescreening are called “weak pairs” in the ORCA or DLPNO sense. They still play a role in the calculation of the triple excitation correction.

17. The calculation of triple excitation contributions is more involved and one does not have a perturbative estimate available since the (T) contribution is perturbative itself. While the (T) contribution is
much smaller than the CCSD correlation energy, the errors introduced by the various local and PNO approximations can be significant. We found that one has to include triples with at least one pair being a “weak” LMP2 pair (with its LMP2 amplitudes) in order to arrive at sufficiently accurate results.

Given these explanations the various cut-off parameters that can be controlled in LPNO and DLPNO calculations should be understandable and are listed below. We emphasize again that only the three thresholds \( T_{\text{CutPairs}} \), \( T_{\text{CutPNO}} \) and \( T_{\text{CutMKN}} \) should be touched by the user, unless very specific questions are addressed. The recommended way to control the accuracy of calculations is to specify “TightPNO”, “NormalPNO” or “LoosePNO” keywords, rather than to change numeric values of cutoffs. Individual thresholds should normally not be changed, as the defaults are sensible and lead to good cost/performance ratios.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%mdci TCutPairs</td>
<td>1e-4</td>
<td># cut-off for the pair truncation</td>
</tr>
<tr>
<td>TCutPNO</td>
<td>3.33e-7</td>
<td># cut-off for the PNO truncation</td>
</tr>
<tr>
<td>TCutDO</td>
<td>1e-2</td>
<td># cut-off for the DLPNO domain construction</td>
</tr>
<tr>
<td>TCutMKN</td>
<td>1e-3</td>
<td># cut-off for the local fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td># for DLPNO2013: also domain construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td># remaining options, tied to the three main cut-offs, EXPERTS ONLY!</td>
</tr>
<tr>
<td>Localize</td>
<td>1</td>
<td># flag for using localized orbitals</td>
</tr>
<tr>
<td>LocMet</td>
<td>PM</td>
<td># Pipek Mezey (FB=Foster Boys is sensible too)</td>
</tr>
<tr>
<td>LocTol</td>
<td>1e-6</td>
<td># Absolute threshold for the localization procedure</td>
</tr>
<tr>
<td>LocTolRel</td>
<td>1e-8</td>
<td># Relative threshold for the localization procedure</td>
</tr>
<tr>
<td>LocMaxIter</td>
<td>128</td>
<td># Maximum number of localization iterations</td>
</tr>
<tr>
<td>LocRandom</td>
<td>1</td>
<td># default, take random seed for any localization</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td># for internal orbitals: choose best of 32 localizations</td>
</tr>
<tr>
<td></td>
<td>np</td>
<td># take constant seed for any localization (for testing)</td>
</tr>
<tr>
<td>LocNAttempts</td>
<td></td>
<td># number of localization attempts</td>
</tr>
<tr>
<td></td>
<td></td>
<td># default: number of processes, minimum 8, if</td>
</tr>
<tr>
<td></td>
<td></td>
<td># randomize true</td>
</tr>
<tr>
<td></td>
<td></td>
<td># 1, if randomize false</td>
</tr>
<tr>
<td></td>
<td></td>
<td># any number larger or equal np, if randomize true</td>
</tr>
<tr>
<td>PNONorm</td>
<td>MP2Norm</td>
<td># default, old IEPANorm can also be used (near identical results)</td>
</tr>
<tr>
<td>NrMP2Pairs_Trip</td>
<td>1</td>
<td># number of MP2 pairs to be included in the triples calculation</td>
</tr>
<tr>
<td>PAOOverlapThresh</td>
<td>1e-8</td>
<td># generation of non-redundant PAOs from redundant ones</td>
</tr>
<tr>
<td>UseFullLMP2Guess</td>
<td>true</td>
<td># Use iterative full LMP2 (for DLPNO)</td>
</tr>
<tr>
<td>SinglesFockUsePNOs</td>
<td>true</td>
<td># compute the Singles Fock matrix (SFM) in PNOs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td># DLPNO2013: default for SinglesFockUsePNOs is false,</td>
</tr>
<tr>
<td></td>
<td></td>
<td># by default RIJCOSX is used for the SFM, except when</td>
</tr>
<tr>
<td></td>
<td></td>
<td># RIJK is given. In that case the RIJK-SFM is used.</td>
</tr>
<tr>
<td>LMP2MaxIter</td>
<td></td>
<td># max no of iterations in the MP2 equations</td>
</tr>
<tr>
<td>LMP2To1E</td>
<td>1e-7</td>
<td># LMP2 energy convergence tolerance</td>
</tr>
<tr>
<td>LMP2To1R</td>
<td>1e-7</td>
<td># LMP2 residual convergence tolerance</td>
</tr>
<tr>
<td>Parameter</td>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>LMP2ScaleTCutPNO</td>
<td></td>
<td>PNO cutoff for LMP2 is: TCutPNO*LMP2ScaleTCutPNO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: TCutPNO(DLPNO-MP2)/TCutPNO(DLPNO-CCSD) with respective TCutPNOs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific to Loose/Normal/TightPNO</td>
</tr>
<tr>
<td>LMP2FCut</td>
<td>1e-7</td>
<td>LMP2 neglect cut-off for off-diagonal Fock matrix elements</td>
</tr>
<tr>
<td>LMP2Damp</td>
<td>1.0</td>
<td>Damping for LMP2 iterations</td>
</tr>
<tr>
<td>TCutTNO</td>
<td>0</td>
<td>Cut-off for triples natural orbitals (0=automatic)</td>
</tr>
<tr>
<td>TCutDom</td>
<td>-1</td>
<td>-1= use TCutMKN to make domains</td>
</tr>
<tr>
<td>TCutPNOSingles</td>
<td>-1</td>
<td>-1= use 0.03*TCutPNO</td>
</tr>
<tr>
<td>TCutPreScr</td>
<td>-1</td>
<td>-1= use 0.01*TCutPairs for multipole estimate based screening</td>
</tr>
<tr>
<td>TCutDeloc</td>
<td>0.1</td>
<td># delocalization threshold for specification of extended domains.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Necessary because PAOs are not strictly localized</td>
</tr>
<tr>
<td>TCutOSV</td>
<td>1e-6</td>
<td># orbital specific virtuals used for pre-screening.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No critical</td>
</tr>
<tr>
<td>TScaleMP2Pairs</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>TScaleMKNStrong</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TScaleMKNWeak</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE**

- Generally better DLPNO results are obtained when several runs of localization are undertaken using different initial guesses. The different initial guesses are obtained using randomization (LocRandom).

- However, randomization of the initial guess can lead to differently localized MOs in different calculations. This can yield non-identical correlation energies, varying in the sub-kJ/mol range, for different runs on the same machine.

- In order to yield identical correlation energy results, randomization can be switched off (LocRandom 0). However, switching off randomization only leads to identical results on the same machine, but can still lead to slightly different results (in the sub-kJ/mol range) on different machines.

- Reproducibility of the correlation energy is expected to increase further if LocNAttempts is set to higher values.

The input below shows how to perform a DLPNO calculation with settings that exactly reproduce the canonical RI-MP2 result. They are not recommended for production use, but merely to show that if the local approximations are pushed, then the result coincides with the canonical one. If one would set $T_{CutPNO}$ to zero this would give canonical RI-CCSD. However, this is an absurdly inefficient calculation and hence not done.

```plaintext
! def2-SV(P) def2/JK RI-JK DLPNO-CCSD VeryTightSCF RI-MP2

obtain a result that only contains errors from the PNO approximation
```
9.10.4.1 Including core orbitals in the correlation treatment

In some chemical applications some or all of the chemical core electrons must be included in the correlation treatment. In this case, it is necessary to tighten the TCutPNO thresholds for electron pairs in which chemical core electrons are involved. This is now the default in DLPNO calculations.

For instance, one can decide to switch off the frozencore approximation and include all the electrons in the correlation treatment. In this case, the program will use tighter thresholds by default for all electron pairs and Singles that involve chemical core electrons. Note that, in this case, the use of properly optimized basis functions for correlating the inner electrons is highly recommended.
Another option is to choose the involved chemical core electrons by using an energy window. In this way all electron pairs and Singles that involve chemical core electrons, which are in the defined energy window, are affected by TScalePNO.Core.

A summary with the number of electrons affected by TScalePNO.Core for the examples just discussed is shown in Table 9.11.

Table 9.11: Number of chemical core electrons included in the DLPNO calculation and affected by TScalePNO.Core for the TiF₄ examples

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Chemical Core Electrons</th>
<th>Valence Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrozenCore (default)</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>NoFrozenCore</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>EWIN -40, 10000</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

* using TScalePNO_Core.
By default, ORCA provides a chemical meaningful definition for the number of electrons which belong to the chemical core of each element. As already discussed, these default values define which pairs are affected by TScalePNO_Core. However, the user can modify the number of chemical core electrons for a specific element via the NewNCore keyword.

In the previous example, the number of chemical core electrons for Ti has been fixed to 8.

**NOTE**

- Of course, if electrons are replaced by ECPs, they are not included in the correlation treatment.
- If ECPs are used, the number for NewNCore has to include the electrons represented by the ECPs as well. E.g. if an element is supposed to have 60 electrons in the ECP and additional 8 electrons should be frozen in the correlation calculation, NewNCore should be 68.
- The different sets of orbitals (chemical core electrons included in the correlation treatment and valence electrons) are localized separately in order to avoid the mixing of core and valence orbitals.

### 9.10.5 Hilbert space multireference coupled-cluster approaches

MRCC branch of the MDCI module includes Hilbert space multireference coupled-cluster methods. These are based on Jeziorski-Monkhorst ansatz of the wave operator [342], i.e. each of the reference configurations is assigned its own cluster operator.

\[
\hat{\Omega} = \sum_{\mu=1}^{M} e^{T(\mu)}|\Phi_{\mu}\rangle\langle\Phi_{\mu}|, \tag{9.153}
\]

where \(\Phi_{\mu}\) are reference configurations spanning a model space.

The cluster equations are then defined for each of the cluster operators. Their most expensive term is basically the same as in single reference theory, except that it is calculated using cluster amplitudes of the corresponding reference. The remaining coupling terms in MkCC or disconnected/linked terms in BWCC have a \(n_{v}^{2}\) times lower scaling than the direct term. The energy is obtained by a diagonalization of effective Hamiltonian.
\[ H_{\mu\nu}^{\text{eff}} = \langle \Phi(\mu) | \hat{H} | \Phi(\mu) \rangle \delta_{\mu\nu} + \langle \Phi(\mu) | \hat{H}_N(\nu) e^{T(\nu)} | \Phi_\nu \rangle_C. \] (9.154)

The methods are state-specific, so only one eigenvalue of effective Hamiltonian has a physical meaning.

At the moment, the following versions are implemented:

- the MkCCSD [343]
- BWCCSD [344] with a posteriori correction
- LPNO-MkCCSD
- LPNO-BWCCSD
- MkCCSD(T_u) [345] for closed-shell references
- BWCCSD(T) [346] for closed-shell references

The number of reference configurations is not itself restricted. However, only up to mutually bi-excited references can be included in the model space in the current implementation.

The truncation of cluster operator and/or the use of LPNO is specified like in the single reference case. Furthermore, the user needs to specify the following keywords:

- **mrcc** - flag to switch the HS MRCC
  "on" = do a MRCC calculation
  "off" (default) = single reference calculation

- **mrcctype** - specifies the MRCC variant
  "mkcc" for MkCC calculation
  "bwcc" for BWCC

- **refs** - sets the reference configurations
  each reference is defined by a string of four characters: 2 (doubly occupied orbital), 0 (unoccupied orbital), a (singly occupied orbital with spin \( \alpha \)), b (singly occupied orbital with spin \( \beta \)). References are separated by a comma. The size of the string of each reference can be reduced by the use of n_docc keyword (see below). We recommend that occupation of active orbitals is specified by "refs" keyword and the number of internal (and core) orbitals is specified by n_docc.

- **n_docc** - number of doubly occupied orbitals not specified in the "refs" keyword. We recommend that occupation of active orbitals is specified by "refs" keyword and the number of internal (and core) orbitals by n_docc.

- **root** - specifies the root (state) requested.
  A non-negative integer smaller than the number of references specifies the state directly.
  "-1" stands for selection of the root based on the overlap of the eigenstate of effective Hamiltonian with a given vector specified by "root_overlap" keyword
  default: 0 (ie. ground state)

- **root_overlap** - specifies the vector in the model space mentioned above.
Example: MkCCSD calculation of CH$_2$ in cc-pVTZ basis set using a CAS(2,2) space

```plaintext
!ccsd cc-pvtz # selects the basis set and the truncation of cluster operator
%mdci
mrcctype mkcc # selects MkCC
n_docc 3 # there are three doubly occupied core/internal orbitals
refs "20,02" # specifies the two references in the CAS(2,2) space.
Due to symmetry, only these two references are needed.
root -1 # select the root by overlap
root_overlap "-0.9, 0.1" # -0.9 corresponds to "20" reference, 0.1 to "02"
end
```

### 9.10.6 The singles Fock term

In most MDCI calculations, there is an intermediate, which resembles closely to the SCF Fock matrix, and similar methods are available to efficiently calculate it. In the followings, a short discussion will be given of the so-called singles Fock term, which in the closed shell case has the form

\[
G(t_1)_{pq} = \sum_{jb} t_{jb}^2 (2(pq|jb) - (pj|qb)) = \sum_{\mu\nu} c_{\mu}^p c_{\nu}^q G(t_1)_{\mu\nu},
\]  

(9.155)

The singles Fock matrix can be obtained via transformation from its counterpart \((G(t_1)_{\mu\nu})\) in the atomic orbital (AO) basis

\[
G(t_1)_{\mu\nu} = \sum_{jb} t_{jb}^2 (2(\mu\nu|jb) - (\mu j|\nu b)) = \sum_{\kappa\tau} P(t_1)_{\kappa\tau} (2(\mu\nu|\kappa\tau) - (\mu\kappa|\nu\tau)),
\]  

(9.156)

where

\[
P(t_1)_{\kappa\tau} = \sum_{jb} t_{jb}^2 c_{\kappa j} c_{\tau b}
\]  

(9.157)

is the analogue of the SCF density matrix for the singles Fock case. For the singles Coulomb \((J(t_1)_{\mu\nu})\) case, the density may be symmetrized \((\tilde{P}(t_1)_{\kappa\tau} = P(t_1)_{\kappa\tau} + P(t_1)_{\tau\kappa})\), and one may use the resolution of identity approximation

\[
J(t_1)_{\mu\nu} = \sum_{\kappa\tau} \tilde{P}(t_1)_{\kappa\tau} (\mu\nu|\kappa\tau) \approx \sum_{AB} \sum_{\kappa\tau} \tilde{P}(t_1)_{\kappa\tau} (\mu\nu|r^{-1}_{12}|A) V^{-1}_{AB}(B|r^{-1}_{12}|\kappa\tau),
\]  

(9.158)

where \(A, B\) are elements of the RI/DF auxiliary fitting basis. Note that the factor of 2 in (9.156) is taken care of by symmetrization. Since we are using a symmetric density, we may use the same efficient routine to evaluate the singles Coulomb term as in the SCF case, see 9.2.2.3 and 9.2.2.4.

For the exchange case \((K(t_1)_{\mu\nu})\), one possibility is to use the COSX approximation (see 9.2.2.6)

\[
K(t_1)_{\mu\nu} = \sum_{\kappa\tau} P(t_1)_{\kappa\tau} (\mu\kappa|\nu\tau) \approx \sum_{g} Q_{\mu\nu} \sum_{\tau} A_{\nu\tau}(r_g) \sum_{\kappa} P(t_1)_{\kappa\tau} X_{\kappa g},
\]  

(9.159)
The COSX routine is able to deal with asymmetric densities as well, and thus, it can be used here similar to the SCF case.

The other possibility is to use RI for exchange (RIK),

$$K(t_1)_{\mu\nu} = \sum_{j\kappa} c_j^\dagger C(t_1)^j_{\mu\kappa} \approx \sum_{jAB} (\mu j | r^{-1}_{12} | A) V^{-1}_{AB} (B | r^{-1}_{12} | \tilde{\nu} j),$$

(9.160)

where

$$C(t_1)^j_{\tau} = \sum_b t_b^j \rho_b^{\tau},$$

(9.161)

and the $\tilde{\nu}$ is an “orbital” transformed using $C(t_1)$.

Using these approximations, there are two approximations for the total singles Fock term, RIJCOSX called by the simple keyword RCSinglesFock and RIJK called by RIJKSinglesFock, see 8.1.3.1. For canonical and LPNO methods, by default the program chooses the same approximation used in the SCF calculation. DLPNO2013 uses RIJCOSX by default, while in DLPNO, the singles Fock term is also evaluated using PNOs via SinglesFockUsePNOs, see 9.10.4. This behavior can also be changed by keywords in the method block.

%method RIJKSinglesFock 1 # false, 1 true
RCSinglesFock 0 # false, 1 true
end

9.10.7 Use of the MDCI Module

The MDCI module is fairly easy to use. The flags for the “simple” input lines have been described in section 6.2. The detailed listing of options is found below:

%mdci citype CISD # CI singles+doubles
QCISD # quadratic CI (singles+doubles)
CCSD # coupled-cluster singles+doubles
CEPA_1 # coupled-electron pair approximation ``1''
CEPA_2 #
CEPA_3 #
CPF_1 # Coupled-pair functional approximation ``1''
CPF_2 # (note that CPF/1 is identical with
CPF_3 # the original CPF of Ahlrichs et al.)
VCEPA_1 # Variational CEPA approximation ``1''
VCEPA_2 #
VCEPA_3 #
NCEPA_1 # our slightly modified versions of CEPA
NCEPA_2 # and CPF
NCEPA_3 #
NCPF_1 #
NCPF_2 #
9.10 The Single Reference Correlation Module

NCPF_3  # 
VNCEPA_1  # 
VNCEPA_2  # 
VNCEPA_3  # 
ACPF  # averaged coupled-pair functional 
ACPF_2  # Gdanitz modification of it 
NACPF  # our modification of it 
AQCC  # Szalay + Bartlett 
SEOI  # a strictly size extensive energy functional 
# maintaining unitary invariance (not yet 
# available for UHF) 
MP3  # MP3 calculation. With UseSCS=true it is 
# SCS-MP3 
ewin -3,1e3  # orbital energy window to determine which 
# MOs are included in the treatment 
# (respects settings in %method block) 
Singles true  # include single excitations in the 
# treatment (default true) 
Triples 0  # (T) correction in CCSD(T)/QCISD(T) 
# default is no triples 
1  # Algorithm 1 (lots of memory, fast) 
2  # Algorithm 2 (less memory, about 2x slower) 
Brueckner true  # use Brueckner orbitals 
# (default false) 
Denmat none  # no evaluation of density matrices 
linearized  # density matrix obtained by retaining 
# only CEPA_0-like terms, i.e., those 
# linear in the excitation amplitudes 
unrelaxed  # unrelaxed density matrices, i.e., 
# density matrices without orbital 
# relaxation 
orbopt  # perform orbital optimization yielding 
# fully relaxed density matrices (if 
# citype chosen as CCSD or QCISD this option 
# implies evaluation of the Z vector). 
# (default: linearized) 
ZSimple true  # simplified evaluation of the Z vector 
# in case of orbital optimized CCD 
# (citype chosen as CCSD or QCISD and 
# Denmat as orbopt) by using an 
# analytical formula 
false  # explicit solution of Z vector 
# equations 
# in case of orbital optimized CCD 
# (default: false)
UseQR0s  # use of quasi-restricted orbitals
# (default false)
Localize 0  # use localized MOs. Presently very little
# use is made of locality. It may help
# for interpretations. Localization is
# incompatible with the (T) correction
PM  # Use Pipek-Mezey localized MOs
FB  # use Foster-Boys localized MOs
NatOrbIters 0  # Perform natural orbital iterations.
# default is none. Not possible for CCSD
# and QCISD
pCCSDAB  # the three parameters for parametrized
pCCSDCD  # coupled-cluster (default is 1.0 which
pCCSDEF  # corresponds to normal CCSD
# this defines how the rate limiting step is handled
# MO and AOX need lots of disk and I/O but if they
# can be done they are fast
KCOpt KC_MO  # Perform full 4-index transformation
   KC_AOBLAS# A0 direct with BLAS (preferred)
   KC_AO    # A0 direct handling of 3,4 externals
   KC_RI    # RI approximation of 3,4 externals
   KC_RI2   # Alternative RI (not recommended)
   KC_AOX   # Do it from stored AO exchange integrals
PrintLevel 2  # Control the amount of output. For 3 and
# higher things like pair correlation
# energies are printed.
MaxIter 35  # Max. number of iterations
# How the integral transformation is done.
# Note that it is fine to do AOX or A0 or A0BLAS
# together with trafo_ri
TrafoType trafo_jk # Partial trafo to J+K operators
   trafo_ri  # RI transformation of all
      # integrals up to 2-externals
      # (3-ext for (T))and rest on the
      # fly
   trafo_full # Full four index transformation.
      # Automatically chosen for
      # KCOpt=KC_MO
MaxCore 350 # Memory in MB - used for integral
# trafos and batching and for storage of
# integrals and amplitudes
# don’t be too generous
STol 1e-5  # Max. element of the residual vector
# for convergence check
LShift 0.3  # Level shift to be used in update of
9.11 The Complete Active Space Self-Consistent Field (CASSCF) Module

9.11.1 General Description

The complete active space self-consistent field (CASSCF) method is a special form of a multiconfigurational SCF method and can be thought of as an extension of the Hartree-Fock method. It is a very powerful method to study static correlation effects and a solid basis for MR-CI and MR-PT treatments. It can be applied to the ground state and excited states or averages thereof. The implementation in ORCA is fairly general and reasonably efficient. However, CASSCF calculations are fairly complex and ultimately require a lot of insight from the user in order to be successful. In addition to detailed description here, the manual explores some typical examples in section 8.1.7.8. Furthermore, the manual is supplemented with a tutorial for CASSCF that covers many practical tips on the calculation design and usage of the program.

The wavefunction. The wavefunction of a given CASSCF state is written as

$$|\Psi_I^S\rangle = \sum_k C_{kI} |\Phi_k^S\rangle.$$  \hspace{1cm} (9.162)

Here, $|\Psi_I^S\rangle$ is the CASSCF $N$-electron wavefunction for state $I$ with total spin $S$. The set of $|\Phi_k^S\rangle$ is a set of configuration state functions (for example linear combination of Slater determinants) each adapted to a total spin $S$. The expansion coefficients $C_{kI}$ represent the first set of variational parameters. Each CSF is constructed from a common set of orthonormal molecular orbitals $\psi_i(r)$ which are in turn expanded in basis functions $\psi_i(r) = \sum_{\mu} c_{\mu i} \phi_{\mu}(r)$. The MO coefficients $c_{\mu i}$ form the second set of variational parameters.

The energy. The energy of the CASSCF wavefunction is given by the Rayleigh quotient
and represents an upper bound to the true total energy. However, CASSCF calculations are \textit{not} designed to provide values for total energy which are close to the exact energy. The purpose of a CASSCF calculation is to provide a qualitatively correct wavefunction, which forms a good starting point for a treatment of dynamic electron correlation.

The CASSCF method is fully variational in the sense that the energy is made stationary with respect to variations in both sets of MO and CI coefficients. At convergence, the gradient of the energy with respect to the MO and CI coefficients vanishes

\[ \frac{\partial E(c, C)}{\partial c_{\mu i}} = 0, \]  

\[ \frac{\partial E(c, C)}{\partial C_{kI}} = 0. \]

\( \text{(9.164)} \)

\( \text{(9.165)} \)

\textbf{Orbital spaces.} In CASSCF calculations, the MO space is divided into three user defined subspaces:

- The “inactive orbitals” are the orbitals which are doubly occupied in all configuration state functions (labels \(i, j, k, l\)).
- The “active orbitals” are the orbitals with variable occupation numbers in the various CSFs (labels \(t, u, v, w\)).
- The “external orbitals” (labels \(a, b, c, d\))

Note that in older publications, the inactive and active orbitals are distinguished and referred to as “internal” orbitals.

The wavefunction and energy is invariant with respect to unitary transformations within the three subspaces. The special feature of a CASSCF wavefunction is that a fixed number of electrons is assigned to each subspace. The internal subspace is of course completely filled but the CSFs in the active space constitute a full-CI of \(n\)-electrons in \(m\)-orbitals. The CSF list is constructed such, however, that a wavefunction of well defined total spin (and potential space) symmetry results. Such a wavefunction is referred to as a \textbf{CASSCF}(\(n,m\)) wavefunction. The CSF list grows extremely quickly with the number of active orbitals and the number of active electrons (basically factorially). Depending on the system, the limit of feasibility is roughly around \(\sim 14\) active orbitals or about one million CSFs in the active space. Larger active spaces are tractable with approximate CI solver such as the Iterative-Configuration-Expansion CI (ICE-CI) described in 9.15 or the Density Matrix Renormalization Group (DMRG) discussed in 9.13.\textsuperscript{17}

Since the orbitals within the subspaces are only defined up to a unitary transformation, the program needs to make some canonicalization choice.\textsuperscript{17} For approximate full CI approaches, CASSCF is neither invariant to active-active rotations nor exactly size-consistent.
In ORCA, the final orbitals by default are:

1. natural orbitals in the active space,
2. orbitals which diagonalize the CASSCF Fock matrix in the internal space and
3. orbitals which diagonalize the CASSCF Fock matrix in the external space.

**State averaging.** In many circumstances, it is desirable to optimize the orbitals not for a single state but for the average of several states. In order to see what is done, the energy for state $I$ is re-written as:

$$E_I (c, C) = \sum_{pq} \Gamma^p_q (I) h_{pq} + \sum_{pqrs} \Gamma^{pr}_{qs} (I) (pq | rs)$$  \hspace{1cm} (9.166)

Here, $\Gamma^p_q (I)$ and $\Gamma^{pr}_{qs} (I)$ are the one-and two-particle reduced electron density matrices for this state (labels $p, q, r, s$ span the internal and active subspaces):

$$\Gamma^p_q (I) = \langle \Psi^S_I | E^p_q | \Psi^S_I \rangle$$  \hspace{1cm} (9.167)

$$\Gamma^{pr}_{qs} (I) = \frac{1}{2} \langle \Psi^S_I | E^p_q E^r_s - \delta_{qr} E^p_s | \Psi^S_I \rangle$$  \hspace{1cm} (9.168)

The average energy is simply obtained from averaging the density matrices using arbitrary weights $w_I$ that are user defined but are constrained to sum to unity.

$$\Gamma^{p(\text{av})}_q = \sum_I w_I \Gamma^p_q (I)$$  \hspace{1cm} (9.169)

$$\Gamma^{pr(\text{av})}_{qs} = \sum_I w_I \Gamma^{pr}_{qs} (I)$$  \hspace{1cm} (9.170)

$$\sum_I w_I = 1$$  \hspace{1cm} (9.171)

**Optimization of CASSCF wavefunctions.** In general, except for trivial cases, CASSCF wavefunctions are considerably more difficult to optimize than RHF (or UHF) wavefunctions. The underlying reason is that variations in $c$ and $C$ maybe strongly coupled and the energy functional may have many local minima in $(c; C)$ space. Consequently, the choice of starting orbitals is of really high importance and the choice which orbitals and electrons are included in the active space has decisive influence on the success of a CASSCF study. In general, after transformation to natural orbitals, one can classify the active space orbitals by their occupation numbers which vary between 0.0 and 2.0. In general, convergence problems are almost guaranteed if orbitals with occupation numbers close to zero or close to 2.0 are included in the active space. Occupation numbers between 0.02 and 1.98 are typically very reasonable and should not lead to large convergence problems. The reason for the occurrence of convergence problems is that the energy is only very weakly dependent on rotations between internal and active orbitals if the active orbital is almost doubly occupied and similarly for the rotations between external and weakly occupied active orbitals. However, in some cases (for example in
the study of potential energy surfaces) it may not be avoidable to include weakly or almost inactive orbitals in the active space and in these cases the use of the most powerful convergence aids is necessary (vide infra).

As in the case of single-determinant wavefunctions (RHF, UHF, RKS, UKS) there are first and second order converging methods available. The first order CASSCF methods require the transformed integrals \((tu|vx)\) with \(x\) belonging to any subspace. This is a very small subspace of the total transformed integral list and is readily held in central storage even for larger calculations. On the other hand, second order CASSCF methods require the integrals \((pq|xy)\) and \((px|qy)\) \((p, q = \text{internal}, \text{active}; x, y = \text{any orbital})\). This is a fairly large set of integrals and their generation is laborious in terms of CPU time and disk storage. Second order CASSCF calculations are therefore more limited in the size of the molecules which can be well treated. It would be possible to basically avoid the integral transformation also in the case of second-order CASSCF calculations and proceed to fully direct calculations. Such calculations may become quite time consuming since there may be a large number of Fock matrix builds necessary.

The augmented Hessian method (Newton-Raphson) solves the eigenvalue problem:

\[
\begin{pmatrix}
0 & g \\
g & H
\end{pmatrix}
\begin{pmatrix}
1 \\
t
\end{pmatrix}
= \varepsilon
\begin{pmatrix}
1 \\
t
\end{pmatrix}
\quad (9.172)
\]

Here, \(g\) is the orbital gradient (derivative of the total energy with respect to a non-redundant rotation between two orbitals) and \(H\) is the orbital Hessian (second derivative of the energy with respect to two non-redundant orbital rotations). The vector \(t\) (in intermediate normalization obtained from the CI like vector) summarizes the rotation angles. The angles are used to define the antisymmetric matrix \((X_{pq} = -X_{qp}\) is thus the rotation angle between orbitals \(p\) and \(q\)):

\[
X = \begin{pmatrix}
0 & t \\
-t & 0
\end{pmatrix},
\quad (9.173)
\]

which is used to parametrize the unitary matrix \(U = \exp (X)\) which is used to update the orbitals according to:

\[
c_{\text{new}} = c_{\text{old}} U
\quad (9.174)
\]

(\(c\) is an MO coefficient matrix).

**Starting orbitals.** You cannot be careful enough with your starting orbitals. What type of initial guess works best, depends on the system. Quite often it is not the magnitude of the initial gradient, but the similarity between initial and final orbitals. The CASSCF tutorial discusses a number of guess options in more detail. Generally speaking, canonical orbitals or HF orbitals from a RHF calculation are not good choice! Usually DFT orbitals (quasi-restricted or RKS) often do better. Alternatively, if CASSCF orbitals from a previous run or a close-by geometry are available this is a good choice. In many instances, e.g. transition metal complexes, the **PATOM** guess produces more reliable start orbitals than the **PMODEL** guess. However, natural orbitals from a simple correlation calculation like MP2 or a calculation with the MRCI module are usually the best choice. For example:
Now examine the occupation numbers of the natural orbitals (you will find that in the output of the MP2 part of the calculation):

<table>
<thead>
<tr>
<th>Natural Orbital Occupation Numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>N[ 0] = 2.000000622</td>
</tr>
<tr>
<td>N[ 1] = 2.000000233</td>
</tr>
<tr>
<td>N[ 2] = 1.98685690</td>
</tr>
<tr>
<td>N[ 3] = 1.97743095</td>
</tr>
<tr>
<td>N[ 5] = 1.96915811</td>
</tr>
<tr>
<td>N[ 7] = 1.93992919</td>
</tr>
<tr>
<td>N[ 8] = 0.05371120</td>
</tr>
<tr>
<td>N[ 9] = 0.02543285</td>
</tr>
<tr>
<td>N[10] = 0.02443475</td>
</tr>
<tr>
<td>N[11] = 0.01355852</td>
</tr>
<tr>
<td>N[12] = 0.01093080</td>
</tr>
<tr>
<td>N[13] = 0.00984154</td>
</tr>
<tr>
<td>N[14] = 0.00648238</td>
</tr>
<tr>
<td>N[15] = 0.00626053</td>
</tr>
</tbody>
</table>

A rule of thumb is that orbitals with occupation numbers between 1.98 and 0.02 should be in the active space. Thus, in the present case we speculate that a 10 electrons in 8 orbitals active space would be appropriate for the CASSCF of the ground state. Let’s try:

```bash
Run a CASSCF calculation for the ground state of H2CO
#
! RHF SVP def2-SVP/C SmallPrint
```
If we run that calculation it converges (somewhat a little slow in 8 iterations) and produces the following:

--- Inactive Energy E0 = -83.10078267 Eh
E(CAS)= -113.889220348 Eh DE= -0.000018747
--- Energy gap subspaces: Ext-Act = -0.430 Act-Int = -0.207
--- current l-shift: Up(Ext-Act) = 1.03  Dn(Act-Int) = 0.81
N(occ)= 1.99752 1.99621 1.98487 1.97919 1.94279 0.05943 0.02156 0.01843
||g|| = 0.000764063 Max(G)= 0.000415430 Rot=9,1
---- THE CAS-SCF GRADIENT HAS CONVERGED ----
--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- Forming Natural Orbitals
--- Canonicalize Internal Space
--- Canonicalize External Space

From which we see that we had two orbitals too many in the active space with occupation numbers very close to two. The presence of barely correlated orbitals (occupation close to 0.0 or 2.0) can cause convergence problems. Their inclusion in the active space does not significantly change the energy and it might better to omit these orbitals from the start.

In the present case, we re-run the CASSCF with 6 active electrons in six orbitals. The result is:

MACRO-ITERATION 2:
--- Inactive Energy E0 = -101.28388688 Eh
E(CAS)= -113.881917477 Eh DE= -0.010367388
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.827 Act-Int = -0.131
N(occ)= 1.98207 1.97921 1.94013 0.06065 0.02088 0.01705
||g|| = 0.041684361 Max(G)= -0.017003745 Rot=5,4
--- Orbital Update [SuperCI(PT)]
9.11 The Complete Active Space Self-Consistent Field (CASSCF) Module

--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.186646455 Max(X)(5,4) = 0.167228161
--- SFit(Active Orbitals)

MACRO-ITERATION 3:
--- Inactive Energy E0 = -100.84115573 Eh
E(CAS)= -113.884702316 Eh DE= -0.002784839
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.849 Act-Int = -0.188
N(occ)= 1.98170 1.97906 1.94109 0.05960 0.02110 0.01745
||g|| = 0.062334253 Max(G) = 0.068518352 Rot=10,4
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.058154917 Max(X)(6,2) = 0.033940911
--- SFit(Active Orbitals)

MACRO-ITERATION 4:
--- Inactive Energy E0 = -100.74042311 Eh
E(CAS)= -113.885056475 Eh DE= -0.000354159
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.858 Act-Int = -0.216
N(occ)= 1.98171 1.97917 1.94173 0.05891 0.02102 0.01746
||g|| = 0.06311921 Max(G) = 0.065579778 Rot=9,2
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.033801848 Max(X)(5,4) = 0.016759804
--- SFit(Active Orbitals)

MACRO-ITERATION 5:
--- Inactive Energy E0 = -100.66196118 Eh
E(CAS)= -113.885235194 Eh DE= -0.000178719
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.861 Act-Int = -0.236
N(occ)= 1.98175 1.97918 1.94210 0.05850 0.02105 0.01742
||g|| = 0.06833530 Max(G) = 0.063968813 Rot=9,2
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.020713757 Max(X)(6,2) = 0.015195393
--- SFit(Active Orbitals)

MACRO-ITERATION 6:
--- Inactive Energy E0 = -100.57575821 Eh
E(CAS)= -113.885360841 Eh DE= -0.00025646
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.861 Act-Int = -0.263
N(occ)= 1.98176 1.97925 1.94222 0.05834 0.02103 0.01741
||g|| = 0.06480607 Max(G) = 0.063128377 Rot=9,2
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.012360007 Max(X)(22,9) = 0.005727309
--- SFit(Active Orbitals)

MACRO-ITERATION 7:
--- Inactive Energy E0 = -100.52780254 Eh
E(CAS)= -113.885406351 Eh DE= -0.000045510
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.858  Act-Int = -0.283
N(occ)= 1.98169 1.97931 1.94207 0.05845 0.02101 0.01746
||g|| = 0.002225744 Max(G)= -0.000966988 Rot=10,4
--- Orbital Update [SuperCI(PT)]
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.002492545 Max(X)(19,10) = 0.001391681
--- SFit(Active Orbitals)

MACRO-ITERATION 8:
--- Inactive Energy E0 = -100.52746751 Eh
E(CAS)= -113.885407435 Eh DE= -0.000001084
--- Canonicalize Internal Space
--- Canonicalize External Space
--- Energy gap subspaces: Ext-Act = -0.858  Act-Int = -0.283
N(occ)= 1.98171 1.97932 1.94199 0.05854 0.02100 0.01745
||g|| = 0.000779783 Max(G)= -0.000296797 Rot=9,2
----- THE CAS-SCF GRADIENT HAS CONVERGED -----
--- FINALIZING ORBITALS ---
----- DOING ONE FINAL ITERATION FOR PRINTING ----
--- Forming Natural Orbitals
--- Canonicalize Internal Space
--- Canonicalize External Space

MACRO-ITERATION 9:
--- Inactive Energy E0 = -100.52746751 Eh
--- All densities will be recomputed
E(CAS)= -113.885407435 Eh DE= 0.000000000
--- Energy gap subspaces: Ext-Act = -0.858  Act-Int = -0.283
N(occ)= 1.98171 1.97932 1.94199 0.05845 0.02100 0.01745
||g|| = 0.000779783 Max(G)= 0.000296787 Rot=9,2
-----------------
CASSCF RESULTS
-----------------
Final CASSCF energy : -113.885407435 Eh -3098.9795 eV

The calculation converges very quickly and the occupation numbers show you that all of these orbitals are actually needed in the active space. The omission of the two orbitals from the active space came at an increase of the energy by \(\sim 4\) mEh which seems to be tolerable. Let’s look what we have in the active space in figure 9.3.

Thus, we can see that we got a fairly nice result: our calculation has correlated the in-plane oxygen lone pair, the C-O \(\sigma\) and the C-O \(\pi\) bond. For each strongly occupied bonding orbital, there is an accompanying weakly occupied antibonding orbital in the active space that is characterized by one more node. In particular, the correlating lone pair and the C-O \(\sigma^*\) orbital would have been hard to find with any other procedure than the one chosen based on natural orbitals. We have now done it blindly and looked at the orbitals only after the CASSCF — a better approach is normally to look at the starting orbitals before you enter a potentially expensive CASSCF calculation. If you have bonding/antibonding pairs in the active space plus perhaps the singly-occupied MOs of the system you probably have chosen a reasonable active space.

We can play the game now somewhat more seriously and optimize the geometry of the molecule using a reasonable basis set:
Figure 9.3: Orbitals of the active space for the CASSCF(6,6) calculation of H$_2$CO.
Let us compare to MP2 geometries (this job was actually run first):

! RHF RI-MP2 def2-TZVP def2-TZVP/C SmallPrint TightSCF Opt

%mp2 natorbs true
end

* int 0 1
  C 0 0 0 0.00 0.0 0.00
  O 1 0 0 1.20 0.0 0.00
  H 1 2 0 1.10 120.0 0.00
  H 1 2 3 1.10 120.0 180.00
*

The results are actually extremely similar (better than 1 pm agreement). Compare to RHF:
9.11 The Complete Active Space Self-Consistent Field (CASSCF) Module

--- Optimized Parameters ---
(Angstroem and degrees)

<table>
<thead>
<tr>
<th>Definition</th>
<th>OldVal</th>
<th>dE/dq</th>
<th>Step</th>
<th>FinalVal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B(O 1,C 0)</td>
<td>1.1784</td>
<td>-0.000164</td>
<td>0.0001</td>
<td>1.1785</td>
</tr>
<tr>
<td>2. B(H 2,C 0)</td>
<td>1.0921</td>
<td>0.000010</td>
<td>-0.0000</td>
<td>1.0921</td>
</tr>
<tr>
<td>3. B(H 3,C 0)</td>
<td>1.0921</td>
<td>0.000010</td>
<td>-0.0000</td>
<td>1.0921</td>
</tr>
<tr>
<td>4. A(O 1,C 0,H 3)</td>
<td>121.93</td>
<td>-0.000003</td>
<td>-0.00</td>
<td>121.93</td>
</tr>
<tr>
<td>5. A(H 2,C 0,H 3)</td>
<td>116.13</td>
<td>0.000005</td>
<td>0.00</td>
<td>116.13</td>
</tr>
<tr>
<td>6. A(O 1,C 0,H 2)</td>
<td>121.93</td>
<td>-0.000003</td>
<td>-0.00</td>
<td>121.93</td>
</tr>
<tr>
<td>7. I(O 1,H 3,H 2,C 0)</td>
<td>0.00</td>
<td>0.000000</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Thus, one can observe that the correlation brought in by CASSCF or MP2 has an important effect on the C=O distance (∼4 pm), while the rest of the geometry is not much affected.

More on the technical use of the CASSCF program.

The most elementary input information which is always required for CASSCF calculations is the specification of the number of active electrons and orbitals.

```
%casscf nel 4 # number of active space electrons
norb 6 # number of active orbitals
end
```

The CASSCF program in ORCA can average states of several multiplicities. The multiplicities are given as a list. For each multiplicity the number of roots should be specified:

```
%casscf mult 1,3 # here: multiplicities singlet and triplet
nroots 4,2 # four singlets, two triplets
end
```

If the symmetry handling in ORCA is enabled (! UseSym) each multiplicity block must have an irreducible representation assigned. Numbers corresponding to the “irrep” within a given symmetry are printed in the output of ORCA.

```
%casscf mult 1,3 # here: multiplicities singlet and triplet
irrep 0,1 # here: irrep for each mult. block (mandatory!)
nroots 4,2 # four singlets, two triplets
end
```
Several roots and multiplicities usually imply a state average CASSCF (SA-CASSCF) calculation. The program by default chooses equal weights for the multiplicity blocks. Roots within a given block have equal weight. Users can define a custom weighting scheme for the multiplicity blocks and roots:

```plaintext
%casscf mult 1,3 # here: multiplicities singlet and triplet
nroots 4,2 # four singlets, two triplets
bweight 2,1 # singlets and triplets weighted 2:1
weights[0] = 0.5,0.2,0.2,0.2 # singlet weights
weights[1] = 0.7,0.3 # triplet weights
end
```

The program automatically normalizes these weights such that the sum over all weights is unity. If convergence on an excited state is desired then the `weights[0]` array may look like `0.0,0.0,1.0` (this would optimize the orbitals for the third excited state. If several states cross during the orbital optimization this will ultimately cause convergence problems.

**Orbital optimization methods.** In the following we discuss the available options for orbital optimization. These keywords are optional and should only be used when facing convergence difficulties. We have implemented several orbital optimization methods (list below).

```plaintext
Keywords to be used as Orbstep/Switchstep
SuperCI_PT # perturbative SuperCI (first order)
SuperCI # SuperCI (first order)
DIIS # DIIS (first order)
KDIIS # KDIIS (first order)
SOSCF # approx. Newton-Raphson (first order)
NR # augmented Hessian Newton-Raphson
unfolded two-step procedure
- still not true second order
```

The different convergers have different strengths. First order method are cheap but typically require more iterations compared to second order methods. When the gradient is far off from convergence the program uses the converger defined as `orbstep` while close to convergence the `switchstep` is used. The actual criteria for switchstep are defined with the keywords `SwitchConv` and `SwitchIter`.

```plaintext
%casscf
OrbStep SuperCI # or any other from the list above
SwitchStep DIIS # or any other from the list above
SwitchConv 0.03 # gradient at which to switch
SwitchIter 15 # iteration at which the switch takes place
irrespective of the gradient
MaxIter 75 # Maximum number of macro-iterations
end
```
Picking a convergence strategy, the program has to balance speed and robustness. The default strategy uses the SuperCI_PT as converger for orbstep and switchstep. This approach determines the elements $X_{pq}$ of the anti-Hermitean matrix used in the orbital update according to

$$C^{\text{new}} = C^{\text{old}} e^{X}$$

(9.175)

from first order perturbation theory using the the Dyall-Hamiltonian [347] in zeroth order and a first-order perturbed wave function given as $\Psi^{(1)} = \sum_{pq} \Psi^0_p X_{qp}$ where the $\Psi^0_p$ represent singly excited functions obtained from the CASSCF wave function by excitation from orbital $\psi_p$ to orbital $\psi_q$. The SuperCI_PT is robust with respect to orbitals that are exactly doubly occupied or empty. Rotations with orbital close to this critical occupations can further be eliminated with the keyword DThresh (default=1e-6). However, the method is quiet aggressive in the orbital optimization. In some cases, such as basis set projection or PATOM guess (intrinsic basis set projection), the program might pick a step-size that is too big. Then restricting the step-size via the keyword MaxRot (default=0.2) might be useful. The keywords DThresh and MaxRot are specific to SuperCI_PT. In contrast to other convergers, level shift and other means of damping do not apply to the SuperCI_PT.

| MaxRot 0.05 | # cap stepsize for SuperCI_PT |
| DThresh 1e-6 | # thresh for critical occupation |

Previous default settings used the combination of orbstep SuperCI and switchstep DIIS, which is more robust than the present default (SuperCI_PT), but typically requires more iterations. Note that SuperCI, DIIS and KDIIS should not be used when the active orbitals have an occupation of exactly 2.0 or 0.0! The DIIS may sometimes converge slowly or “trail” towards the end such that real convergence is never reached. The KDIIS [315] — based on perturbation theory — is an approximation to the regular DIIS procedure avoiding redundant rotations. Both DIIS schemes avoid linear dependencies in the expansion space.

| MaxDIIS 15 | # max. no of DIIS vectors to keep |
| DIISThresh 1e-7 | # overlap criteria for linear dependency |

The combination of SuperCI and DIIS (switchstep) is particularly suited to protect the active space composition. Adjusting the level shift will do the job. **Level shift is the single most important lever to control convergence.**

| # default = dynamic level-shifting based on Ext-Act, Int-Act |
ShiftUp 2.0	# static up-shift the virtual orbitals
ShiftDn 2.0	# static down-shift the internal orbitals
MinShift 0.6	# minimum separation subspaces

Level-shift is particularly important if the active, inactive and virtual orbitals overlap in their orbital energies. The energy separation of the subspaces is printed in the output. Ideally, the entries Ext-Act and Act-Int should be positive and larger than 0.2 Eh. This will help the program to preserve your active space composition throughout the iterations. If no shift is specified in the input, ORCA will choose a level-shift to guarantee an energy separation between the subspaces (MinShift).
In difficult cases the use of the Newton-Raphson method is highly recommended even if each individual iteration is considerably more expensive. It is strong towards the end but it would be a waste to start orbital optimization with the expensive NR method since its radius of quadratic convergence is quite small. The computationally cheaper alternative is the SOSCF procedure belonging to the family of quasi-Newton updates.

Keep in mind that the Newton-Raphson is designed for optimization on a convex surface (Hessian is semidefinite). If the NR is switched on too early, there is a good chance that this condition is not fulfilled. In this case the program will complain about negative eigenvalues or diagonal elements of the Hessian as can be seen in the snippet below. The next optimization step is large and unpredictable. It is a wildcard that can get you closer to convergence or immediate divergence of the CASSCF procedure.

For larger system, the augmented Hessian equations are solved iteratively (NR iterations). The augmented Hessian is considered solved when the residual norm, $\langle r | r \rangle$, is small enough. Aside from the overall CASSCF convergence, negative eigenvalues affect these NR iterations.

There are a number of refined NR settings that influence the convergence behavior on a non-convex energy surface. We mention the keywords for completeness and dis-encourage from changing the default settings. If overall convergence cannot be changed due to negative eigenvalues, it is recommended to delay the NR switchstep (switchconv, switchiter). This will require some trial and error, since the curvature of the surface is a priori not know.
In general, convergence is strongly influenced by numerical noise, especially in the final iterations. One source of numerical noise is the incremental Fock build. Thus, it can help to enforce more frequent full Fock matrix formation.

\[
\text{ResetFreq 1 \# reset frequency for direct SCF}
\]

If the orbital change in the active space is small, the active Fock matrix in ORCA is approximated using the density matrix from the previous cycle saving a second Fock matrix build. However, this approximation might also be a source of numerical instability. The threshold “SwitchDens” can be set to zero to enable the exact build. The program default starts with a rather large value (1e-2) and will reduce this parameter automatically when necessary.

\[
\text{switchdens 0.0001 \# gtol * 0.1}
\]

In all of the implemented orbital optimization schemes the step-size correlates with the gradient-norm. With the exception of the SuperCI_P, a constant damping factor can be set with the keyword GradScaling.
GradScaling 0.5  # constant damping in all steps
# Handling divergent steps (DE > 0.0)

There are situations when the active space has been chosen carefully, but the initial gradient is still far off. To keep the “good” active space, we can suppress all rotation but the inactive-external ones until the gradient-norm is small enough to continue safely. The threshold can be set with FreezeIE keyword. Once the components of the gradient in the inactive-external direction have a weight of less than FreezeIE, all constraints are lifted. ORCA by default freezes active rotations if the total gradient norm is larger than 1.0 and the active rotations have a weight of less than 5%. The feature can be turned off setting the threshold to zero.

Similarly, rotations of the almost doubly occupied orbitals with the inactive orbitals can be damped using the threshold FreezeActive. Rotations of this type are damped as long as all their weight is smaller than FreezeActive. In contrast to the ShiftDn, it damps just the “troublesome” parts of internal-active rotations. This option applies to all of the orbital optimization schemes but the SuperClPT.

FreezeIE 0.4  # keep active space until int-ext rotation have
# a contribution of less than 40% to the ||g||
FreezeActive 0.03 # keep almost doubly occupied orbitals as long as
# their contribution is less than 3% to the ||g||

If the calculation starts from a converged Hartree-Fock orbitals, the core orbitals should not change dramatically by the CASSCF optimization. Often trailing convergence is associated to rotations with low lying orbitals. Their contribution to the total energy is fairly small. With the keyword FreezeGrad these rotations can be omitted from the orbital optimization procedure.

FreezeGrad 0.2  # omit hitting a gradient norm ||g|| <0.2

The affected orbitals are printed at the startup of CASSCF.

FreezeGrad ... enabled if ||g|| is below 0.02
Note Convergence can be signaled if the reduced gradient reaches GTol

Last frozen orbital 9
First deleted orbital 320
Once rotations with core and deleted orbitals are stabilized they will be damped.

By default rotations with frozencore (or deleted virtuals) are not omitted. If the option FreezeGrad is active, the ratio with respect to the total gradient is printed.

||g|| = 0.001240414 Max(G) = -0.000431747 Rot=319,1
--- Option=FreezeGrad: ||g|| = 0.001061707
= 87.21%
Omitting frozencore elements
Using the RI Approximation

A good way to speed up the calculations at the expense of “only” obtaining approximate results is to introduce the RI approximation (works best in conjunction with a “jk” auxiliary bases). The RI approximation is invoked by:

```
TrafoStep RI # RI used in transformation
 # NOTE: NEEDS an Aux-Basis
Exact # exact transformation (default)
```

Monitoring the active space

During the iterations, the **active orbitals are chosen to maximize the overlap** with active orbitals from the previous iterations. Maximizing the overlap does not make any restrictions on the nature of the orbitals. Thus initially localized orbitals will stay localized and ordered, which is sometimes a desired feature e.g. in the density matrix renormalization group approach (DMRG). This feature is set with the keyword `ActConstraints` and is enabled by default (after the first 3 macroiterations). For some orbital optimization procedures, such as the SuperCI, natural orbitals are more advantageous. Therefore, the `ActConstraints` can be turned off in favor of natural orbital construction (see below). If the keyword is not set by the user, ORCA picks the best choice for the given orbital optimization step.

```
ActConstraints 0 # no checks and no changes
 1 # maximize overlap of active orbitals and check sanity. (default for DIIS)
 2 # make natural orbitals in every iteration (default SuperCI)
 3 # make canonical orbitals in every iteration
 4 # localize orbitals
```

In addition to maximizing the overlap, "**ActConstraints 1**" checks if the composition of the active space has changed i.e. an orbital has been rotated out of the active space. In this case, ORCA aborts and stores the last valid set of orbitals. Below is an example error message.

```
--- Orbital Update [DIIS]
--- Failed to constrain active orbitals due to rotations:
 Rot(37, 35) with OVL=0.960986
 Rot(38, 34) with OVL=0.842114
 Rot(43,104) with OVL=0.031938
```

In the snippet above, the active space ranges from 37-43. The program reports that orbitals 37,38 and 43 have changed their character. The overlap of orbital 43 (active) with the previous set of active orbitals is just 3% and the program aborts. There are a number of reasons, why this happens in the calculation. If this error occurs constantly with the same orbitals, it is worthwhile to inspect the rotating partner orbitals (visualize). It might be sign that the active space is not balanced and should be extended. In many instances changing the level-shift or lowering switchconv is sufficient to protect the active space. In some cases, turning off the sanity check ("**ActConstraints 0**") and re-rotating orbitals will bring CASSCF closer to convergence. Some problems can be avoided by a better design of the calculation. The CASSCF tutorial elaborates on the
subject in more detail.
There are situations such as parameter scans, where "actconstraints" is counter-productive and should be
disabled. In other words, we want to allow changes in the active space composition. As an example, consider
the rotation of ethylene around its double-bond represented by a CAS(2,2). Although the active space
consists of the bonding and anti-bonding orbitals \(\pi\)-orbitals, their composition in terms of atomic orbitals
changes from the eclipsed to the staggered conformation. Depending on the actual input settings (orbstep
and number of scan points), this might trigger an abort.

**Final orbitals options.**

Once the calculation has converged, ORCA will do a final macro-iteration, where the orbital are “finalized”.
The default final orbitals are canonical in the internal and external space with respect to state-averaged
Fock operator. The active orbitals are chosen as natural orbitals. Other orbital types can be chosen for
the individual subspaces. Some of the options are specifically designed for coordination chemistry and are
discussed in the CASSCF tutorial that supplements the manual.

```plaintext
#internal space
IntOrbs CanonOrbs # canonical
 LocOrbs # localized
 unchanged # no changes

#external space
ExtOrbs CanonOrbs # canonical
 LocOrbs # localized
 unchanged # no changes
 DoubleShell # based on the shell and angular momentum
 # of the highest active orbitals, the first few
 # virtual orbitals correspond to the doubled-shell.
 # All other virt. orbitals are canonicalized.
 # For 3d-metal complexes, these are the 4d orbitals!
 # For 4d-metal compleces, these are the 5d orbitals!
 # And so on...

#active space
ActOrbs NatOrbs # natural
 CanonOrbs # canonical
 LocOrbs # localized
 unchanged # no changes
 dOrbs # purify metal d-orbital and call the AILFT
 fOrbs # purify metal f-orbital and call the AILFT
```

If the active space consists of a single set of metal d-orbitals, natural orbitals may be a mixture of the
d-orbitals. The active orbitals are remixed to obtain "pure" d-orbitals (ligand field orbitals) if the `actorbs`
is set to dorbs. The same holds for f-orbitals and the option forbs. Furthermore, the keyword dorbs automatically triggers the \textit{ab initio} ligand field analysis (AILFT). [348] The approach has been reported in a number of applications. [349,350] For more details on the AILFT approach, we refer to the respective manual section and the CASSCF tutorial, where examples are shown. For a few applications, a printing of the complete wavefunction is useful and can be requested.

<table>
<thead>
<tr>
<th>PrintWF</th>
<th></th>
<th># (default) prints only the CFGs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>csf</td>
<td># Printing of the wavefunction in the basis of CSFs</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td># Printing of the wavefunction in the basis of Determinants</td>
</tr>
</tbody>
</table>

The CI-step default setting is CSF based and is done in the present program by generating a partial “formula tape” which is read in each CI iteration. The tape may become quite large beyond several hundred thousand CSFs which limits the applicability of the CASSCF module. The accelerated CI (ACCCI) has the same limitations, but uses a slightly different algorithm that handles multi-root calculations much more efficiently. For now, properties (spin-orbit coupling, g-Tensor..) as well as NEVPT2 corrections are not available with ACCCI. Nevertheless, it is the recommended option to converge a CASSCF calculation with multiple roots. The resulting .gbw file may be used in a successive run to obtain properties or NEVPT2 corrections.

Larger active spaces are tractable with the DMRG approach or the iterative configuration expansion (ICE) developed in our own group. DMRG and ICE return approximate full CI results. The maximum size of the active space depends on the system and the required accuracy. Active spaces of 10–20 orbitals should be feasible with both approaches. The CASSCF tutorial covers examples with ACCCI and ICE as CI solvers.

\begin{verbatim}
%casscf
   CIStep CSFCI  # CSF based CI (default)
   ACCCI       # CSF based CI solver with faster algorithm for multi-root calculations
   ICE         # CSF based approximate CI -> ICE/CIPSI algorithm
   DMRGCI      # density matrix renormalization group approach instead of the CI
end
\end{verbatim}

In the ICE approach, the computation of the coupling coefficients is time-consuming and by default repeated in every macro-iteration. To avoid the reconstruction, it is recommended to once generate a coupling coefficient library (\texttt{cclib}) and to use it for all of your ICE calculations. The details of the methodology and the \texttt{cclib} are described in the ICE section 9.15.

Detailed settings for the conventional CI solvers (CISFCI, ACCCI, ICE) can be controlled in a sub-block. \textbf{Not all of the options and properties are available for CISteps apart from the default!} NEVPT2, transition densities and spin-dependent properties such as spin-orbit coupling are not yet available for ACCCI and ICE.

\begin{verbatim}
%casscf ci
   MaxIter 64  # max. no. of CI iters.
   MaxDim 10   # Davidson expansion space = MaxDim * NRoots
   NGuessMat 512 # Initial guess matrix: 512x512
\end{verbatim}
The CI-step DMRGCI interfaces to the BLOCK program developed in the group of G. K.-L. Chan [351–354]. A detailed description of the BLOCK program, its input parameters, general information and examples on the density matrix renormalization group (DMRG) approach, are available in the section 9.13 of the manual.

The implementation of DMRG in BLOCK is fully spin-adapted. However, spin-densities and related properties are not available in the current version of the BLOCK code. To start a DMRG calculation add the keyword “CIStep DMRGCI” into a regular CASSCF input. ORCA will set default parameters and generate and input for the BLOCK program. In general, DMRG is not invariant to rotation in the active space. The program by default will run an automatic ordering procedure (Fiedler). More and refined options can be set in the dmrg sub-block of CASSCF — see section 9.13 for a complete list of keywords.

It is highly recommended to start the calculation with split-localized orbitals. Any set of starting orbitals (gbw file) can be localized using the orca_loc program. Typing orca_loc in the shell will return a small help-file with details on how to setup an input for the localization. Examples for DMRG including the localization are in the corresponding section of the manual 9.13. The utility program orca_loc is documented in section 9.33.5. Split-localization refers to an independent localization of the internal and virtual part of the desired active orbitals.

NOTE:

- Let us stress again: it is strongly recommended to first LOOK at your orbitals and make sure that the ones that will enter the active space are really the ones that you want to be in the active space! Many problems can be solved by thinking about the desired physical contents of the reference space before starting a CASSCF. A poor choice of orbitals results in poor convergence or poor accuracy of the
results! Choosing the active orbitals always requires chemical and physical insight into the molecules that you are studying!

- Please try the program with default settings before playing with the more advanced options. If you encounter convergence problems, have a look into your output, read the warning and see how the gradient and energy evolves. Increasing MaxIter will not help in many cases.

- Be careful with keywords such as !tightscf, !verytightscf and so on. These keywords set higher integral thresholds, which is a good idea, but also tighten the CASSCF convergence thresholds. If you do not need a tighter energy convergence, reset the criteria in the casscf block using ETol. More many applications an energy convergence beyond $10^{-7}$ is unnecessary.

### 9.11.2 CASSCF Properties

The CASSCF program is able to calculate UV transition, CD spectra, SOC, Zeeman splittings, g-tensors, magnetization, magnetic susceptibility and MCD spectra. The properties are exercised in more detail in the CASSCF tutorial. The techniques used to calculate SOC, and Zeeman splittings are identical to those implemented into the MRCI program. Input and keywords mimic the ones in the MRCI module described in section 9.24.2. As an example, the input file to calculated g-values of CO$^+$ is listed below:

```bash
!TZVPP Bohrs TightSCF #TightSCF for more accurate integrals
%casscf nel 9
 norb 8
 nroots 9
 mult 2
 switchstep NR
 etol 1e-7 #reset energy convergence
 rel
 dosoc true #spin-orbit coupling (and ZFS)
 gtensor true
 end
end
xyz 1 2
 C 0 0 0.0
 O 0 0 2.3504
*
```

Spin-Spin couplings are not accessible via the CASSCF module. However, it is possible to run CAS-CI type calculations in MRCI. Converged CASSCF orbitals can be read setting the following flags:

```bash
!MOREAD NOITER ALLOWRHF TZVPP TightSCF Bohrs
%moinp "convergedCASSCF.gbw"
%mrci
```
A common way to introduce dynamical correlation for the property computation, is to replace the energies entering the quasi-degenerate perturbation theory. If the NEVPT2 energy correction is computed in CASSCF, there will be additional printings where CASSCF energies are replaced by the more accurate NEVPT2 values. Alternatively, these diagonal energies can be taken from the input file similarly how it is described for the MRCI module. A more detailed documentation is presented in the MRCI property section.

9.11.3 Fully Variational Spin-Orbit Coupled CASSCF

The fully variational spin-orbit coupled CASSCF approach allows the user to account for spin-orbit coupling effects variationally. In this method the CASSCF wavefunction is presented as a linear combination of several parts of pre-selected multiplicities $S$ and all possible $M_s = S, S - 1, \ldots, -S$.

$$\Psi^{REL} = \psi^{S M_S} + \psi^{S M_S - 1} + \ldots + \psi^{S - 1 M_S - 1} + \psi^{S - 1 M_S - 2} + \ldots \quad (9.176)$$

Each of the building block wavefunctions $\psi^{S M_S}$ is itself represented by a sum of CSFs

$$\psi^{S M_S} = \sum_{l}^{NCSF} C_{l}^{S M_S} \phi_{l}^{S M_S} \quad (9.177)$$

The presented approach optimizes the CI coefficients and MO coefficients of a sum of the Born-Oppenheimer (BO) Hamiltonian and the spin-orbit mean-field Hamiltonian (SOMF) that are given by
\[ \hat{H}_{\text{REL}} = \hat{H}_{\text{BO}} + \hat{H}_{\text{SOMF}} \]  \hspace{1cm} (9.178)

The procedure employs the intermediate coupling scheme to account for SOC. This allows to employ complex-valued CI coefficients, but real-valued molecular orbital coefficients.

As an example, the input file to calculated g-values of HgH is listed below:

```plaintext
! DKH-TZVP TightSCF Conv DKH Pmodel

% casscf
 nel 3 # number of electrons
 norb 5 # number of orbitals
 nroots 3 # number of roots for the guess calculation
 mult 2 # multiplicities
 etol 1e-9
 gtol 1e-05
 maxiter 100

 rel
 dosoc true # accounts for the SOC interaction
 soctype 1 # runs a variational calculation
 0 # corresponds to the QDPT case
 # NOTE: this is different from the soctype
 # in the %rel block; see below
 orbstep superci # SuperCI algorithm for convergence
 diis # DIIS algorithm for convergence
 qn # quasi-Newton algorithm for
 # convergence
 switchstep diis
 gradscaling 0.1 # gradient scaling factor
 maxiter 1000 # number of iteration
 # corresponds to the diagonalization
 # of the BO and SOC operators in the
 # basis of CSFs
 printlevel 2
 nroots 6 # number of relativistic roots
 etol 1e-9
 gtol 1e-3
 socints 0 # SOC integrals are calculated once
 # with guess MOs and used during
 # every CASSCF iteration
 1 # SOC integrals are re-calculated
 # on every CASSCF calculation
 -1 # SOC integrals are taken from files
 # input_name.mrci.sox.tmp etc
 gtensor true # calculate g-tensor
 usekramerssym true # use Kramers symmetry for the CI
```
Here, the non-relativistic (or scalar relativistic, real-valued) CI vectors are calculated first. They are used as guess vectors for the following variational calculation. The relativistic procedure starts with the message
First, the variational procedure diagonalizes the relativistic Hamiltonian in the basis of CSFs. This corresponds, in fact, to the optimization of the CI coefficients using the Davidson procedure and guess MOs, and denoted in the output as **ZERO MACRO-ITERATION**

```
ZERO MACRO-ITERATION

COMPLEX DAVIDSON-DIAGONALIZATION

<table>
<thead>
<tr>
<th>Dimension of the eigenvalue problem</th>
<th>... 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of roots to be determined</td>
<td>... 6</td>
</tr>
<tr>
<td>Maximum number of CI iterations</td>
<td>... 64</td>
</tr>
<tr>
<td>Maximum size of the expansion space</td>
<td>... 18</td>
</tr>
<tr>
<td>Convergence tolerance for the residual</td>
<td>... 1.00e-14</td>
</tr>
<tr>
<td>Orthogonality tolerance</td>
<td>... 1.00e-15</td>
</tr>
<tr>
<td>Data storage type</td>
<td>... COMPLEX DOUBLE</td>
</tr>
<tr>
<td>Data compression type</td>
<td>... UNCOMPRESSED</td>
</tr>
</tbody>
</table>
```

At the end of the Davidson procedure the resulting energies and roots contributions are printed:

```
Eh cm⁻¹ residual norm
-19596.632795883 0.00000 0.000000000000 # energies and residuals
-19596.632795883 0.00001 0.000000000000
-19596.522641797 24176.02753 0.000000000000
-19596.522641797 24176.02754 0.000000000000
-19596.506502189 27718.26205 0.000000000000
-19596.506502189 27718.26205 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

--# relativistic
RELATIVISTIC CASSCF STATES # states are
--# printed
ROOT 0: E= -19596.6327958833 Eh

S = 0.5 MS = 0.5 # contribution to
the root 0 of CSFs
with S = 1/2 and
MS = 1/2

(-0.88880371, 0.17857507) 0 # real and image parts
of the CI
coefficient of the
CFS "0"

(-0.02017328, 0.00746783) 1
(-0.00746783, -0.02017328) 2
(-0.08345169, 0.01676678) 3
(-0.02929834, 0.01659270) 4
(-0.08258516, 0.01659270) 9
(0.07876099, -0.01582436) 10
(0.04482426, -0.00900592) 11
```
Next, the properties specified in the input are calculated. Next, the obtained complex CI coefficients are used to develop the orbital gradient as it is described in detail in the literature [355]. The orbital gradient is used for optimizing real-valued MOs.

MACRO-ITERATION 1:

Scaling of the SOC contribution 1.000

-------------------------------
COMPLEX DAVIDSON-DIAGONALIZATION
-------------------------------

Dimension of the eigenvalue problem ... 80
Number of roots to be determined ... 6
Maximum number of CI iterations ... 64
Maximum size of the expansion space ... 18
Convergence tolerance for the residual ... 1.00e-14
Orthogonality tolerance ... 1.00e-15
Data storage type ... COMPLEX DOUBLE
Data compression type ... UNCOMPRESSED

After the CASSCF calculation converged
the complex CI vectors are printed again using the same format as indicated above. The program is able to calculate UV transitions, SOC splittings, and g-tensors for doublet states. The options are similar to those used for the CASSCF used to calculate SOC splittings are identical to those implemented into the MRCI program. The output for the calculated g-tensor of HgH is printed in the same format as produced the by MRCI program.

<table>
<thead>
<tr>
<th>KRAMERS PAIR 1 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix elements Re&lt;1</td>
</tr>
<tr>
<td>Matrix elements Re&lt;1</td>
</tr>
<tr>
<td>Matrix elements Im&lt;1</td>
</tr>
<tr>
<td>Matrix elements Re&lt;1</td>
</tr>
<tr>
<td>Matrix elements Re&lt;1</td>
</tr>
<tr>
<td>Matrix elements Im&lt;1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRONIC G-MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw-matrix g-matrix:</td>
</tr>
<tr>
<td>0.496395</td>
</tr>
<tr>
<td>1.544481</td>
</tr>
<tr>
<td>-0.805576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRONIC gTg-MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagonalized g**2 matrix (sqrt of eigenvalues taken):</td>
</tr>
<tr>
<td>3.280781</td>
</tr>
<tr>
<td>-0.999999</td>
</tr>
<tr>
<td>0.000000</td>
</tr>
</tbody>
</table>

The program is able to calculate UV transitions, SOC splittings, and g-tensors for doublet states. The options are similar to those used for the CASSCF used to calculate SOC splittings are identical to those implemented into the MRCI program. The output for the calculated g-tensor of HgH is printed in the same format as produced the by MRCI program.
9.12 N-Electron Valence State Perturbation Theory

CASPT2 and NEVPT2 belongs to the family of internally contracted perturbation theories with CASCI reference wavefunctions. Several studies indicate that CASPT2 and both variants of NEVPT2 produce energies of similar quality. [119, 120] The NEVPT2 methodology developed by Angeli et al exists in two formulations namely the strongly-contracted NEVPT2 (SC-NEVPT2) and the partially contracted NEVPT2 (PC-NEVPT2). [116–118] Irrespective of the name ”partially contracted” coined by Angeli et al, the latter approach employs a fully internally contracted wavefunction (FIC). Hence, we use the term “FIC-NEVPT2” in place of PC-NEVPT2. ORCA features both variants. Fully internally contracted and strongly contracted NEVPT2 differ in the basis of the wavefunction expansion. SC-NEVPT2 employs strongly contracted CSFs, which form a compact and orthogonal basis making it computationally slightly more attractive. Hence, the SC-NEVPT2 has been the program default for long time. NEVPT2 has many desirable properties - among them:

- It is **intruder state free** due to the choice of the Dyall Hamiltonian [347] as the 0th order Hamiltonian.
- The **0th order Hamiltonian is diagonal** in the perturber space. Therefore no linear equation system needs to be solved.
- It is **strictly size consistent**. The total energy of two non-interacting systems is equal to the sum of two isolated systems.
- It is **invariant under unitary transformations** within the active subspaces.
- **“strongly contracted”**: Perturber functions only interact via their active part. Different subspaces are orthogonal and hence no time is wasted on orthogonalization issues.
- **“fully internally contracted”**: Invariant to rotations of the inactive and virtual subspaces.

The principal methods are called within the CASSCF block and detailed settings can be adjusted in the nevpt subblock. We will go through some of the detailed setting in the next few subsections. For historical reasons, some features, such as the quasi-degenerate NEVPT2, are only available for the strongly contracted NEVPT2.

Note that methodology by default employs the frozencore approximation, which can be disabled with the simple keyword **!NoFrozenCore**. **Frozencore calculations are not significantly faster for the trade-off in accuracy and hence not recommended.** Nevertheless, it is the default to be consistent with the rest of the ORCA program package. A complete description of the frozecore settings can be found in section 9.8.
NEVPT2 can also be set using the simple keywords on top of any valid CASSCF input.

The two computationally most demanding steps of the NEVPT2 calculation are the initial integral transformation involving the two-external labels and the formation of the fourth order density matrix (D4). Efficient approximations to both issues are available in ORCA.

If not otherwise specified (keyword CIStep), CASSCF and consequently NEVPT2 use a conventional CSF based solver for the CAS-CI problem. The NEVPT2 methodology can be combined with approximate CI solution such as the DMRG approach described in section 9.13. With ORCA 4.0 NEVPT2-DMRG calculations for the FIC and SC type wavefunction are available using the methodology developed by the Chan group. [356] Aside from the usual DMRG input, the program requires an additional parameter (nevpt2.MaxM) in the DMRG block.
In this case, the exact fourth-order density matrix is stored on disk. Using the RI approximation, large molecules with active spaces of up to 20 orbitals should be computable. The DMRG extension with DLPNO and F12 are evaluated and locked until the next release. Future version might also support the CIStep ACCCI and CIStep ICE.

**RI, RIJK and RIJCOSX Approximation**

Setting the RI approximation on the CASSCF level, will set the RI options for NEVPT2 respectively. The three index integrals are computed and partially stored on disk. Three index integral with two internal labels are kept in main memory. The two-electron integrals are assembled on the fly.

Additional speedups can be obtained if the Fock operator formation is approximated using the !RIJCOSX or !RIJK techniques. Note that NEVPT2 and CASSCF program parts accept a single auxiliary basis. Aside from the Fock operator, the auxiliary basis is required for the integrals appearing in the CASSCF orbital gradient and in the NEVPT2 correlation energy. Hence, a sufficiently large and balanced auxiliary basis should be chosen.

The described methodology allows the computation of systems with up to 2000 basis functions. Even larger molecules are accessible in the framework of DLPNO-NEVPT2 described in the next subsection. Several examples can be found in the CASSCF tutorial.

**Beyond the RI approximation: DLPNO-NEVPT2**

For systems with more than 80 atoms, we recommend the recently developed DLPNO-NEVPT2. [121] It is a successful combination of DLPNO strategy with the FIC-NEVPT2 method. As its single reference counterparts, DLPNO-NEVPT2 recovers 99.9% of the FIC-NEVPT2 correlation energies even for large system. The input structure is similar to the parenting FIC-NEVPT2 method. Below you find an input
example for the Fe(II)-complex depicted in 9.4, where the active space consists of the metal-3d orbitals. The example takes about 9 hour (including 3 hour for one CASSCF iteration) using 8 cores (2.60GHz Intel E5-2670 CPU) for the calculation to finish. A detailed description of the DLPNO-NEVPT2 methodology can be found in our article. [121].

```plaintext
DLPNO-NEVPT2 calculation for quintet state of FeC72N2H100
!PAL8 def2-TZVP def2/jk
!moread noiter
%moinp "FeC72N2H100.gbw-CASSCF"
%MaxCore 8000
%casscf
 nel 6
 norb 5
 mult 5
 trafostep ri # ri approximation is mandatory for DLPNO-NEVPT2
nevpt2 DLPNO
 # sub-block with optional settings to control the accuracy
 nevpt
 TCutPNO 1e-8 # Most important parameter controlling the accuracy (default 1e-8)
 NThresh 1e-6 # FIC-NEVPT2 cut off for linear dependencies (default 1e-6)
 end
end
*xyz 0 5 FeC72N2H100.xyz
```

Just like RI-NEVPT2, the calculations requires an auxiliary basis. The aux-basis should be of /c or /jk type (more accurate). Aside from the paper of Yang et al, a concise report of the accuracy can be found in the CASSCF tutorial, where we compute exchange coupling parameters. Note that in the snippet above, we have repeated some of the default setting in the NEVPT sub-block. This is not mandatory and should be avoided to keep the input as simple as possible.

As mentioned earlier, the CASSCF step can be accelerated with the RI JK or RIJCOSX approximation. Both options are equally valid for the DLPNO-NEVPT2. The RIJK variant typically produces more accurate results than RIJCOSX. The input file is almost the same as before, except for the keyword line:

```plaintext
The combination of RIJK with DLPNO-NEVPT2
!PAL8 def2-TZVP def2/JK conv RIJK
```
Explicitely correlated NEVPT2: NEVPT2-F12

Like single-reference MP2, the NEVPT2 correlation energy converges slowly with the basis set. Aside from basis set extrapolation, the R12/F12 method are popular methods to reach the basis set limit. For comparison of F12 and extrapolation techniques we refer to the study of Liakos et al. [84] ORCA features an F12 correction for the FIC-NEVPT2 wavefunction using the RI approximation. [357] The RI approximation is mandatory as the involved integrals are expensive. Just like in MP2-F12, the input requires an F12 basis, an F12-cabs basis and a sufficient RI basis (/jk or /c).

```
aug-cc-pvdz/C used as RI basis
! cc-pvdz-F12 aug-cc-pvdz/C cc-pvdz-f12-cabs
%casscf nel 8
 norb 6
 mult 3,1
 gtol 1e-6
 etol 1e-14
 nevpt2 2 #FIC-NEVPT2
 trafostep ri #RI approximation must be on
 nevpt
```
Approximations for large active CASSCF space

For CASSCF spaces of (8,8) and larger the formation of the fourth order density matrix becomes more and more the time dominating step of the NEVPT2 calculation. To improve this situation, ORCA truncates the CASSCF wavefunction during the formation of the fourth and third order density matrices. Only configurations with a weight larger than a given parameter \( d4tpre \) are taken into account. The same approximation is available for the third order density matrix controlling \( d3tpre \). Both of the parameters can be adjusted within the \texttt{nevpt} of \texttt{casscf}.

These approximations naturally can affect the “configuration RI” as well. In this context, it should be noted that a configuration corresponds to a set of configuration state functions (CSF) with identical orbital occupation. For each state the dimension of the CI and and RI space is printed.

The default values usually produce errors of less than 1 mEh. However, the error introduced by the \( d4tpre \) is system dependent and should be double checked. The exact NEVPT2 energy is recovered with the parameters set to zero. The approximation is available for all variants of NEVPT2 (SC, FIC and DPLNO-FIC).

Storage of the fourth order density matrix can easily reach several gigabytes and thus cannot be kept in core memory for a large active space. We have implemented a few strategies for the computation of fourth order density matrix:
1. “fly”, compute elements and immediately contract them
2. “lfly”, less memory demanding version of “fly”
3. “on disk”, the full density matrix is stored on disk
4. “in core”, the full density matrix is kept in core memory

```plaintext
%casscf
...
nevpt # NEVPT sub-block for NEVPT2 specific settings
d4step disk # dumped on disk
 fly # on the fly (default)
 core # in core memory
 lfly # less memory demanding
 # compared to fly, but substantially slower!
end
end
```

**State-averaged NEVPT2**

In the definition of the Dyall Hamiltonian [347] the CASSCF orbitals are chosen to diagonalize the Fock operator (pseudo-canonicalized). Therefore, using a state-averaged CASSCF wave function, the NEVPT2 procedure involves the construction and diagonalization of the “state-specific” Fock operators and is thus resulting in a unique set of orbitals for each state. This becomes quickly inefficient for large number of states or large molecular systems since each orbital set implies an integral-transformation. This is the default setting for NEVPT2 and is printed in the output

```plaintext
NEVPT2-SETTINGS:
Orbitals ... canonical for each state
```

Other orbital options can be set using the keyword `canonstep`.

```plaintext
%casscf
...
nevpt # NEVPT sub-block for NEVPT2 specific settings
canonstep 0 # state-averaged orbitals and specific orbital energies
 1 # canonical for each state
 2 # state-averaged orbitals and orbital energies
 3 # 1-step orbital relaxation
 # and canonical for each state (partially relaxed)
end
end
```
The final orbitals of the state-averaged CASSCF diagonalize the state-averaged Fock operator. Large computational savings can be made if these orbitals are employed for all of the states. **canonstep 0** chooses orbital energies as diagonal elements of the state-specific Fock operators. In previous version of ORCA, this has been the default setting. These options work best if the averaged states are similar in nature. For SC-NEVPT2, we have implemented two more **canonsteps**, which trade accuracy for speed and *vice versa*. **canonstep 2** is more approximate and employs orbital energies from the state-averaged calculation. Thus there is no contribution to excitation energies from the perturber class $V_{ij}^{ab}$ at this level of approximation.

If the states under consideration are substantially different, these approximations will be of poor quality and should be turned off. Better results can be achieved, if the state-averaged orbitals are partially relaxed for each state before the actual SC-NEVPT2 calculation. [358] Often it is not possible to optimize the excited states separately. Thus **canonstep 3** will try a single steepest descent step for each state before running the actual SC-NEVPT2 calculation with canonicalized orbitals. Optionally, instead of a steepest descent using an approximate diagonal Hessian, a single Newton-Raphson step can be made.

```
%casscf
...
NEVPT2 SC
nevpt # NEVPT sub-block for NEVPT2 specific settings
gstep SOSCF true # steepest descent step
NR false # Newton-Raphson step
end
end
```

Despite a converged state-averaged calculation, the gradient for the individual states can be surprisingly large. As a consequence, the orbital relaxation might fail as both methods might be outside their convergence radius. ORCA will retry the relaxation with an increased damping. If the orbital update still fails, the program will stick with the initial orbitals. Setting an overall damping manually, might help the relaxation procedure.

```
NEVPT2 SC
nevpt
gscaling 0.5 # damp gradient with a pre-factor
end
```

**Quasi-Degenerate NEVPT2**

NEVPT2 as it is presented in the previous subsections follows the recipe of “diagonalize and perturb”. The 0th order wavefunction is determined by the diagonalization of the CAS-CI matrix. The space spanned by the CAS-CI vectors is often referred to as “model space”. The subsequent perturbation theory is constructed based on the assumption that the states under consideration are well described within the model space. Consequently, the first order correction to the wavefunction $\Psi_I^{(1)}$ does not affect the composition of the reference state $|I\rangle$. Corrections to the wavefunction and energy arise from the interaction of the reference state with the functions $|k\rangle$ of the contributing first order interacting space.
\[ \Psi^{(1)}_I = \sum_k C_k |k\rangle \]  

(9.179)

\[ E^{(2)}_I = \sum_k \frac{\langle I | H | k \rangle \langle k | H | I \rangle}{E^{(0)}_I - E_k} \]  

(9.180)

This is problematic, when the interaction/mixing of states are falsely described at the CASSCF level. A typical example is the dissociation of lithium fluoride.

\[
\text{!def2-tzvp nevpt2 nofrozencore}\\
\text{%casscf}\\
\text{   nel 2}\\
\text{   norb 2 #Li(2s), F(2pz)}\\
\text{   mult 1}\\
\text{   nroots 2}\\
\text{end}\\
\text{%paras}\\
\text{   r = 3,7,200}\\
\text{end}\\
\text{*xyz 0 1}\\
\text{   Li 0 0 0}\\
\text{   F 0 0 \{r\}}\\
\text{*}
\]

Here, the ground and first excited state of \(\Sigma^+\) should not cross. However, at the NEVPT2 level, an erratic double crossing is observed instead.
A re-organizing of the reference states can be introduced in the framework of quasi-degenerate perturbation theory. In practice, an eff. Hamiltonian is constructed allowing “off-diagonal” corrections to the second order energy

\[ H_{IJ} = \delta_{IJ} E_I^{(0)} + \sum_k \frac{\langle I | H | k \rangle \langle k | H | J \rangle}{E_I^{(0)} - E_k} \]

(9.181)

Diagonalization of this eff. Hamiltonian yields improved energies and rotation matrix (right eigenvectors) that introduces the desired re-mixing of the reference states. The quasi-degenerate extension to SC-NEVPT2 [359] can be switched on with the keyword `qdtype`

\[
\%casscf
\]
\[
... 
nevpt2 SC
nevp
qdtype 0  # no QDPT2
  1  # non-Hermetian eff. Hamiltonian
  2  # Hermitian eff. Hamiltonian (Cloizeaux)
\]
ORCA will print the eff. Hamiltonian matrix and its eigenvectors at the end of the calculation.

\[
\begin{align*}
\text{QD-NEVPT2 Results} \\
\text{MULT 1,} \\
\text{Total Hamiltonian to be diagonalized} \\
0 & 1 \\
0 & -107.074594 & -0.012574 \\
1 & -0.011748 & -107.003810 \\
\text{Right Eigenvectors} \\
0 & 1 \\
0 & -0.987232 & 0.170171 \\
1 & -0.159292 & -0.985414 \\
\text{ROOT} = 0 \\
\text{Total Energy Correction : dE = } -0.25309172934720 \\
\text{Zero Order Energy : E0 = } -106.823531682157986 \\
\text{Total Energy (E0+dE) : E = } -107.07662281153667 \\
\text{ROOT} = 1 \\
\text{Total Energy Correction : dE = } -0.23103459727281 \\
\text{Zero Order Energy : E0 = } -106.77074682157986 \\
\text{Total Energy (E0+dE) : E = } -107.00178141885267
\end{align*}
\]

By construction the Hamiltonian is non-Hermitian. If the matrix is ill-conditioned, the eigenvalues can be imaginary. ORCA prints a warning in this case. The energy denominator in the quasi-degenerate NEVPT2 is very sensitive to approximations. The canonicalization options with averaged orbitals and orbitals energies (canonstep 0/2) have the tendency to lessen the energy-denominator. To avoid artifacts, the calculation is restricted to canonstep 1 — each state has its own orbitals. For the computation of properties e.g. expectation values, the non-Hermitian formulation requires left- and right eigenvectors. A Hermitian variant [360] with a single set of eigenvectors (“right”) can be constructed. The transformation does not change the energies but affects the mixing of states. Despite the simplification, the recommended option is the non-Hermitian variant!

If properties are requested within the casscf module i.e. zero-field splitting, there will be an additional printing with the “improved” CI vectors and energies. For technical reasons, properties that are not computed in CASSCF such as the Mössbauer parameters do not benefit from the QD-NEVPT2 correction.
9.13 Density Matrix Renormalization Group

The **BLock** code in ORCA is only available on the Linux platform!

**BLOCK** is an implementation of the density matrix renormalization group (DMRG) algorithm from the Chan group. [351–354,361] The references given should be cited when using this part of the program.

The DMRG is a variational wavefunction method. It can be viewed as (i) an efficient method for strong correlation in large complete active spaces, (ii) a brute force method to systematically approach FCI for a large number of electrons and orbitals, (iii) a polynomial cost route to exact correlation in pseudo-one-dimensional molecules, such as chains and rings.

Although the algorithm is somewhat complicated compared to many quantum chemistry methods, significant effort has been devoted in **BLOCK** to ensure that it can be run in a simple black-box fashion. In most cases, only a single keyword needs to be specified.

To provide an idea of how the DMRG can be used, here are some examples. The timings will vary depending on your computational setup, but the following are calculations that run in a few hours to a day, on a single 12-core Xeon Westmere cluster node:

- Complete active space (CAS) CI calculations for active spaces with up to 30 electrons in 30 active orbitals, targetting up to 1–10 states, e.g. Jacobsen’s catalyst in a 32 electron, 25 orbital active space,

- One-dimensional chain molecules, with “widths” of up to 4 orbitals, and about 100 orbitals in total, e.g. the $\pi$-active space of a 4×25 graphene nanoribbon,

- FCI benchmark solutions in molecules with fewer than 20 electrons, and up to 100 orbitals, e.g. $C_2$ in a cc-pVTZ basis, $D_{2h}$ symmetry (12 electrons in 60 orbitals),

- Accuracies in energy differences or total energies of about 1 kcal/mol.

The following are calculations which are possible with the **BLOCK** code, but which are challenging, and require large memory (e.g. up to 8 GB per core) and computational time (e.g. from a day to more than a week on up to 6 12-core Xeon Westmere nodes),

- Complete active space (CAS) CI calculations in active spaces with around 40 electrons in 40 active orbitals, targetting a few states, for example, an Fe(II)-porphine (40 electrons in 38 orbitals) with an active space of Fe 3d, 4d and all porphine $\pi$ and $\sigma$ donor orbitals, or an Fe 3d, S 3p active space calculation for $[\text{Fe}_3\text{S}_4(\text{SCH}_3)_4]^{2-}$,

- One-dimensional chain molecules, with “widths” of up to 6 orbitals, and about 100 total orbitals,

- Champion FCI benchmark solutions in small molecules, such as butadiene in a cc-pVDZ basis (22 electrons in 82 orbitals),

- Accuracies in energy differences or total energies of about 1 kcal/mol.

If any these calculations interest you, then you might want to try a DMRG calculation with **BLOCK**!
9.13.1 Technical capabilities

Currently, {\texttt{BLO\textsc{ck}}} implements the following

- An efficient DMRG algorithm for quantum chemistry Hamiltonians
- Full spin-adaptation (SU(2) symmetry) and Abelian point-group symmetries
- State-averaged excited states

Note that the standalone version of {\texttt{BLO\textsc{ck}}} may provide more capabilities than are available through the external interface. See the {\texttt{BLO\textsc{ck}}} website for details [362].

9.13.2 How to cite

We would appreciate if you cite the following papers in publications resulting from the use of {\texttt{BLO\textsc{ck}}}:


In addition, useful DMRG references relevant to quantum chemistry can be found in the review below by Chan and Sharma.


9.13.3 Overview of {\texttt{BLO\textsc{ck}}} input and calculations

Within \texttt{ORCA}, the \texttt{BLO\textsc{ck}} program is accessed as part of the CASSCF module. \texttt{BLO\textsc{ck}} can be run in two modes: CASCI mode (no orbital optimization) or CASSCF mode. To enable CASCI mode, set \texttt{maxiter 1}.

```bash
%cas
cas 1 0 # remove if doing CASSCF
CStep DMRG
...
end
```

For small molecule CASCI it may be possible to correlate all orbitals. In general, similar to a standard CASSCF calculation, it is necessary to select a sensible active space to correlate. (See Section 9.13.4.1 on CASSCF). This is the responsibility of the user.
9.13.4 Standard commands

Once the orbitals to correlate have been chosen, and the wavefunction symmetries and quantum numbers are specified, the accuracy of the DMRG calculation is governed by two parameters: the maximum number of renormalized states \( M \); and, the order and localization of the orbitals.

The most important parameter in the DMRG calculation is \( M \), the number of renormalized states. This defines the maximum size of the wave-function expansion, which is \( O(M^2) \) in length in the renormalized basis. As \( M \) is increased, the DMRG energy converges to the exact (FCI or CASCI) limit.

The DMRG maps orbitals onto a 1D lattice, thus the best results are achieved if strongly interacting orbitals are placed next to each other. For this reason, the DMRG energy is not generally invariant to orbital rotations within the active space, and orbital rotation and ordering can improve the DMRG energy for a given \( M \). As \( M \) is increased, the DMRG energy becomes less and less sensitive to the orbital ordering and localization.

To minimize the number of wavefunction optimization steps, it is often advantageous to perform DMRG calculations at small \( M \), then increase \( M \) to the final maximum value. This sequence of optimizations is governed by the sweep schedule, which specifies how many optimization steps (sweeps) to perform at each intermediate value of \( M \).

The above may seem to make running a DMRG calculation more complicated than a usual quantum chemistry calculation, however, BLOCK provides a set of default settings which eliminate the need to specify the above parameters by hand. We highly recommend that you first learn to use the BLOCK program with these default settings. In the default mode, the orbitals are ordered automatically (Fiedler vector method [363–366]) and a default sweep schedule is set.

An example of a default CASCI calculation on the \( \text{C}_2 \) molecule correlating all electrons in a VTZ basis, is given here:

```
!cc-pvtz pal4
%MaxCore 16000
%casscf
 nel 8
 norb 58
 nroots 1
 mult 1
 maxiter 1
 CIStep DMRGCI
 DMRG
 maxM 5000
end
end

* xyz 0 1
C 0 0 -0.621265
C 0 0 0.621265
*```

Once you are familiar with the default mode, we recommend exploring the localization of orbitals. In general, DMRG benefits from the use of localized orbitals, and these should be used unless the high-symmetry of the molecule (e.g., D_{2h} symmetry) provides compensating computational benefits. We recommend using “split-localized” orbitals, which correspond to localizing the occupied and virtual orbitals separately. An example of a split-localized default DMRG calculation on the porphine molecule, correlating the full π-space (26 electrons in 24 orbitals), in a cc-pVDZ basis is given in Sec. 9.13.5.

For a given maxM, it can take a long time to tightly converge DMRG calculations (e.g. to the default $1e-9$ tolerance). To decrease computation time, you may wish to loosen the default tight sweep tolerance or control the maximum number of sweep iterations with the commands \texttt{sweptol} and \texttt{maxIter}.

9.13.4.1 Orbital optimization

Orbital optimization (mixing the external/internal space with the active space, not to be confused with orbital rotation and ordering in the active space) in DMRG calculation can be performed by using the \texttt{BLOCK} program as the “CIStep” within a CASSCF calculation, as described above. For the moment, spin-densities and related properties are not available for this CIStep.

During the optimization iterations it is important that the active orbitals maintain their overlap and ordering with previous iterations. This is done using \texttt{actConstrains}. This flag is set by default.

```plaintext
% casscf
  ActConstrains 1 # maintain shape and ordering of active orbitals
...
end
```

In general, performing a DMRG calculation with orbital optimization is quite expensive. Therefore, it is often best to carry out the orbital optimization using a small value of \texttt{maxM} (enabled by the default parameters \texttt{maxM=25} and the resulting sweep schedule), and to carry out a final single-point calculation using a larger value of \texttt{maxM}.

9.13.4.2 Advanced options

There may be times when one wants finer control of the DMRG calculation. All keywords are shown in the \textit{complete set of BLOCK options} 9.13.4.4 below. The \texttt{startM} command allows to change the starting number of states in DMRG calculations. It is also possible to specify the entire sweep schedule manually. A sweep schedule example follows:

```plaintext
% casscf
  ...
  dmr
  MaxIter 14
```
The commands above are:

- **MaxIter**, corresponds to the maximum number of sweeps done by DMRG;
- **NSchedule**, specifies the total number of schedule parameters we will specify;
- **Sche.iteration**, details the sweep number at which to change the parameters of the calculation. Notice count begins at 0;
- **Sche.M**, is the number of renormalized states at each sweep;
- **Sche.sweeptol**, is the tolerance of the Davidson algorithm;
- **Sche.noise**, is the amount of perturbative noise we add each sweep;
- **Twodot_to_oneDot**, specifies the sweep at which the switch is made from a twodot to a onedot algorithm. The recommended choice is to start with twodot algorithm and then switch to onedot algorithm a few sweeps after the maximum M has been reached. To do a calculation entirely with the twodot or the onedot algorithm, replace the `twodot_to_oneDot` line with `twodot 1` or `onedot 1`;
- **switch_rst**, defines the switching threshold of orbital gradient below which DMRG turns to onedot algorithm and restarts from previous operators and wavefunction. This is essential to avoid oscillation of energy values in the orbital optimization.

The default DMRG sweep schedule is selected automatically according to the choice of computational mode. By default two different sets of predefined schedules are supported for CASCI and CASSCF computations, respectively.

In CASCI mode, the default schedule corresponds to the following: starting from a given `startM` (where the default is 250 and 8 sweeps), increase to a value of 1000 (8 sweeps) and increment by 1000 every 4 iterations until `maxM` is reached. The algorithm switches from twodot to onedot two sweeps after the `maxM` has been reached.

In CASSCF mode, the orbital optimization requires much fewer renormalized states to converge the wavefunction with respect to orbital rotations. The default schedule therefore starts with `startM` (where the default is 25 and 2 sweeps), and increments by a factor of 2 every 2 sweeps until `maxM` is reached. The algorithm continues the sweep at `maxM` by decreasing the Davison tolerance `sche.sweeptol` and noise level `sche.noise` every 2 cycles by a factor of 10, until `sche.sweeptol` becomes smaller than `sweeptol`.
For better control of the orbital ordering, we also provide a genetic algorithm minimization method of a weighted exchange matrix. The genetic algorithm usually provides a superior orbital ordering to the default ordering, but can itself take some time to run for large numbers of orbitals. The genetic algorithm can be enabled by

```
%casscf
...
DMRG
  auto_ordering GAOPT
end
end
```

within the `%casscf` input.

9.13.4.3 Troubleshooting

The two most common problems with DMRG calculations are that (i) convergence with `maxM` is slower than desired, or (ii) the DMRG sweeps get stuck in a local minimum. (i) is governed by the orbital ordering / choice of orbitals. To improve convergence, turn on the genetic algorithm orbital ordering.

If you suspect (ii) is occurring, the simplest thing to do is to increase the starting number of states with the `startM` (e.g. from 500 to 1000 states). Local minima can also sometimes be avoided by increasing the noise in the DMRG schedule, e.g. by a factor of 10. To check that you are stuck in a local minimum, you can carry out a DMRG extrapolation (see extended Manual in the BLOCK website).

Note that the present DMRG-SCF establishes the input order of active space orbitals according to their Hartree-Fock occupancy, even if these orbitals are ultimately canonical or split-localized canonical in nature. This is specified by `hf_occ` in which the Hartree-Fock occupancy is derived by default from the one-electron integrals. Other options for obtaining the occupancy are available (see 9.13.4.4).

Sometimes the energy values produced from one SCF cycle to another may oscillate. Such a nonlinear numerical behaviour may occur typically by the last few iterations, most likely caused by the loss of a certain distribution of quantum numbers (e.g. particle number, irrep symmetry and spin) in the blocking and decimation procedure due to incomplete many-body basis. On the other hand, the loss of quantum numbers is the main source of energy discontinuities on potential energy curves calculated by DMRG-SCF using a small number of renormalized states.

In the current release of DMRG-SCF implementation, the number of quantum states is locked to avoid these problems. The locking mechanism is turned on when the orbital gradient falls below a certain threshold defined by the keyword `switch_rst` (default: 0.001). The DMRG calculation then starts from previous operators and wavefunction in which a perturbative noise is not added. Locking quantum states and restarting DMRG wavefunction not only ensures a smooth convergence towards the final energy but also minimizes the number of iterations. Note that the locking procedure introduces an arbitrariness to the final energy, when a very small `M` is used, since the final digits of energy depend on where the locking begins. It is therefore not recommended to start locking too early in iterations which could trap the orbital solution in a local
Finally the quality of resulting orbitals can be checked by carrying out a DMRG calculation with sufficient renormalized states. Using the default value of \texttt{switch_rst} DMRG-SCF usually results in the orbitals that are good enough to reproduce the CASSCF energy.

Complete set of BLOCK options

```plaintext
%casscf
...

dmrg

\texttt{startM 25} \quad \# \text{CASSCF mode: number of re-normalized states for a single root}
\texttt{250} \quad \# \text{CASCI mode: number of re-normalized states for a single root}
\texttt{maxM 25} \quad \# \text{CASSCF mode: number of re-normalized states for a single root}
\texttt{250} \quad \# \text{CASCI mode: number of re-normalized states for a single root}

\texttt{DryRun false} \quad \# \text{just create an input for Block}
\texttt{SweepTol 1e-9} \quad \# \text{energy tolerance for the sweeps}

\texttt{auto\_ordering NOREORDER \# auto\_ordering is an int. If set to 0
\quad \# or the alias NOREORDER, the reordering is skipped.}
\texttt{FIEDLER \quad \# (default) let Block optimize the active orbital ordering}
\texttt{GAOPT \quad \# let Block optimize the active orbital ordering}
\texttt{\quad \# using genetic algorithm}

\texttt{hf\_occ 0 \# user-defined initial Hartree-Fock occupancy manually}
\texttt{1 \# default: initial Hartree-Fock occupancy based on the values of
\quad \# the one-electron integrals}
\texttt{2 \# initial Hartree-Fock occupancy based on the energy ordering}
\texttt{\quad \# of canonical orbitals}

\texttt{TwoDot\_to\_OneDot 1 \# Switch from two-dot expressions to one-dot}
\texttt{OneDot 0 \# Only one-dot expressions. \%In CASCI mode only.}
\texttt{TwoDot 0 \# Only two-dot expressions. \%In CASCI mode only.}

\texttt{switch\_rst 1e-3 \# Specify the threshold of orbital gradient below which DMRG
\quad \# switches to one-dot expression by reading previous wavefunction.}

\texttt{warmup 1 \# wilson warm-up type}
\texttt{2, 3 or 4 \# n=3 is the default option.}
\texttt{The full configuration space of the n sites next to the system}
\texttt{constitutes the environment states in the warm-up.}
\texttt{The remaining sites use the Hartree-Fock guess occupation}

\texttt{nonspin\_adapted 0 \# default: spin-adapted DMRG}
\texttt{1 \# non-spin-adapted DMRG in which the spin-density calculation
\quad \# is available}

\texttt{\# Define a schedule for DMRG}
\texttt{MaxIter 14 \# Specify maximum number of iterations}
```
9.13.5 Appendix: Porphine π-active space calculation

We provide a step-by-step basis on localizing the π-orbitals of the porphine molecules and running a CASSCF-DMRG calculation on this system. It will be important to obtain an initial set of orbitals, rotate the orbitals which are going to be localized, localize them, and finally run the CASSCF calculation. We will abbreviate the coordinates as [...] after showing the coordinates in the first input file, but please note they always need to be included.

1. First obtain RHF orbitals:

```
# To obtain RHF orbitals
!cc-pvdz
* xyz 0 1
N  2.10524  -0.00000  0.00000
N  -0.00114  1.95475  0.00000
N -2.14882  -0.00114  1.95475  0.00000
N -2.93934  -2.78036  0.00000
C  2.85587   -1.13749  0.00000
C  2.85587   1.13749  0.00000
C  1.02499   2.75869  0.00000
C  -1.10180  2.78036  0.00000
C  -2.93934  1.13019  0.00000
C  -2.93934 -1.13019  0.00000
C  -1.10180 -2.78036  0.00000
C  1.02499 -2.75869  0.00000
C  4.23561  -0.67410  0.00000
```
2. We then swap orbitals with \(\pi \)-character so they are adjacent to each other in the active space. (\(\pi \) orbitals are identified by looking at the MO coefficients). When they are adjacent in the active space, they can be easily localized in the next step.

```plaintext
# To rotate the orbitals (so that we can localize them in the next step)
!cc-pvdz moread noiter
%moinp "porphine.gbw"
%scf
  rotate
    {70, 72, 90}
    {65, 71, 90}
    {61, 70, 90}
    {59, 69, 90}
    {56, 68, 90}
    {88, 84, 90}
    {92, 85, 90}
    {93, 86, 90}
    {96, 87, 90}
```

C 4.23561 0.67410 0.00000
C 0.69482 4.18829 -0.00000
C -0.63686 4.14584 -0.00000
C -4.25427 0.70589 -0.00000
C -4.25427 -0.70589 0.00000
C -0.63686 -4.14584 0.00000
C 0.69482 -4.18829 0.00000
H 5.10469 -1.31153 0.00000
H 5.10469 1.31153 0.00000
H -1.28917 5.00543 0.00000
H -5.12454 1.34852 0.00000
H -5.12454 -1.34852 -0.00000
H -1.28917 -5.00543 -0.00000
H 1.36066 -5.02946 0.00000
H 1.36066 5.02946 0.00000
H 2.46219 2.41307 0.00000
H 2.46219 -2.41307 -0.00000
H 3.18114 3.22163 -0.00000
H 3.18114 -3.22163 -0.00000
H -1.13385 0.00000 -0.00000
H -1.13385 -0.00000 0.00000

*
3. After rotating the orbitals, we localize the 13 occupied π-orbitals. This is performed using the `orca_loc` code. The input file follows.

```
porphine_rot.gbw
porphine_loc.gbw
0
68
80
120
1e-3
0.9
0.9
1
```

4. After localizing the occupied orbitals, we localize the 11 virtual π-orbitals using the `orca_loc` code once again. The input file follows.

```
porphine_loc.gbw
porphine_loc2.gbw
0
81
91
120
1e-3
0.9
0.9
1
```

5. After these steps are complete, we run a CASSCF-DMRG calculation. The standard input file is shown below.

```
!cc-pvdz moread pal4
%moinp "porphine_loc2.gbw"
%MaxCore 16000

%casscf nel 26
norb 24
```
9.14 Relativistic Options

The relativistic methods in ORCA are implemented in a fairly straightforward way but do require some caution from the user. The options are controlled through the \%rel block which features the following variables:

```%
%rel

#----------------------------------------------------
# Basic scalar relativistic method
#----------------------------------------------------
method DKH # Douglas-Kroll-Hess
ZORA # ZORA (numerical integration)
IORA # IORA (numerical integration)
IORAmm # IORA with van Wnellens
# modified metric
ZORA_RI # ZORA (RI approximation)
IORA_RI # IORA (RI approximation)
IORAmm_RI # IORA (RI approximation)
# and modified metric
# ---------------------------------------------------
# Choice of the model potential for ALL methods
# ---------------------------------------------------
ModelPot VeN, VC, VXa, VLDA
    # Flags for terms in the model potential (see eq. 9.198)
    # these settings do not have any effect for DKH
    # =0 not included =1 included
    # WARNING: default is currently 1,0,0,0 for ZORA and IORA and
    # VeN = nuclear attraction term
    # VC = model Coulomb potential
    # VXa = model Xalpha potential
    # VLDA= VWN-5 local correlation model pot.
Xalpha 0.7 # default value for the X-Alpha potential,
    # only has an effect when VXa is part of the model potential
# ---------------------------------------------------
# This variable determines the type of fitted atomic
# density that enters the Coulomb potential part of the
```
model potential (has no effect when using DKH):
#--
ModelDens rhoDKH # DKH4 model densities (default)
 rhoZORA # ZORA model densities
 rhoHF # Hartree-Fock model densities
#--
This flag controls whether only one center terms
retained. If this is true an approximate treat-
ment of relativistic effects result but geom-
try optimizations CAN BE PERFORMED WITH ALL
METHODS AND MODEL POTENTIAL
In addition one gets NO gauge noninvariance
errors in ZORA or IORA
#--
OneCenter false # default value
#--
Specify the speed of light used in relativistic
calculations
#--
C 137.0359895 # speed of light used (137.0359895 is the default value)
 # synonyms for C are VELIT, VELOCITY
#--
Picture change for properties
#--
PictureChange 0 # (or false): no picturechange (default)
 1 # (or true): include picturechange
 2 # for DKH: use second-order DKH transformation of the
 # SOC operator (see section 9.24.2.7)
#--
Order of DKH treatment (this has no effect on ZORA calculations)
#--
order 1 # first-order DKH Hamiltonian
 2 # second-order DKH Hamiltonian
#--
Kind of Foldy-Wouthuysen transformation for picturechange effects
in g tensors (see section 9.14.4)
#--
fpFWtrafo true # do not include vector potential into momentum (default)
 false # include vector potential
#--
Finite Nucleus Model: (see section 9.14.5)
#--
FiniteNuc false # Use point-charge nuclei (default)
 true # Use finite nucleus model
end
9.14.1 Approximate Relativistic Hamiltonians

In the relativistic domain, calculations are based on the one-electron, stationary Dirac equation in atomic units (rest mass subtracted)

\[h_D \Psi = \left((\beta - 1) c^2 + c\alpha \cdot p + V \right) \Psi = E \Psi. \] \tag{9.182}

The spinor \(\Psi \) can be decomposed in its so-called large and small components

\[\Psi = \begin{pmatrix} \Psi_L \\ \Psi_S \end{pmatrix} \] \tag{9.183}

These are obviously coupled through the Dirac equation. More precisely, upon solving for \(\Psi_S \), the following relation is obtained:

\[\Psi_S = \frac{1}{2c} \left(1 + \frac{E - V}{2c^2} \right)^{-1} \sigma \cdot p \Psi_L = R \Psi_L \] \tag{9.184}

Through the unitary transformation

\[U = \begin{pmatrix} \Omega_+ & -R^+ \Omega_- \\ R \Omega_+ & \Omega_- \end{pmatrix} \] \text{with } \Omega_+ = \frac{1}{\sqrt{1 + R^+ R}}, \Omega_- = \frac{1}{\sqrt{1 + RR^+}},

the Hamiltonian can be brought into block-diagonal form

\[U^+ h_D U = \begin{pmatrix} \check{h}_{++} & 0 \\ 0 & \check{h}_{--} \end{pmatrix} \] \tag{9.185}

The (electronic) large component thus has to satisfy the following relation

\[\check{h}_{++} \Psi_L = \Omega_+ \left(\check{h}_{++} + h_\perp R + R^+ (h_\perp + h_{--} R) \right) \Omega_+ \Psi_L = E_+ \Psi_L. \] \tag{9.186}

The approximate relativistic schemes implemented in \textsc{ORCA} use different methods to substitute the exact relation 9.186 with approximate ones.

Two approximation schemes are available in \textsc{ORCA}: the regular approximation and the Douglas-Kroll-Hess (DKH) approach.
9.14.2 The Regular Approximation

In the regular approximation, 9.186 is approximated by

\[R = \frac{c}{2c^2 - V} \sigma \cdot p. \]

(9.187)

At the zeroth-order level (ZORA), \(\Omega_\pm = 1 \), so that the ZORA transformation is simply

\[U_{\text{ZORA}} = \begin{pmatrix} 1 & -R^+ \\ R & 1 \end{pmatrix} \]

(9.188)

and the corresponding Hamiltonian given by

\[\tilde{\mathbf{h}}_{\text{ZORA}}^{++} = V + c\sigma \cdot p \frac{1}{2c^2 - V} c\sigma \cdot p. \]

(9.189)

At the infinite-order level (IORA), \(\Omega_\pm \) is taken into account, so that

\[U_{\text{IORA}} = U_{\text{ZORA}} \begin{pmatrix} \Omega_+ & 0 \\ 0 & \Omega_- \end{pmatrix} \]

(9.190)

and

\[\tilde{\mathbf{h}}_{\text{IORA}}^{++} = \Omega_+ \left(V + c\sigma \cdot p \frac{1}{2c^2 - V} c\sigma \cdot p \right) \Omega_+ \]

(9.191)

is the corresponding Hamiltonian. Note that despite the name – infinite-order regular approximation – this is still not exact.

In ORCA, the spin-free (scalar-relativistic) variant of ZORA and IORA are implemented. These are obtained from those above through the replacement

\[\sigma \cdot p \frac{1}{2c^2 - V} c\sigma \cdot p \rightarrow p \frac{1}{2c^2 - V} p. \]

(9.192)

The regular Hamiltonians contain only part of the Darwin term and no mass-velocity term. A problem with relations 9.191 and 9.189 is that due to the non-linear dependence of the resulting regular Hamiltonians on \(V \), a constant change of \(V \), which in the Dirac and Schrödinger equations will result in a corresponding change of energy

\[E \rightarrow E + \text{const} \]

(9.193)

does not so in the regular approximation. Several attempts have been made to circumvent this problem. The scaled ZORA variant is one such procedure. Another one is given through the introduction of model potentials replacing \(V \). Both approaches are available in ORCA.
The scaled ZORA variant

This variant goes back to van Lenthe et al. [367]. The central observation is that the Hamiltonian

\[h_{\text{scaledZORA}} = \frac{h_{\text{ZORA}}}{1 + \langle \Psi_L | \frac{1}{(2c^2-V)} \frac{\sigma \cdot p}{c^2} | \Psi_L \rangle} \]

(9.194)

produces constant energy-shifts \(E \rightarrow E + \text{const} \) when the potential \(V \) is changed by a constant – for hydrogenic ions. For many-electron systems, the scaled-ZORA Hamiltonian still does not yield simple, constant energy shift for \(V \rightarrow V + \text{const} \). But it produces the exact Dirac energy for hydrogen-like atoms and performs better than the first-order regular approximation for atomic ionization energies.

The regular approximation with model potential

The idea of this approach goes back to Van Wüllen [123], who suggested the procedure for DFT. However we also use it for other methods. The scalar relativistic ZORA self-consistent field equation is in our implementation (in atomic units):

\[\left[p \frac{c^2}{2c^2-V} + V_{\text{eff}} \right] \psi_i = \epsilon_i \psi_i \]

(9.195)

where \(c \) is the speed of light. It looks like the normal nonrelativistic Kohn–Sham equation with the KS potential \(V_{\text{eff}} \):

\[V_{\text{eff}}(r) = - \sum_A \frac{Z_A}{|r-R_A|} + \int \frac{\rho(r')}{|r-r'|} dr' + V_{\text{xc}}[\rho](r) \]

(9.196)

\(Z_A \) is the charge of nucleus \(A \) and \(R_A \) is its position; \(\rho(r) \) is the total electron density and \(V_{\text{xc}}[\rho] \) the exchange-correlation potential – the functional derivative of the exchange-correlation energy with respect to the density). The kinetic energy operator \(T = -\frac{1}{2} \nabla^2 \) of the nonrelativistic treatment is simply replaced by the ZORA kinetic energy operator:

\[T_{\text{ZORA}} = p \frac{c^2}{2c^2-V} p \]

(9.197)

Clearly, in the regions where the potential \(V \) is small compared to \(c^2 \), this operator reduces to the nonrelativistic kinetic energy. \(V \) could be the actual KS potential. However, this would require to solve the ZORA equations in a special way which demands recalculation of the kinetic energy in every SCF cycle. This becomes expensive and is also undesirable since the ZORA method is not gauge invariant and one obtains fairly large errors from such a procedure unless special precaution is taken. Van Wüllen [123] has therefore argued that it is a reasonable approximation to replace the potential \(V \) with a model potential \(\tilde{V}_{\text{model}} \) which is constructed as follows:

\[\tilde{V}_{\text{model}} = - \sum_A \frac{Z_A}{|r-R_A|} + \int \frac{\rho_{\text{model}}(r')}{|r-r'|} dr' + V_{\text{LDA}}^{\text{xc}}[\rho_{\text{model}}](r) \]

(9.198)
The model density is constructed as a sum over spherically symmetric (neutral) atomic densities:

\[\rho_{\text{model}}(r) = \sum_A \rho^A(r) \] (9.199)

Thus, this density neither has the correct number of electrons (for charged species) nor any spin polarization. Yet, in the regions close to the nucleus, where the relativistic effects matter, it is a reasonable approximation. The atomic density is expanded in a sum of s-type gaussian functions like:

\[\rho^A(r) = \sum_i d_i \exp\left(-\alpha_i |r - R_A|^2\right) \] (9.200)

The fit coefficients were determined in three different ways by near basis set limit scalar relativistic atomic HF calculations and are stored as a library in the program. Through the variable \texttt{ModelDens} (\textit{vide supra}) the user can choose between these fits and study the dependence of the results in this choice (it should be fairly small except, perhaps, with the heavier elements and the HF densities which are not recommended). The individual components of the model potential (eq. 9.198) can be turned on or off through the use of the variable \texttt{ModelPot} (\textit{vide supra}).

Van Wullen has also shown that the calculation of analytical gradients with this approximation becomes close to trivial and therefore scalar relativistic all electron geometry optimizations become easily feasible within the ZORA approach. However, since \textit{TZORA} is constructed by numerical integration it is very important that the user takes appropriate precaution in the use of a suitable integration grid and also the use of appropriate basis sets! In the case of \texttt{OneCenter true} the numerical integration is done accurately along the radial coordinate and analytically along the angular variables such that too large grids are not necessary unless your basis set is highly decontracted and contains very steep functions.

9.14.3 The Douglas-Kroll-Hess Method

The Douglas-Kroll-Hess (DKH) method expands the exact relation 9.186 in the external potential \(V \). In \texttt{ORCA} the first- and second-order DKH methods are implemented. The first-order DKH Hamiltonian is given by

\[\tilde{h}^{(1)}_{++} = E_p A_p V A_p + B_p V^{(p)} B_p, \] (9.201)

with

\[E_p = \sqrt{c^4 + c^2 \rho^2}, \quad A_p = \sqrt{\frac{E_p + c^2}{2E_p}}, \quad B_p = \frac{c}{\sqrt{2E_p(E_p + c^2)}} \] (9.202)

At second order, it reads

\[\tilde{h}^{(2)}_{++} = \tilde{h}^{(1)}_{++} + \frac{1}{2} [W_p, O] \] (9.203)
where

\[\{W_p, E_p\} = \beta O, \quad O = A_p \left[R_p, V \right] A_p, \quad R_p = \frac{c \sigma p}{E_p + c^2} \tag{9.204} \]

define the second-order contribution. In ORCA, the spin-free part of \(\tilde{h}^{(2)}_{+,+} \) is implemented.

The occurrence of the relativistic kinetic energy, \(E_p \), which is not well-defined in position space, makes a transformation to the \(p^2 \)-eigenspace necessary. Thus any DKH calculation will start with a decontraction of the basis set, to ensure a good resolution of the identity. Then the non-relativistic kinetic energy is diagonalized and the \(E_p \)-dependent operators calculated in that space. The potential \(V \) and \(V^{(p)} \) are transformed to \(p^2 \)-eigenspace. After all contributions are multiplied to yield the (first- or second-order) Hamiltonian, the transformation back to AO space is carried out and the basis is recontracted.

The (spin-free) DKH-Hamiltonians contain all spin-free, relativistic correction terms, e.g. the mass-velocity and Darwin terms. As the potential enters linearly, no scaling or model potential is necessary to introduce the correct behaviour of the energy under a change

\[V \rightarrow V + \text{const.} \tag{9.205} \]

In all these respects the DKH Hamiltonians are much cleaner than the regular Hamiltonians.

9.14.4 Picture-Change Effects

Irrespective of which Hamiltonian has been used in the determination of the wave function, the calculation of properties requires some special care. This can be understood in two ways: First of all, we changed from the ordinary Schrödinger Hamiltonian to a more complicated Hamiltonian. As properties are defined as derivatives of the energy, it is clear that a new Hamiltonian will yield a new expression for the energy and thus a new and different expression for the property in question. Another way of seeing this is that through the transformation \(U \), we changed not only the Hamiltonian but also the wave function. To obtain the property at hand as the expectation value of the property operator with the wave function, we have to make sure that property operator and wave function are actually given in the same space. This is done through a transformation of either the property operator or the wave function.

In any case, the difference between the non-relativistic and (quasi) relativistic property operator evaluated between the (quasi) relativistic wave function is called the picture-change effect. From what was said above, this is clearly not a physical effect. It describes how consistent the quasi relativistic calculation is carried out. A fully consistent calculation requires the determination of the wave function on the (quasi) relativistic level as well as the use of the (quasi) relativistic property operator. This is obtained through the choice

\[
\text{%rel picturechange true end}
\]

in the %rel block. It may be that the (quasi) relativistic and non-relativistic property operator do produce similar results. In this case, a calculation with picture changes turned off (PictureChange false) may be a good approximation. This is, however, not the rule and cannot be predicted before carrying out the
calculation. It is therefore highly recommended to set `PictureChange true` in all (quasi) relativistic property calculations! Consistent picture-change effects on the DKH2 level have been implemented for the g-tensor and the hyperfine coupling tensor. Using

\%rel picturechange 1 end

only first-order changes on the property operators are taken into account. This reduces the computational cost of course. But since this is in no way a significant reduction, this choice is not recommended.

For magnetic properties, the DKH transformation and consequently the DKH Hamiltonian and the corresponding property operators are not unique. Depending on whether the magnetic field is included in the free-particle Foldy–Wouthuysen (fpFW) transformation carried out in the first step of the DKH protocol or not, two different Hamiltonians result. If the magnetic field is included in the fpFW transformation, the resulting Hamiltonian is a function of the gauge invariant momentum

\[\pi = p + A. \]

(9.206)

It is therefore gauge invariant under gauge transformations of the magnetic vector potential \(A \) and thus are the property operators derived from it. This is referred to as fpFW DKH Hamiltonian. If the magnetic field is not included in the FW transformation, the resulting Hamiltonian is a function of the kinetic momentum \(p \) only and thus is not gauge invariant. The latter Hamiltonian is referred to as fpFW DKH Hamiltonian. A comparison of both Hamiltonians is given in Table 9.12.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>fpFW Hamiltonian</th>
<th>fp(\pi)FW Hamiltonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence of Eigenvalues to Dirac Eigenvalues</td>
<td>?</td>
<td>yes</td>
</tr>
<tr>
<td>1st order is bounded</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Reproduces Pauli Hamiltonian</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Gauge invariance</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Lorentz invariance</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

From this Table, it becomes clear that the fp\(\pi\)FW DKH Hamiltonian is clearly preferred over the fpFW Hamiltonian. To obtain the property operators, it is however necessary to take the derivatives of these Hamiltonians. It turns out that in the case of the hyperfine-coupling tensor, the necessary derivatives produce divergent property operators in the case of the fp\(\pi\)FW DKH Hamiltonian. This may be due to the unphysical assumption of a point-dipole as a source of the magnetic field of the nucleus. As a physical description of the magnetization distribution of the nucleus is not available due to a lack of experimental data, the magnetization distribution is assumed to be the same as the charge distribution of the nucleus, see Section 9.14.5. This is unphysical as the magnetization is caused by the one unpaired nucleon in the nucleus whereas the charge distribution is generated by the protons in the nucleus. So, physically, the magnetization should occupy a larger volume in space than the charge. This might also be the reason why the resulting finite-nucleus
model is insufficient to remedy the divergencies in the fpFW hyperfine-coupling tensor. Consequently, the hyperfine-coupling tensor is only implemented in the version resulting from the fpFW DKH Hamiltonian. In the case of the g-tensor both versions are implemented and accessible via the keyword

\%
rel fpFWtrafo true/false end
%

By default, this keyword is set to true. A detailed form of the property operators used for the g-tensor and hyperfine-tensors can be found in Ref. [368].

9.14.5 Finite Nucleus Model

Composite particles like nuclei have, as opposed to elementary particles, a certain spatial extent. While the point-charge approximation for nuclei is in general very good in nonrelativistic calculations, in relativistic calculations it might lead to nonnegligible errors. A finite-nucleus model is available for all calculations in the ORCA program package. It is accessible from the \%rel block via

\%
rel FiniteNuc true/false end
%

By default, this keyword is set to false. If the keyword is set to true, finite-nucleus effects are considered in the following integrals:

- nucleus potential V
- DKH-integral $V^{(p)}$
- one-electron spin-orbit integrals SOC (also in one-electron part of SOMF)
- electric-field gradient EFG (and thus, as a consequence in the Fermi-contact and spin-dipole terms of the hfc tensor)
- nucleus-orbit integral NUC
- angular-momentum integral l

The finite-nucleus model implemented in ORCA is the Gaussian nucleus model of Ref. [369].

9.14.6 Basis Sets in Relativistic Calculations

For relativistic calculations, special basis sets have been designed, both as DKH and ZORA reconstructions of the non-relativistic Ahlrichs basis sets (in their all-electron versions) for elements up to Xe, and as purpose-built segmented all-electron relativistically contracted (SARC) basis sets for elements beyond Xe [5–9]. Their names are "ZORA-" or "DKH-" followed by the conventional basis set name. See section 9.3 for a complete list.

NOTES:
• It is important to recognize that in the one-center approximation (OneCenter true) ALL methods can be used for geometry optimization. Several papers in the literature show that this approximation is fairly accurate for the calculation of structural parameters and vibrational frequencies. Since this approximation is associated with negligible computational effort relative to the nonrelativistic calculation it is a recommended procedure.

• The ZORA/RI, IORA/RI and IORAmm/RI methods are also done with the model potential. Here we do the integrals analytically except for the XC terms which has clear advantages. However, the RI approximation is performed in the actual orbital basis sets which means that this set has to be large and flexible. Otherwise significant errors may arise. If the basis sets are large (ZORA/RI) and the numerical integration is accurate (ZORA), the ZORA and ZORA/RI (or IORA and IORA/RI) methods must give identical within to µEh accuracy.

9.15 Approximate Full CI Calculations in Subspace: ICE-CI

9.15.1 Introduction

In many circumstances, one would like to generate a wavefunction that is as close as possible to the full-CI result, but Full CI itself is out of the question for computational reasons. Situations in which that may be desirable include a) one wants to generate highly accurate energies for small molecules or b) one wants to sort out a number of low-lying states or c) one wants to run CASSCF calculations with larger active spaces than the about fourteen orbitals that have been the state of the art for a long time.

ORCA features a method that has been termed Iterative-Configuration Expansion Configuration Interaction (ICE-CI). It is based on much older ideas brought forward by Jean-Paul Malrieu and his co-workers in the framework of the CIPSI (an abbreviation for a method with a rather bulky name Configuration Interaction by Perturbation with multiconfigurational zeroth-order wave functions Selected by Iterative process) in the early 1970s.

The goal of the ICE-CI is to provide compact wavefunction(s) (e.g. one or several states) close to the full-CI limit at a small fraction of the computational cost. However, ICE-CI itself is not designed to deal with hundreds of atoms or thousands of basis functions. Thus, unlike, say DLPNO-CCSD(T) which is a high accuracy method for treating large sytems, ICE-CI is either a highly robust high accuracy method for very small systems or a “building block” for large systems. By itself it can treat a few dozen electrons and orbitals – e.g. much more than full CI – but it cannot do wonders. Its scope is similar to the density matrix renormalization group (DMRG) or Quantum Conte Carlo Full CI (QMCFCI) procedures.

ICE-CI should be viewed as a multireference approach. It is self-adaptive and robust, even in the presence of near or perfect degeneracies. It yields orthogonal states (when applied to several states) and spin eigenfunctions. It also yields a density and a spin density.
9.15.2 The ICE-CI and CIPSI Algorithms

The general idea of ICE-CI is straightforward: Consider a many-particle state that has an at least sizeable contribution from a given configuration \(n^0 \) (this is a set of occupation numbers for the active orbitals that are \(n^0_p = 0, 1 \) or \(2 \) \((p = \text{any active orbital}) \). By nature of the non-relativistic Hamiltonian only configurations that differ by at most two orbital occupations from \(n^0 \). We can use perturbation theory to select the subset of singles- and doubles that interact most strongly with \(n^0 \) and then solve the variational problem. We can then analyze the CI vector for configurations that make a dominant contribution to the found state. Say, we single out the configurations with \(C_I^2 > T_{\text{gen}} \). This defines the “generator” set of configurations. The other configurations are called “variational” configurations. They are treated to infinite order by the variational principle, but are not important enough to bring in their single- and double excitations. In the next iteration, we perform singles- and doubles relative to these general configurations and select according to their interaction with the dominant part of the previous CI vector (truncated to the generators). This procedure can be repeated until no new important configurations are found and the total energy converges (See Figure 9.6).

Figure 9.6: Flowchart of the ICE-CI procedure.

The described procedure is very similar to Malrieu’s three level CIPSI procedure. One major technical difference, is that ICE is centered around configurations rather than determinants. A configuration is a set of occupation numbers 0, 1 or 2 that describes how the electrons are distributed among the available spatial orbitals. A configuration state function (CSF) is created by coupling the unpaired spins in a given configuration to a given total spin \(S \). In general there are several, if not many ways to construct a linearly independent set of CSFs. CSFs on the other hand can be expanded in terms of Slater determinants, but there are more Slater determinants to a given configuration than CSFs. For example for a CAS(14,18) calculation one has about \(10^9 \) determinants, but only about \(3 \times 10^8 \) CSFs and \(3 \times 10^7 \) configurations. However, all logic happens at the level of configurations. That is, it is the relationship between two configurations that determines whether and if yes, by which integrals the CSFs or determinants of two given configurations interact. Since the configuration space is so much more compact than the determinant space substantial computational benefit can be realized by organizing the calculation around the concept of a configuration. In
general, in ICE-CI all CSFs that belong to a given configuration are included and all selection quantities are summed over all CSFs of a given configuration before it is decided whether this CSFs is included or not.

It should be noted that although the procedure contains a perturbative element, the final energy is strongly dominated by the variational energy and hence, for all intents and purposes, the ICE-CI procedure is variational (but not rigorously size consistent – size consistency errors are on the same order of magnitude as the error in absolute energy).

9.15.3 A Simple Example Calculations

Let us look at a simple calculation on the water molecule:

```
# Check the ICECI implementation
#
! SV

%ice nel 10 # number of active electrons
norb 13 # number of active orbitals
nroots 1 # number of requested roots
integrals exact # exact 4-index transformation
    # can be set to RI to avoid bottlenecks
Tgen 1e-04 # value for Tgen. Default is 1e-4
Tvar 1e-11 # value for Tvar. Default is 1e-11 (1e-10*Tgen)
etol 1e-06 # energy convergence tolerance
end

* int 0 1
O 0 0 0 0.0 0.000 0.000
H 1 0 0 1.0 0.000 0.000
H 1 2 0 1.0 104.060 0.000
*
```

Let us look at the output:

```
------------------------------------------------------------------------------
ORCA Iterative Configuration Expansion
- a configuration driven CIPSI type approach -
------------------------------------------------------------------------------

(some startup information)

Integral transformations ... done ( 0.3 sec)
Making an initial 'Aufbau' configuration ... done
Performing S+D excitations from 1 configs ... done ( 0.0 sec) NCFG=581
Performing perturbative selection ... done ( 0.0 sec)
    # of configurations before selection ... 581
    # of configurations after selection ... 187
```
From the output the individual steps in the calculation are readily appreciated. The program keeps cycling between variational solution of the CI problem, generation of new configurations and perturbative selection until convergence of the energy is achieved. Normally, this occurs rapidly and rarely requires more than five iterations. The result will be close to the Full CI result.

Let us look at a H₂O/cc-pVDZ calculation in a bit more detail (See Figure 9.7). The calculation starts out with a single Hartree-Fock configuration. The first iteration of ICE-CI creates the singles and doubles and altogether 544 configurations are selected. These singles and doubles bring in about half of the correlation...
energy. Already the second iteration, which leads to 73000 selected CSFs provides a result close to the full CI. At this point up to quadruple excitations from the Hartree-Fock reference have been included. It is well known that such quadruple excitations are important for the correct behavior of the CI procedure (near size consistency will come from the part of the quadruple excitations that are products of doubles). However, only a very small fraction of quadruples will be necessary for achieving the desired accuracy. In the first iteration the procedure is already converged and provides 99.8% of the correlation energy, using 0.5% of the CSFs in the full CI space and at less than 0.2% the calculation time required for solving the full CI problem. Hence, it is clear that near exact results can be obtained while realizing spectacular savings.

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>N(CFG)</th>
<th>N(CSF)</th>
<th>time(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartree-Fock</td>
<td>-76.0260966</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1977 CFG's generated, 544 selected</td>
<td></td>
<td></td>
<td><0.1</td>
</tr>
<tr>
<td>iter=1</td>
<td>-76.2292278</td>
<td>544</td>
<td>805</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>98717 CFG's generated, 22471 selected</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>iter=2</td>
<td>-76.2412460</td>
<td>22471</td>
<td>73296</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>10677 CFG's generated, 23241 selected</td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>iter=3</td>
<td>-76.2412769</td>
<td>23241</td>
<td>75705</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>10677 CFG's generated, 23241 selected</td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>iter=4</td>
<td>-76.2418240</td>
<td>4065963</td>
<td>18818646</td>
<td>83.5 (1 final CI)</td>
</tr>
<tr>
<td></td>
<td>99.75% of FC</td>
<td>0.57%</td>
<td>0.4%</td>
<td>0.18% of FCI</td>
</tr>
<tr>
<td>Full-CI</td>
<td>-76.2418240</td>
<td>4065963</td>
<td>18818646</td>
<td>44529.0</td>
</tr>
</tbody>
</table>

Figure 9.7: An ICE-CI calculation on the water molecule in the cc-pVDZ basis (1s frozen)

9.15.4 Accuracy

The accuracy of the procedure is controlled by two parameters T_{gen} and T_{var}. Since we have found that $T_{\text{var}} = 10^{-7}$ T_{gen} always provides converged results, this choice is the default. However, T_{var} can be set manually. It can be reduced considerably in order to speed up the calculations at the expense of some accuracy. Our default values are $T_{\text{gen}} = 10^{-4}$ and $T_{\text{var}} = 10^{-11}$. This provides results within about 1 mEh of the full CI results (roughly speaking, a bit better than CCSDT for genuine closed-shell systems).

During the development of ICE-CI systematic test calculations have been performed using a reference set of 21 full CI energies on small molecules. The convergence pattern of the mean absolute error is shown in Figure 9.8. It is evident from the figure that the convergence of ICE-CI towards the FCI result is very smooth and that high accuracy can be obtained. In fact, the default settings lead to an accuracy of <1 mEh deviation to the full-CI result. μEh accuracy can be achieved by further tightening. The achieved accuracy relative to accurate coupled-cluster results shows that the accuracy of even CCSDTQ can be surpassed by ICE-CI. The achievable accuracy is only limited by the value of T_{gen} and much less so by the value of T_{var}. Hence, it is advisable to use a value for T_{var} that is essentially converged and control the accuracy of the procedure by T_{gen}.
9.15 Approximate Full CI Calculations in Subspace: ICE-CI

Figure 9.8: Convergence of the ICE-CI procedure towards the full CI results for a test set of 21 full CI energy. Shown is the RMS error relative to the Full CI results. The corresponding errors for various coupled-cluster variants is shown by broken horizontal lines.

9.15.5 Scaling behavior

ICE-CI will break the factorial scaling of the full CI problem and scale polynomially. The actual order of the polynomial scaling is system dependent and accuracy dependent. In order to provide some impression, consider some calculations on linear polyene chains.

Figure 9.9: Polyene chains used for scaling calculations.

The results are displayed in the Figure 9.10. It is evident from Figure 9.10 that ICE-CI breaks the factorial scaling of the full CI problem. In fact, for a thresholds of $T_{\text{gen}} = 10^{-4}$, 10^{-3} and 10^{-2} the observed scalings are approximately $O(N^0)$, $O(N^7)$ and $O(N^0)$ respectively. These numbers will obviously be very system dependent but should serve as a rough guide. The calculations become quickly much more expensive if T_{gen} is tightened. A rule of thumb is that each order of magnitude tightening of T_{gen} increases the computation time by a factor of 10. The above calculations have been performed on a simple desktop computer and it was already possible to solve a CAS(30,30) problem in less than one day of elapsed time using the default thresholds. Large active spaces will require either loosening of the thresholds or large, more powerful machines.
Figure 9.10: Scaling behavior of ICE-CI for linear polyene chains (Full π-electron active space) as a functions of system size for different generator thresholds.

9.15.6 Accuracy of the Wavefunction

The accuracy of the many particle wavefunction is not straightforward to check. A reasonable measure, however, is how well it converges towards the exact result for one-electron expectation values. Since every expectation value can be written in terms of natural orbitals of the one-particle density as:

$$\langle \hat{O} \rangle = \langle \Psi | \sum_o \hat{o}(\mathbf{x}_o) | \Psi \rangle = \sum_{pq} D_{pq} \langle \tilde{\psi}_p | \hat{o} | \tilde{\psi}_q \rangle = \sum_p n_p \langle \tilde{\psi}_p | \hat{o} | \tilde{\psi}_p \rangle$$

where $\hat{o}(\mathbf{x}_o)$ is an arbitrary one-particle operator, D_{pq} is the density matrix of the ICE-CI wavefunction, $\tilde{\psi}_p$ are the natural orbitals of the ICE-CI wavefunction and n_p are their occupations numbers. It is reasonable to take the deviation of the natural orbital occupation numbers as a measure for wavefunction convergence.

For example, we treat the H$_2$O/cc-pVDZ problem again. From the results in Figure 9.11 it becomes evident that the ICE-CI wavefunction is fairly accurate. At the default threshold the occupation numbers agree to within 10^{-3} with the full CI reference numbers, which means that expectation values will be of similar accuracy. Interestingly, the largest errors occur in the region of the HOMO-LUMO gap, where apparently all approximate wavefunction approaches tend to depopulate the high lying orbitals too much and put too much electron density in the low lying empty orbitals. From comparison, it is seen, that the CCSD natural occupation numbers for this problem are significantly less accurate. Hence, this is evidence that the ICE-CI wavefunction is properly converging to the right result.
Figure 9.11: Convergence of the ICE-CI natural orbital occupation numbers. The upper panel is showing the Full CI occupation numbers, the lower panel the deviation of the ICE-CI values from these exact values. For comparison, the CCSD natural orbital occupation numbers are also provided.
9.15.7 Potential Energy Surfaces

You can use ICE-CI to scan entire potential energy surfaces. In general, the non-parallelity error along a potential energy surface is very small. Thus, ICE-CI yields consistent quality throughout the surface.

For example, let us look at the potential energy surface of the \(\text{N}_2 \) molecule (Figure 9.12) – a common test case for quantum chemical methods. There are not too many methods that would dissociate the triple bond of \(\text{N}_2 \) correctly – ICE-CI is one of them. The potential energy surface is entirely smooth and also correctly behaves in the dissociation limit. Near the minimum it is very close to high-level coupled-cluster methods that, however, all fail badly as the bond is stretched.

![N\(_2\) dissociation curve](image)

Figure 9.12: Potential energy surface of the \(\text{N}_2 \) molecule in the SV basis. For comparison higher level coupled-cluster results are also shown.

It is interesting to observe the variations of the ICE-CI wavefunction along the dissociation potential energy surface. As an example, we look at the dissociation curve of \(\text{H}_2\text{O} \) where both O-H bonds are simultaneously stretched (Figure 9.13). It is seen that the ICE-CI method is extremely parallel to the full CI curve at all distances. Hence, the description of the bond remains consistent, even when Hartree-Fock becomes a bad approximation. The agreement is particularly good if MP2 natural orbitals are used in the ICE-CI procedure. With the default value of \(T_{\text{gen}} = 10^{-4} \) and MP2 natural orbitals the error is consistently below 0.2 mEh. For tighter thresholds, the error is below 0.05 mEh. By contrast, the CCSD(T) method shows relatively large deviations from the full CI results and also behaves very non-parallel as a function of O-H distance.

It is instructive to analyze the ICE-CI wavefunction along the dissociation pathway (Figure 9.14). It becomes apparent that the wavefunctions stays compact along the entire surface, even in the dissociation limit, where the weight of the Hartree-Fock wavefunction drops to less than 25%. Even in this drastic limit, the ICE-CI wavefunction consists of only about 60000 CSFs, which is very similar to the size of the wavefunction at
equilibrium geometry. As the wavefunction becomes more multiconfigurational, the number of generator configurations goes slightly up from the equilibrium value of 77 to a maximum of 118 and finally 112 at dissociation. It is also interesting to note that along the entire dissociation pathway no configuration with more than 8 open shells is generated, which means that no more than quadruple excitations are contained in the ICE-CI wavefunction. The number of iterations required in the ICE-CI procedure also stays constant along the surface at 4 iterations, which impressively shows that a dominant configuration is not necessary for a successful ICE-CI calculation.

9.15.8 Excited States

ICE-CI can be used to obtain some insight into excited states starting from no knowledge at all. Of course, the best was to start an excited state calculation is to have some idea which configurations are important for the low-lying states of the system. If this is not the case, an automated procedure is used. The program will first generate an “Aufbau” configuration using the orbitals that are provided on input. Starting from this Aufbau configuration, single excitations at the configuration level are performed an the Hamiltonian is diagonalized for the required number of roots. These roots are then analyzed for the leading configurations and the regular ICE-CI procedure is started from those configurations. For example, look at a calculation on the CN radical. In this case, we know the relevant orbitals and leading configurations for the lowest four roots (a doublet Σ ground state, a doublet Π excited state and a doublet Σ excited state) and hence can provide them in the input file as shown below.
Figure 9.14: Analysis of the ICE-CI wavefunction along the O-H dissociation pathway.

The result is shown below. The excitation energies are reasonable but not highly accurate due to the limitations of the basis set (experimentally the doublet Π state is at 1.32 eV and the doublet Σ state at 3.22 eV). There is a very slight symmetry breaking in the doublet Π state that arises from the selection procedure.
It should be noted that the state averaged CASSCF excitation energies are 0.25 eV and 3.18 eV.

Below, it is described how to do ICE-CI calculations on excited states if the dominant configurations are not known.

9.15.9 Tips and Tricks

ICE-CI can be used very fruitfully together with, say, MP2 natural orbitals. This usually results in results that are closer to full CI results and at the same lead to more compact wavefunctions (it may be called nICE). The use of MP2 natural orbitals is requested by choosing `UseMP2nat true` inside the `%ice` block. Alternatively, improved virtual orbitals can be used (requested by `UseIVOs true`). A comparison is shown in Scheme 9.15. It is evident that the calculations based on the MP2 natural orbitals show an error relative to full CI that is almost a factor of two smaller than the corresponding result with canonical orbitals while at the same time the wavefunction is more compact by more than 30%. Hence, the use of MP2 natural orbitals appears to be a very good idea in conjunction with the ICE-CI procedure. This also holds when MP2 itself is a bad approximation (for example in the dissociation limit of the H2O molecule as shown above). On the other hand, the IVOs behave very similar to canonical orbitals and hence, seem to offer fewer advantages.

<table>
<thead>
<tr>
<th>#(iterations)</th>
<th>#(CSF)</th>
<th>Energy/Eh</th>
<th>Error/µEh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical orbitals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>85220</td>
<td>-76.241 306 7</td>
<td>518</td>
</tr>
<tr>
<td>Improved virtual orbitals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>85064</td>
<td>-76.241 316 6</td>
<td>508</td>
</tr>
<tr>
<td>MP2 natural orbitals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>59447</td>
<td>-76.241 434 0 (0.3% of FCI)</td>
<td>390</td>
</tr>
<tr>
<td>Full CI result</td>
<td>18818646</td>
<td>-76.241 824 0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.15: Comparison of MP2 natural orbitals and improved virtual orbitals for the ICE-CI procedure (H2O molecule, cc-pVDZ basis, equilibrium geometry)

If ICE-CI is used in conjunction with MP2 natural orbitals, there also is the possibility of letting the program automatically choose the active space (this is called auto-ICE). The general idea is simple – we base the active space on the MP2 natural orbitals and their occupation numbers. All orbitals between occupation number say 1.98 down to 0.02 will be included in the active space. A relevant input is shown below.
If we scan along the H$_2$O dissociation surface one can see that despite changing active spaces, the dissociation curves are smooth and remain fairly parallel to the full CI dissociation curve. Depending on the tightness of the thresholds the active space may change from a small 6 electrons in 5 orbitals to a larger 8 electrons in 7 or 8 orbitals upon dissociation. This is the expected behavior as the σ-antibonding orbital becomes more stable along the bond stretching coordinate. Hence, these results are encouraging in as far as in many situations the program will be able to select a sensible active space without extended input from the user.

Figure 9.16: Automatic active space selection along the H$_2$O dissociation surface. The reference curve (blue triangles) is the ICE-CI method for the full orbital space with the default parameters.

Another place, where automatic selection comes in conveniently is in the calculation of excited states. If there are no user supplied configurations, what happens is that the program will first choose an Aufbau “reference” configuration and then perform all single excitations relative to this configuration. The program will then diagonalize the Hamiltonian over the this set of configurations to create 0$^{\text{th}}$ order approximations for the chosen number of roots of interest and then initiate the ICE-CI procedure starting from the leading configurations of these states. Here is an example for the benzene molecule:
Approximate Full CI Calculations in Subspace: ICE-CI 467

! RHF def2-SVP def2-SVP/C Auto-ICE
%nclib "/Users/neese/prog_c/orca/cclib/orcacc"
%ice nroots 5
 mmin 1.98
 mmax 0.02
 integrals ri
end

* int 0 1
C 0 0 0 0.000000 0.000 0.000
C 1 0 0 1.389437 0.000 0.000
C 2 1 0 1.389437 120.000 0.000
C 3 2 1 1.389437 120.000 0.000
C 4 3 2 1.389437 120.000 0.000
C 5 4 3 1.389437 120.000 0.000
H 1 2 3 1.082921 120.000 180.000
H 2 1 3 1.082921 120.000 180.000
H 3 2 1 1.082921 120.000 180.000
H 4 3 2 1.082921 120.000 180.000
H 5 4 3 1.082921 120.000 180.000
H 6 5 4 1.082921 120.000 180.000
*

(The %cclib statement is explained below and is not mandatory here). The Auto-ICE procedure comes up with as many as 24 electrons in 19 orbitals, which already is a fairly heavy calculation. The procedure converges in five iterations and provides indeed the correct states: the ground state, the \(^1B_{2u} \) state at 6.4 eV, the \(^1B_{1u} \) state at 8.9 eV and a degenerate \(^1E_{1u} \) state at 10.0 eV. These excitation energies are still in error by about 2 eV relative to experiment, which is mainly due to missing dynamic correlation. However, the correct states and their sequence has been found.

The ICE-CI can be used to find the ground state if the actual ground state is not known. To this end, one simply has to turn off the selection steps. This makes the calculations more expensive, but they will converge to the lowest state. In the example below (again, the H\(_2\)O molecule) we start from a random quintuply excited configuration – the ICE-CI still finds the ground state after four iterations:

%ice nel 8
norb 23
nroots 1
tvar 1e-11
tgen 1e-04
etol 1e-06

selection
SelStart false
SelIter false
algorithm details
useivos false
integrals exact
cimaxdim 5 #Davidson expansion space = MaxDim * NRoots
cimode 3

spatial sym (buggy)
However, if one wants to converge to an excited state, one should turn on the selection. In the example below (once more the water molecule) one can converge to the second excited singlet state by judicious choice of the start configuration:

```
%ice nel 8
  norb 23
  nroots 1
  tvar 1e-11
  tgen 1e-04
  etol 1e-06
  # selection
  SelStart true
  SelIter true
  # algorithm details
  useivos false
  integrals exact
  cimaxdim 5
  cimode 3
  # spatial sym (buggy)
  irrep @
  # startup (optional)
  refs { 2 1 0 1 0 2 1 0 1 }
end
```

9.15.10 Large-scale approximate CASSCF: ICE-SCF

ICE-CI can be used as a replacement for the CI step in a CASSCF framework. In this way, much larger CASSCF calculations than previously possible can be envisioned. In using the ICE-CI in this way, the active orbitals should be chosen as natural orbitals in order to ensure a proper canonicalization. In general, ICE-CI results will not be invariant with respect to the choice of orbitals. However, in practice we have not found this to be problematic. We refer to this as ICE-SCF.

The use is simple: in the %casscf block choose:

```
%casscf
  ...
  cistep ice
  # optional input with refined settings
  ci
    tgen 1e-4  # controls accuracy (default = 1e-4)
    tvar 1e-11 # default = 1e-7 * Tgen
    maxiter 100 # number of allowed cycles (default = 64)
end
end
```
The entire remaining input is the one for standard CASSCF calculations. In this way one can do CASSCF calculations with very large active space in reasonable turnaround times. We have not observed convergence problems that are worse than in the standard CASSCF procedure. The results in Figure 9.17 show that the deviations from regular CASSCF energies are very small. The largest deviation observed for C_2H_4 is on the order of 0.2 mEh, which appears acceptable. Note that the CASSCF tutorial also covers larger examples and excitations energies computed with the ICE-CI as CI solver. As mentioned in the CASSCF section 9.11, some feature are not supported for ICE-CI e.g. magnetic properties as well NEVPT2 corrections are not yet available.

![Figure 9.17: Deviations of ICE-SCF from CASSCF energies for a selection of molecules (standard truncation parameters $T_{\text{gen}} = 10^{-4}$ and $T_{\text{var}} = 10^{-11}$)](image)

Since CASSCF is fully variational, it is possible to optimize geometries with that procedure. It is our experience so far, that the ICE-SCF geometries are virtually indistinguishable from CASSCF geometries (an example is shown in Figure 9.18).

9.15.11 The entire input block explained

For completeness, the parameters that can be specified in the input block are summarized below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nel</code></td>
<td># number of active electrons</td>
</tr>
<tr>
<td><code>norb</code></td>
<td># number of active orbitals</td>
</tr>
<tr>
<td><code>nroots</code></td>
<td># number of roots</td>
</tr>
<tr>
<td><code>mult</code></td>
<td># requested multiplicity</td>
</tr>
<tr>
<td><code>irrep</code></td>
<td># requested irrep (buggy :-()</td>
</tr>
</tbody>
</table>

|

470 9 Detailed Documentation

Figure 9.18: CASSCF and ICE-SCF optimized geometries for methylene and ozone (cc-pVDZ basis set, default parameters).

```
tgen 1e-04 # generator threshold
tvar -1e-7 # negative -> 1e-7*tgen
etol 1e-06 # convergence tolerance

# algorithm details
useMP2nat false # use MP2 natural orbitals
useivos false # use improved virtual orbitals
useQROs false # For UHF: use quasi-restricted MOs?
integrals exact # exact or ri transformation
cimaxdim 10 # max. size of expansion space in Davidson procedure
cimode 3 # default=accelerated CI, other settings not recommended

# startup configurations(optional)
refs { 2 2 2 2 0 }
refs { 2 2 2 0 2 }
end
end
```

9.15.12 A Technical Note: orca_cclib

We should finally mention a technical aspect. The CI procedure in ICE-CI is based around the so-called one particle coupling coefficients

\[A_{pq}^{IJ} = \langle I|E_p^q|J \rangle \] \hspace{1cm} (9.207)

where \(A_{pq}^{IJ} \) is a coupling coefficient, \(I \) and \(J \) are configuration state functions (CSFs) and \(E_p^q \) is the spin-free excitation operator that promotes an electron from orbital \(p \) to orbital \(q \). The values of these coupling coefficients only depend on the logical relationship between the CSFs \(I \) and \(J \) but not on the absolute values of \(I, J, p, q \). In fact, they only depend on the number of unpaired electrons in \(I \) and the total spin \(S \) that both CSFs refer to. Hence, prototype coefficients can be pre-tabulated. This is normally done in a CI run at the beginning of the run. However, in ICE-CI it may have to be repeated several dozen times and for large numbers of open shells (say 14), the process is time and memory consuming.

In order to ease the computational burden, we have provided a small utility program that tabulates the coupling coefficients for a given total spin \(S \) (rather the multiplicity \(M = 2S + 1 \)) and maximum number of
open shells. This program is called `orca_cclib`. It is called like:

```
orca_cclib Mult MaxNOpen
```

It will produce a series of files `orcacc.el.mult.nopen` (electron density coupling coefficients) and `orcacc.sp.mult.nopen` (spin-density coupling coefficients) in the current directory. These files are binary files. They can be copied to an arbitrary directory. You instruct the program to read these coefficients (rather than to recalculate them all the time) by setting the path to this directory:

```
# My Job
! def2-SVP Auto-ICE
%cclib "/user/me/orca/cclib/orcacc"
```

The remaining part of the filename will be automatically added by the program. This option can save humongous amounts of time. The coupling coefficient library needs to be made for the desired multiplicities only once. The practical limit will be 14-16 open shells. If you are running the calculation on a cluster using some submit script, you have to ensure that the provided `cclib` path is accessible from the compute node.

9.16 CI methods using generated code

The AUTOCI module is replacement of the `orca_mdci` for cases, where manual implementation of the method would be tedious or practically impossible. The module works with all types of reference wave function available in ORCA, i.e. RHF, ROHF, UHF and CASSCF and offers CI and related methods. At current stage, only the energies are available and all computational modules do run only in serial mode, i.e. no parallelization is implemented. All the methods are implemented in canonical orbital basis and storing all integrals on disk.

9.16.1 Introduction

All the theories are obtained by the means of automated programming within the ORCA-AGE (Automated Generator Environment for ORCA). The CI module reads in the SCF wavefunction and optimizes the coefficient of the CI expansion. Conceptually, the module is very similar to `orca_mdci`, therefore the input and output do have a lot in common.

9.16.2 Input

All parameters applicable to the autoci module are shown below.
%autoci

Algorithm selection
ctype # Type of the CI expansion to be applied (one of following)
CISD # configuration interaction with single and double substitutions
POLYCI # Polynomial CI
CCSD # Polynomial CI of the order 4 for RHF reference
FICMRCI # Fully internally contracted MRCI
FICMREPA0 # Fully internally contracted CEPA0
% FICDDCI3 # FIC-MRCI without the IJAB excitation class
% FICDDCI2 # FIC-DDCI3 without the ITAB and IJTA excitation classes
% FICSORCI # FIC-DDCI3 in the basis of Nat. Orbs. of DDCI2

polycidegree 1 # Degree of the polynomial CI expansion (1=CISD, 2=QCISD, 4=CCSD)

converger details
stol 1e-06 # residue convergence tolerance
maxiter 50 # maximum number of iterations
maxdiis 5 # depth of the DIIS memory
diisstartiter 2 # Apply DIIS starting at iteration 1
denomopt # Type of denominator used for update (one of following)
0 # Orbital energies
1 # Dyall Hamiltonian
2 # Full Born-Oppenheimer Hamiltonian

CAS settings similar to the CASSCF input
nel 6 # number of active electrons (for CAS)
norb 7 # number of active orbitals (for CAS)
mult 1 # requested multiplicity block
nroots 1 # number of roots for mult block
irrep 0 # requested irrep for mult block
nthresh 1e-6 # Threshold for lin. dependencies in the IC-CSFs basis
D3TPre 1e-14 # Density truncation in D3
D4TPre 1e-14 # Density truncation in D4

Algorithm details
maxcore 2000 # Maximum memory limit in MB
printlevel 3 # Amount of printing
integraltrafotype 0 # Type of integral transformation
0 # Full canonical
1 # Full using RI (RI basis needed)
2 # Up to three-ext (ibac) using RI
3 # Up to three-ext (thac) using RI
keepints # Keep the transformed integrals on disk
useoldints # Use the transformed integrals found on disk

% # SORCI settings
% sorclipnthresh 1e-6 # nthresh for the DDCI2 step of SORCI
% sorclimaxiter 10 # maxiter for the DDCI2 step of SORCI
% sorclisto 1e-3 # stol for the DDCI2 step of SORCI
% natpopcut 1e-5 # Cutoff for nat. orb. truncation after DDCI2 step of
% SORCI

Property calculations
density # type of density requested
N.B. In the case of a UHF reference, only the CISD (polycidegree 1) and CCSD (polycidegree 4) methods are available. For a ROHF reference, only CISD (polycidegree 1) and quadratic CCSD (polycidegree 2) calculations can be performed in the current version.

If one wishes to experiment with the module itself and the reference wavefunction stays constant, it is possible to store the transformed MO integrals on disk (keepints) and reuse them (useoldints). The program checks only whether the dimension of the integrals on disk match the problem actually solved, i.e. the user is responsible for valid data.

9.16.3 Fully internally contracted MRCI

Starting point for any multireference approach is a reference wavefunction that consists of multiple determinants or configurations state functions (CSFs). In many instances this is the complete active space SCF (CASSCF) wavefunction. In the uncontracted MRCI approach, as implemented in the orca module, the wavefunction is expanded in terms of excited CSFs that are generated by considering excitations with respect to all reference CSFs. The methodology scales with the number of reference CSFs and hence is restricted to small reference spaces. Moreover, the configuration driven algorithm used in orca keeps all integrals in memory, which further limits the overall size of the molecule.

Internal contraction as proposed by Meyer and Siegbahn avoids these bottlenecks. [370,371] Here, excited CSFs are generated by applying the excitation operator to the reference wavefunction as whole. The fully internally contracted MRCI presented here (FIC-MRCI) uses the same internal contraction scheme as the FIC-NEVPT2 (aka PC-NEVPT2). The entire methodology as well as a comparison with the conventional uncontracted MRCI is reported in our article. [372] The general input structure is similar to the CASSCF e.g. the following example input reads an arbitrary set of orbitals and starts the FIC-MRCI calculation.

```plaintext
!def2-tzvp moread allowrhf noiter nofrozencore
%moinp "start.gbwi" # could be from CASSCF

%autoci
citype FICMRCI # Fully internally contracted MRCI (singles,doubles)
FICMRCEPA0 # CEPA0 version of FIC-MRCI

nel 2
norb 2
mult 1,3
nroots 3,1

nthresh 1e-6 # removal of linear dependencies in the IC-CSFs
```
Currently, the program is capable of computing total energies and vertical excitation energies. More features will be available with future releases. Note that the program is not yet parallelized.

9.17 Geometry Optimization

ORCA is able to calculate equilibrium structures (minima and transition states) using the quasi Newton update procedure with the well known BFGS update \[124–129\], the Powell or the Bofill update. The optimization can be carried out in either redundant internal (recommended in most cases) or Cartesian displacement coordinates. As initial Hessian the user can choose between a diagonal initial Hessian, several model Hessians (Lindh, Almloef, Schlegel), an exact hessian and a partially exact Hessian (both recommended for transition state optimization) for both coordinate types. In redundant internal coordinates several options for the type of step to be taken exist. The user can define constraints via two different paths. He can either define them directly (as bond length, angle, dihedral or Cartesian constraints) or he can define several fragments and constrain the fragments internally and with respect to other fragments. The ORCA optimizer can be used as an external optimizer, i.e. without the energy and gradient calculations done by ORCA.

9.17.1 Input Options and General Considerations

The use of the geometry optimization module is relatively straightforward.\(^{18}\)

\[^{18}\text{But that doesn’t mean that geometry optimization itself is straightforward! Sometimes, even when it is not expected the convergence can be pretty bad and it may take a better starting structure to come to a stationary point. In particular floppy structures with many possible rotations around single bonds and soft dihedral angle modes are tricky. It may sometimes be advantageous to compute a Hessian matrix at a “cheap” level of theory and then do the optimization in Cartesian coordinates starting from the calculated Hessian.}\]
coords (molecules might explode)
redundant_new # New set of redundant internal coords
(includes non-covalent bonds, i.e. H-bonds)
deloc # Delocalized internals
cartesian # Cartesian coordinates

transition state (TS) optimization
TS_search EF # Switch on TS search, EF means
"eigenvector following"
alternatively use "! OptTS"
TS_Mode {M 0} end # Choose the mode to follow uphill in the
TS optimization. {M X}: eigenvector of
the Hessian with X. lowest eigenvalue
(start counting at zero) (default: X=0)

Instead of a mode choose an internal coordinate strongly
involved in the eigenmode followed uphill
TS_Mode {B 0 1} end # bond between atoms 0 and 1 or
TS_Mode {A 2 1 0} end # angle between atoms 2, 1 and 0 or
TS_Mode {D 3 2 1 0} end # dihedral of atoms 3, 2, 1 and 0
add or remove internal coordinates from the automatically
generated set of redundant internal coords
modify_internal
 { B 10 0 A } # add a bond between atoms 0 and 10
 { A 8 9 10 R } # remove the angle defined
 # by atoms 8, 9 and 10
 { D 7 8 9 10 R } # remove the dihedral angle defined
 # by atoms 7, 8, 9 and 10
end

constrain internal coordinates:
Constraints
 { B N1 N2 value C } # the bond between N1 and N2
 { A N1 N2 N1 value C } # the angle defined by N1, N2
 # and N3
 { D N1 N2 N3 N4 value C } # the dihedral defined by N1,
 # N2, N3 and N4
 { C N1 C } # the cartesian position of N1
 { B N1 * C } # all bonds involving N1
 { B * * C} # all bonds
 { A * N2 * C } # all angles with N2 as central atom
 { A * * * C } # all angles
 { D * N2 N3 * C } # all dihedrals with N2 and N3 as
 # central atoms
 { D * * * * C } # all dihedrals
end

scan an internal coordinate:
Scan B N1 N2 = value1, value2, N end
perform constrained optimizations with varying N1-N2-
distance from value1 up to value2 in N steps;
works as well for angles (use A N1 N2 N3) and for
dihedrals (use D N1 N2 N3 N4)
Scan B N1 N2 [value1 value2 value3 ... valueN] end
perform constrained optimizations with N1-N2-distances
as given in the list;
works as well for angles (use A N1 N2 N3) and for
dihedrals (use D N1 N2 N3 N4)
fullScan true # if !ScanTS is requested, fullScan assures
that the relaxed surface scan is fully
carried out before the TS optimization is
started (Default is false)

fragment optimization:
1. all atoms have to belong to a fragment
2. you have to connect the fragments
ConnectFragments
 {1 2 C} # constrain the internal coordinates
 # connecting fragments 1 and 2
 {1 2 C N1 N2}# constrain the internal coordinates
 # connecting fragments 1 and 2, the
 # fragments are connected via atoms
 # N1 and N2
 {1 3 O} # optimize the internal coordinates
 # connecting fragments 1 and 3
 {1 3 O N1 N2}# optimize the internal coordinates
 # connecting fragments 1 and 3, the
 # fragments are connected via atoms
 # N1 and N2
end
3. you can constrain the fragment internally
ConstrainFragments # constrain all internal coordinates
 { 1 } # containing only atoms of fragment 1
end
optimize hydrogens
optimizeHydrogens true
in the context of a normal optimization all internal
coordinates not involving any hydrogens are constrained
in the context of a fragment optimization all internal
coordinates involving hydrogens are optimized (also in a
constrained fragment)
freeze the hydrogen positions with respect to the
heteroatoms
freezeHydrogens true
invert the defined constraints, i.e. optimize the
constraints and constrain the remaining coordinates
this only works for the redundant internal coordinates
Cartesian coordinates are not affected by invertConstraints
invertConstraints true # step type control
Step qn # quasi-Newton step
 rfo # Rational function step (Default for !Opt)
gdiis # gdiis step
prfo # partitioned RFO step (Default for !OptTS)
UseGDIIS false # use GDIIS step (in Cartesian optimization)
 # Default is false.
GDIISStart 1.0 # Gradient at which to start GDIIS algorithm
 # (in Cartesian optimization)
GDIISMaxE 10 # number of last steps to use in GDIIS
 # algorithm
Step size control
MaxStep 0.3 # maximum step length in internal coordinates. Default is 0.3 au
Trust -0.3 # Initial trust radius. Default is -0.3 au
 # Trust <0 - use fixed trust radius
 # of size -trust. I.e. -0.3 means fix
 # the trust radius at 0.3
 # Trust >0 - use trust radius update. I.e. 0.3
 # means start with trust radius 0.3 and update
 # the trust radius after each optimization step
Convergence tolerances. Note that the calculation is
only converged if all criteria are fullfilled. All
values given are default values.
TolE 5e-6 # Energy change (a.u.)
TolRMSG 1e-4 # RMS gradient (a.u.)
TolMaxG 3e-3 # Max. element of gradient (a.u.)
TolRMSD 2e-3 # RMS displacement (a.u.)
TolMaxD 4e-3 # Max. displacement (a.u.)
keyword for frequently used sets of convergence thresholds
Convergence normal # Default
 loose
 tight
ProjectTR false # project translation and rotation
 # default is false. MUST be false for
 # redundant internals
end

Keywords for the control of the Hessian (especially important for the TS optimization):
initial Hessian control

inhess unit # unit matrix
Read # Hessian in a .hess file (e.g. from
a previous NumFreq run), this command
comes with the following:

InHessName "filename.hess" # filename of
Hessian input file

these only for redundants
Lindh # Lindh's model Hessian
Almloef # Almloef's model Hessian
Schlegel # Schlegel's model Hessian

additional Hessian control for TS optimization
Calc_Hess true # calculate the Hessian numerically at the beginning
Recalc_Hess 5 # calculate the Hessian at the beginning
and recalculate it after 5,10,... cycles

Hybrid_Hess [0 1 5 6] end # calculates a Hybrid Hessian
exact calculation for
atoms 0, 1, 5 and 6; works also
with Calc_Hess and Recalc_Hess

NumHess true # requests use of numerical Hessian

modification of the internal Hessian
Hess_Internal

{A 3 2 1 D 2.0} # define a diagonal Hessian value of
2 Eh/Bohr2 for the angle between
atoms 3 2 1. This can also be done for
bonds, dihedrals and Cartesian
coordinates.) The Hessian values of
multiple coordinates can be modified

reset 5 # reset the modified internal Hessian values
after 5 cycles

The following is only recommended
after a relaxed surface scan
in this example of the scan coordinate B 1 0;
"basename.004.xyz" contains the optimized structure
of the scan step with highest energy

{B 1 0 C}

XYZ1 "scanName.003.xyz" # the xyz-files of the structures
XYZ2 "ScanName.005.xyz" # next to the highest energy point
GBW1 "ScanName.003.gbw" # the gbw-files of the structures
GBW2 "ScanName.005.xyz" # next to the highest energy
the gbw-files are optional

end

Hessian update procedure
Update Powell

Bofill # default for TS optimization
As for parameter scan runs ORCA has some special options that may help to speed up the optimization:

```plaintext
%geom UseSOSCF false # switches the converger to SOSCF
  # after the first point. SOSCF may
  # converge better than DIIS if the
  # starting orbitals are good.
  # default = false
ReducePrint true # reduce printout after the first
  # point default=true
  # the initial guess can be changed after the first
  # point. The default is MORead. The MOs of the pre-
  # vious point will in many cases be a very good guess
  # for the next point. In some cases however, you may
  # want to be more conservative and use a general guess.
OptGuess = OneElec # the one electron matrix
  = Hueckel # the extended Hueckel guess
  = PAtom; # the PAtom guess
  = Pmodel # the PModel guess
  = MORead # MOs of the prev. point (default)
end
```
Redundant Internal Coordinates

There are three types of internal coordinates: redundant internals, old redundant internals (redundant_old) and (nonredundant) delocalized internals. All three sets work with the same “primitive” space of internal coordinates (stretches, bends, dihedral angles and improper torsions). Only the redundant internals works with one more type of bends in cases where a normal bend would have been approximately 180°. In redundant internal coordinates the full primitive set is kept and the Hessian and gradient are transformed into this – potentially large – space. A geometry optimization step requires, depending on the method used for the geometry update, perhaps a diagonalization or inversion of the Hessian of dimension equal to the number of variables in the optimization. In redundant internal coordinates this space may be 2-4 times larger than the nonredundant subspace which is of dimension $3N_{\text{atoms}} - 6(5)$. Since the diagonalization or inversion scales cubically the computational overhead over nonredundant spaces may easily reach a factor of 8–64. Thus, in redundant internal coordinates there are many unnecessary steps which may take some real time if the number of primitive internals is greater than 1000 or so (which is not so unusual). The timing problem may become acute in semiempirical calculations where the energy and gradient evaluations are cheap.

In order to deal with this situation, there is a second method implemented in ORCA which is based on (nonredundant) delocalized internal coordinates. If everything is well, the two methods show identical convergence since they start from the same Hessian and finally they span the same space. However, the delocalized internals take significantly less time for the geometry update since the dimension of the matrices to be manipulated is only the required $3N_{\text{atoms}} - 6(5)$ and there are no expensive transformation. The (only) drawback of the delocalized internals is that the iterative back-transformation from internal to Cartesian coordinates is — in our experience — less robust than in redundant internal coordinates and may fail. In this case you have to revert to redundant internals. If everything goes well, delocalized internals are a good choice.

In order to appreciate these differences we briefly outline the theoretical background which is not difficult to understand:

Suppose, we have a set of n_I (redundant) primitive internal coordinates q constructed by some recipe and a set of $n_C = 3N_{\text{atoms}}$ Cartesian coordinates x. The B-matrix is defined as:

$$B_{ij} = \frac{\partial q_i}{\partial x_j}$$ \hspace{1cm} (9.208)

This matrix is rectangular. In order to compute the internal gradient one needs to compute the “generalized inverse” of B. However, since the set of primitive internals is redundant the matrix is rank-deficient and one has to be careful. In pratice one first computes the $n_I \times n_I$ matrix G:

$$G = BB^T$$ \hspace{1cm} (9.209)

The generalized inverse of G is denoted G^{-} and is defined in terms of the eigenvalues and eigenvectors of G:

$$G^{-} = \begin{pmatrix} U & R \end{pmatrix}^T \begin{pmatrix} \Lambda^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} U \\ R \end{pmatrix}$$ \hspace{1cm} (9.210)
Here U are the eigenvectors belonging to the nonzero eigenvalues A which span the nonredundant space and R are the eigenvectors of the redundant subspace of the primitive internal space. If the set of primitive internals is carefully chosen, then there are exactly $3N_{\text{atoms}} - 6(5)$ nonzero eigenvalues of G. Using this matrix, the gradient in internal coordinates can be readily computed from the (known) Cartesian gradient:

$$g_q = G^\top B g_x$$

(9.211)

The initial Hessian is formed directly in the redundant internal space and then itself or its inverse is updated during the geometry optimization.

Before generating the Newton step we have to ensure that the displacements take place only in the nonredundant part of the internal coordinate space. For this purpose a projector P':

$$P' = GG^\top = G^\top G$$

(9.212)

is applied on both the gradient and the Hessian:

$$\tilde{g}_q = P' g_q$$

(9.213)

$$\tilde{H}_q = P' H_q P' + \alpha (1 - P')$$

(9.214)

The second term for \tilde{H} sets the matrix elements of the redundant part of the internal coordinate space to very large values ($\alpha = 1000$).

Coordinate steps

A Quasi-Newton (QN) step is the simplest choice to update the coordinates and is given by:

$$\Delta q = -\tilde{H}_q^{-1} \tilde{g}_q$$

(9.215)

A more sophisticated step is the rational function optimization step which proceeds by diagonalizing the augmented Hessian:

$$\begin{pmatrix} H_q & g_q \\ g_q & 0 \end{pmatrix} \begin{pmatrix} \Delta q \\ 1 \end{pmatrix} = \nu \begin{pmatrix} \Delta q \\ 1 \end{pmatrix}$$

(9.216)

The lowest eigenvalue ν_0 approaches zero as the equilibrium geometry is approached and the nice side effect of the optimization is a step size control. Towards convergence, the RFO step is approaching the quasi-Newton step and before it leads to a damped step is taken. In any case, each individual element of Δq is restricted to magnitude MaxStep and the total length of the step is restricted to Trust. In the RFO case, this is achieved
by minimizing the predicted energy on the hypersphere of radius \textbf{Trust} which also modifies the direction of the step while in the quasi-Newton step, the step vector is simply scaled down.

Thus, the new geometry is given by:

\[q_{\text{new}} = q_{\text{old}} + \Delta q \]

(9.217)

However, which Cartesian coordinates belong to the new redundant internal set? This is a somewhat complicated problem since the relation between internals and Cartesians is very nonlinear and the step in internal coordinates is not infinitesimal. Thus, an iterative procedure is taken to update the Cartesian coordinates. First of all consider the first (linear) step:

\[\Delta x = A \Delta q \]

(9.218)

with \(A = B^T G^{-} \). With the new Cartesian coordinates \(x_{k+1} = x_{k} + \Delta x \) a trial set of internals \(q_{k+1} \) can be computed. This new set should ideally coincide with \(q_{\text{new}} \) but in fact it usually will not. Thus, one can refine the Cartesian step by forming

\[\Delta \Delta q = q_{\text{new}} - q_{k+1} \]

(9.219)

which should approach zero. This leads to a new set of Cartesians \(\Delta x' = A \Delta q \) which in turn leads to a new set of internals and the procedure is iterated until the Cartesians do not change and the output internals equal \(q_{\text{new}} \) within a given tolerance (10\(^{-7}\) RMS deviation in both quantities is imposed in ORCA).

Now, consider working with the nonredundant subspace \(q_{D} = Uq \). In this case, the whole procedure becomes rather simple. The “delocalized” B-matrix is:

\[B_{D} = U^T B \]

(9.220)

The corresponding \(G \) matrix is \textit{not} rank deficient and can be readily inverted. Then, the gradient in delocalized internals is calculated as:

\[g_{D} = G_{D}^{-} B_{D} g_{c} \]

(9.221)

The initial (diagonal) Hessian in \(q \)-space is converted to \(q_{D} \) simply by \(U^T H_{0} U \). Then the update procedure and perhaps the diagonalization in the RFO step only works in the nonredundant \(3N - 6(5) \) subspace instead of the full primitive internal space which is an advantage. The back-transformation of the step in delocalized internals to Cartesians is completely analogous to the redundant internal case. However, in my experience it is less robust than in the latter case. In principle, the nonredundant subspace changes in every iteration since the B-matrix changes in every iteration. However, if one would take this into account the whole computational advantage of the delocalized internals is lost. Consequently, the delocalized internals are kept fixed and unless the geometry undergoes a qualitative change during the optimization this is not expected to have a large
influence on the convergence characteristics. The final geometries predicted with any type of coordinates should of course always be the same.

Constrained Optimization

Constraints on the redundant internal coordinates can be imposed by modifying the above projector P' with a projector for the constraints C:

$$\mathbf{P} = \mathbf{P}' - \mathbf{P}'\mathbf{C}(\mathbf{CPC})^{-1}\mathbf{CP}'$$

(9.222)

C is a diagonal matrix with 1's for the constraints and 0's elsewhere. The gradient and the Hessian are projected with the modified projector:

$$\tilde{\mathbf{g}}_q = \mathbf{P}\mathbf{g}_q$$

(9.223)

$$\tilde{\mathbf{H}}_q = \mathbf{P}\mathbf{H}_q\mathbf{P} + \alpha (1 - \mathbf{P})$$

(9.224)

Constrained Fragments Optimization

The constrain fragments option was implemented in order to provide a convenient way to handle constraints for systems consisting of several molecules. The difference to a common optimization lies in the coordinate setup. In a common coordinate setup the internal coordinates are built up as described in the following:

In a first step, bonds are constructed between atom pairs which fulfill certain (atom type specific) distance criteria. If there are fragments in the system, which are not connected to each other (this is the case when there are two or more separate molecules), an additional bond is assigned to the nearest atom pair between the nonbonded fragments. All other internal coordinates are constructed on the basis of this set of bonds. Here, in a second step, bond angles are constructed between the atoms of directly neighboured bonds. If such an angle reaches more than 175°, a special type of linear angles is constructed. In a third step, dihedral angles (and improper torsions) are constructed between the atoms of directly neighboured angles.

If the constrain fragments option is switched on, the set of bonds is constructed in a different way. The user defines a number of fragments. For each fragment a full set of bonds (not seeing the atoms of the other fragments) is constructed as described above. If using this option, the user also has to define which fragments are to be connected. The connection between these fragments can either be user-defined or automatically chosen. If the user defines the connecting atoms N1 and N2, then the interfragmental bond is the one between N1 and N2. If the user does not define the interfragmental bond, it is constructed between the atom pair with nearest distance between the two fragments. Then the angles and dihedrals are constructed upon this (different) set of bonds in the already described fashion.

Now let us regard the definition of the fragment constraints: A fragment is constrained internally by constraining all internal coordinates that contain only atoms of the respective fragment. The connection between two fragments A and B is constrained by constraining specific internal coordinates that contain
atoms of both fragments. For bonds, one atom has to belong to fragment A and the other atom has to belong to fragment B. Regarding angles, two atoms have to belong to fragment A and one to fragment B and vice versa. With respect to dihedrals, only those are constrained where two atoms belong to fragment A and the other two belong to fragment B.

9.17.2 Transition State Optimization

As transition state finder we implemented the well-established eigenvector following algorithm using a P-RFO step as implemented by Baker [129]. This algorithm is a quasi-Newton like algorithm.

The Taylor series of the energy, truncated after the quadratic term, is:

\[E = E_0 + g_q^+ \Delta q_q + \frac{1}{2} \Delta q^+ H_q \Delta q \] (9.225)

The Newton-Raphson step to get from the actual point to a stationary point is:

\[\Delta q = -H_q^{-1} g_q = \sum -\frac{V_i^+ g_q V_i}{b_i} \] (9.226)

with \(V_i \) and \(b_i \) as eigenvectors and eigenvalues of the Hessian \(H_q \). This step leads to the nearest stationary point on the PES. This stationary point can be a minimum or a saddle point, according to the curvature of the PES at the actual point.

With a simple shift of the Hessian eigenvalues \(b_i \) in this equation one can guide the step to a stationary point with the required characteristics (Hessian with exactly one negative eigenvalue). The transition state search is separated into two different optimization problems. The energy is maximized along one Hessian eigenmode and minimized along the remaining \(3N - 7(6) \) eigenmodes. We introduce two different shift parameters \(\lambda_p \) and \(\lambda_n \), where \(\lambda_p \) is the shift parameter for the eigenmode being maximized and \(\lambda_n \) shifts the Hessian eigenvalues of the modes being minimized. This method allows us to maximize along any mode, not only the one with smallest eigenvalue. Starting from two different RFO-matrices for the different optimization problems (see description above) we get for \(\lambda_p \) and \(\lambda_n \):

\[\lambda_p = \frac{1}{2} b_k + \frac{1}{2} \sqrt{b_k^2 + 4F_k^2} \quad \text{and} \quad \sum_{i \neq k} \frac{F_i^2}{\lambda_n - b_i} = \lambda_n \] (9.227)

whereas \(F_i = V_i^+ g \) is the component of \(g \) along the Hessian eigenmode \(V_i \) and \(\lambda_n \) has to get solved iteratively. The solution for \(\lambda_n \) has to be negative and lower than \(b_2 \) (or lower than \(b_1 \), if not the lowest mode is being followed). If the Hessian has more than one negative eigenvalue, these properties might not be fulfilled, and the Hessian would have to be modified. In our implementation the Hessian diagonal elements are either shifted or reversed in such a case.

Once the shift parameters are known the P-RFO step \(h \) is calculated as follows:

\[\Delta q_k = -\frac{F_k V_k}{b_k - \lambda_p} \quad \text{and} \quad \Delta q_i = -\frac{F_i V_i}{b_i - \lambda_n} \quad \text{with} \quad i = 1 \ldots n, \ i \neq k \] (9.228)
\[\Delta q = \sum_{j=1}^{n} \Delta q_j \]

(9.229)

ScanTS option

For TS modes of rather local nature (involving only one bond or an angle; no concerted movements over multiple atoms) we implemented the ScanTS feature. Here the user can carry out a relaxed surface scan and a TS optimization in one calculation. After the relaxed surface scan the algorithm chooses the optimized structure of the scan with highest energy as initial guess structure and the two neighbouring structures for the calculation of the second derivative of the scanned coordinate (e.g., if scan step number 4 gives the structure with highest energy, then structure *basename.004.xyz* is the initial guess for the TS optimization; the structures *basename.003.xyz* and *basename.005.xyz* are used for the calculation of the second derivative).

Before the first step of the subsequent TS optimization the energies and gradients for all three structures are calculated. The gradients are then transformed to internal coordinates. The diagonal Hessian value of the scanned coordinate is then calculated via finite difference of the internal gradients of the two given structures (003 and 005 in our example).

For the construction of the initial Hessian a model force field Hessian is built up (this Hessian has got only diagonal entries and zeros as off-diagonal elements). The exactly calculated diagonal Hessian value replaces the model force field Hessian entry for the respective internal coordinate.

If the user already performed a regular relaxed surface scan without the subsequent TS optimization, then he can nevertheless use these structures for the same procedure. A relaxed surface scan always gives you the xyz-files and gbw-files of the optimized structures of each scan step. A separate TS optimization can be carried out where the structure with highest energy is the starting structure. Additionally the two files with the two adjacent structures (as explained above) have to be provided (via the Hess_Internal keyword, see below). Furthermore, the internal coordinate, for which the diagonal Hessian value has to be calculated, has to be given (the previously scanned coordinate). This exact Hessian calculation is only possible for one internal coordinate:

```plaintext
%geom

Hess_Internal
{B 1 @ C}  # previously scanned coordinate
XYZ1 "scanName.003.xyz" # the xyz-files of the structures
XYZ2 "ScanName.005.xyz" # next to the highest energy point
GBW1 "ScanName.003.gbw" # the gbw-files of the structures
GBW2 "ScanName.005.xyz" # next to the highest energy
# the gbw-files are optional
end
end
```

Additionally the manipulation of the diagonal Hessian values of the internal Hessian is possible for further internal coordinates, but without an extra calculation. Here the user can just define a value (in Eh/Bohr²).
The definition of such Hessian (diagonal) elements is possible for multiple internal coordinates. These just replace the values of the force field model Hessian.

Hybrid Hessian

We implemented the calculation of a “Hybrid Hessian” as an alternative to the full Hessian calculation for TS optimization. Here only those parts of the Hessian, that are important for the TS optimization, are calculated exactly. For this calculation we define two kinds of atoms: atoms whose couplings with the other atoms are treated exactly (E) and atoms whose couplings are treated approximately (A).

In a first step an Almloef model Hessian is built up in redundant internal coordinates and transformed to Cartesian coordinates. This Hessian gives the second derivative elements for atom pairs A/A. In a second step the second derivative elements between pairs E/E and E/A are calculated numerically as in a numerical frequency calculation:

$$\frac{\Delta E}{\Delta i_B \Delta j_C} = \frac{\Delta E}{\Delta j_C \Delta i_B} = \frac{g_{j,C}^{i,B} - g_{j,C}^{eq.}}{\text{displ.}}$$

(9.230)

with:

- \(i, j\) x-, y- or z-direction
- \(B, C\) pairs of E/E, E/A, A/E
- \(\text{displ.}\) magnitude of displacement
- \(g_{j,C}^{eq.}\) force on atom \(C\) in direction \(j\) in current geometry
- \(g_{j,C}^{i,B}\) force on atom \(C\) in direction \(j\) after displacement of atom \(B\) in direction \(i\)

Partial Hessian Vibrational Analysis

We implemented the Partial Hessian Vibrational Analysis (PHVA), as published by Li, Jensen in [132], for the analysis of the nature of stationary points of structures obtained with QM/MM optimizations.
PHVA after a QM/MM optimization in the (dispersion-/PC-) field
caused by the MM-atoms
! NumFreq

%%LJCoefficients "temp.LJ" # file with the Lennard Jones
coefficients for dispersion interaction
obtained from last QM/MM run

%%pointcharges "temp.pc" # file with the point charges for
electrostatic interaction
obtained from last QM/MM run

%freq

PARTIAL_Hess {0 1 2} # atoms which are "frozen" and which make
the boundary to the MM-system

end

end

NOTE

• This procedure should be used for QM/MM optimized structures only to verify the nature of the stationary point and have an estimate of the ZPE.

Here we shortly describe the procedure: In PHVA we divide the system into two parts B (of size n atoms) and C (size $N - n$). Let the atom set B belong to the region where the chemical change is localized. The Partial Hessian matrix is built up as follows:

$$
\begin{pmatrix}
K_{BB} & 0 \\
0 & K_{CC}
\end{pmatrix}
$$

(9.231)

With:

$$
K_{BB} : x, y, z \text{ direction}
$$

(9.232)

$$
K_{CC}^\varepsilon = \begin{pmatrix}
\varepsilon & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \varepsilon
\end{pmatrix}, \varepsilon = 10^{-8} \text{ au},
$$

(9.233)

this corresponds to using near-infinite masses for the atoms in C.

With this procedure we get the following eigenvalue structure:

• Six zero eigenvalues with modes corresponding to translational and rotational motion of the entire molecule.
• $3(N - n) - 6$ small (less than 1 cm^{-1}) eigenvalues with modes corresponding mainly to internal motion within region C.

• Three eigenvalues (typically less than 10 cm^{-1}) with modes corresponding mainly to motion of region C relative to region B.

• $(3n - 3)$ eigenvalues with modes corresponding mainly to relative motion of B and C as well as internal motion within region B.

9.17.3 Minimum Energy Crossing Points

The MECP optimization allows the user to optimize to structures where two different potential energy surfaces (PES1 and PES2) cross each other. In this optimization two conditions apply: the energy E_1 of PES1 is minimized while at the same time the energy difference $(E_1 - E_2)^2$ of both surfaces is minimized. For the implementation we follow in principle the suggestions of Harvey et al. in [131].

For the minimization two different gradients are constructed:

The first gradient chosen for the minimization is

$$f = \frac{\partial}{\partial q} (E_1 - E_2)^2 = 2 (E_1 - E_2) \cdot x_1$$

(9.234)

where x_1 is the gradient difference vector

$$x_1 = \left[\left(\frac{\partial E_1}{\partial q} \right) - \left(\frac{\partial E_2}{\partial q} \right) \right]$$

(9.235)

which is orthogonal to the crossing hyperline near the MECP.

The gradient

$$g = \left(\frac{\partial E_1}{\partial q} \right) - \frac{x_1}{|x_1|} \left[\left(\frac{\partial E_1}{\partial q} \right) \cdot \frac{x_1}{|x_1|} \right]$$

(9.236)

is orthogonal to x_1.

Both gradients are combined to yield the effective surface crossing gradient

$$g_{\text{SC}} = g + f$$

(9.237)

The crossing hyperline is defined as the $3N - 7$ dimensional subspace of PES1, which is orthogonal to x_1. In the MECP optimization we want to find the point of lowest energy within this subspace.

Our calculation of normal modes and force constants for movements along the crossing hyperline differ from the one proposed by Harvey et al. A standard frequency analysis can not be performed, but a similar procedure is applied:
Let us regard the second-order Taylor expansion for the energy of both surfaces near the MECP for a displacement along the crossing hyperline (orthogonal to x_1):

$$E_A = E_{\text{MECP}} + \frac{1}{2} \Delta q^T H_{\text{eff}, A} \Delta q$$

with:

- E_A: Energy E_1 on PES1 or E_2 on PES2
- $H_{\text{eff}, A}$: effective Hessian for PES1 or PES2
- Δq: displacement along the crossing hyperline

Diagonalization of this effective Hessian gives us the normal modes of the crossing hyperline and thus allows us to decide whether the MECP optimization converged to a minimum in the $3N - 7$ dimensional subspace of the crossing hyperline.

The procedure for the calculation of the effective Hessian is now as follows: For each of both surfaces the second derivative matrix is calculated. Then the 6 rotations and translations and additionally the direction of the gradient difference vector x_1 (this ensures that movement orthogonal to the crossing hyperline, for which we do NOT satisfy the conditions of a stationary point, is excluded) are projected out from the Hessian matrix.

For MECP optimizations the following options exist:

```plaintext
%mecp
  SurfCrossOpt true  # switches on the MECP optimization
  # alternatively use: ! SurfCrossOpt
  SurfCrossNumFreq true # switches on the MECP effective Hessian
  # calculation
  # alternatively use: ! SurfCrossNumFreq
  # separate MO input for the second spin state (PES2)
  moinp "Myfile.gbw"# MO input for PES2
  # information on the electronic structure of PES 2
  Mult 3          # multiplicity of PES2
  brokenSym 1,1   # broken symmetry for PES2
  # CASSCF options for PES2 (also see the CASSCF chapter)
  casscf_nel 6     # number of active space electrons
  casscf_norb 6    # number of active orbitals
  casscf_mult 1,3  # multiplicities singlet and triplet
  casscf_nroots 4,2 # four singlets, two triplets
  casscf_bweight 2,1 # singlets and triplets weighted 2:1
  casscf_weights[0] = 0.5,0.2,0.2,0.2 # singlet weights
  casscf_weights[1] = 0.7,0.3     # triplet weights
end
```
9.17.4 Numerical Gradients

If you want to use numerical instead of analytic gradients you have to use

! NumGrad

in your input file. Additionally the settings for the numerical differentiation can be changed:

%numgrad
 CentralDiff true # (Default) You should use two-sided numerical
 # differentiation, but it is possible to switch
 # to one-sided numerical differentiation.
 DX 0.005 # Increment in Bohr for the differentiation.
 TransInvar true # (Default) Take advantage of translation invariance
end

9.17.5 ORCA as External Optimizer

If you want to use only the optimizer of ORCA you have to use

! ExtOpt

in your input file. All information that you give on the electronic structure is discarded. In each optimization step ORCA writes a file called "extopt.extcomp.inp" with the following format:

"N (nr. of atoms)" "calculation requested" "charge" "multiplicity"
atomic nr.(atom1) x-coord.(atom1) y-coord.(atom1) z-coord.(atom1)
...
atomic nr.(atomN) x-coord.(atomN) y-coord.(atomN) z-coord.(atomN)

example:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>-7.183647732744</td>
<td>1.832728827744</td>
<td>-0.116462028781</td>
</tr>
<tr>
<td>9</td>
<td>-6.344271117689</td>
<td>-0.569555640677</td>
<td>-0.053332293594</td>
</tr>
<tr>
<td>9</td>
<td>-6.385938620292</td>
<td>3.010680341363</td>
<td>1.994410067976</td>
</tr>
<tr>
<td>9</td>
<td>-9.725973988287</td>
<td>1.760800299423</td>
<td>-0.041860336809</td>
</tr>
<tr>
<td>6</td>
<td>-6.281650723853</td>
<td>3.228508119832</td>
<td>-2.541654671259</td>
</tr>
<tr>
<td>1</td>
<td>-7.049215894384</td>
<td>2.192752895053</td>
<td>-4.164371259742</td>
</tr>
<tr>
<td>1</td>
<td>-7.120030511673</td>
<td>5.123374809616</td>
<td>-2.502306840221</td>
</tr>
<tr>
<td>8</td>
<td>-3.579612411580</td>
<td>3.262825146858</td>
<td>-2.485537715188</td>
</tr>
<tr>
<td>1</td>
<td>-3.134995715660</td>
<td>4.196025355887</td>
<td>-4.047828323839</td>
</tr>
</tbody>
</table>
NOTE: the coordinates are given in Bohr.

There are two types of calculation:

1. calculate energy and gradient

2. calculate energy, gradient and Hessian

If a Hessian is requested, it should be stored in the ORCA Hessian file format and be named “yourInputFilename.hess”.

ORCA then calls a script (that is not distributed with the ORCA binaries):

“orca_External extopt.extcomp.inp extopt.extcomp.out”

Your script starts the energy, gradient (and Hessian) calculation and finally provides the results in a file called “extopt.extcomp.out”, which has to be written in the following format:

<table>
<thead>
<tr>
<th>Total Energy</th>
<th>gradient(y) on atom1</th>
<th>gradient(z) on atom1</th>
</tr>
</thead>
<tbody>
<tr>
<td>gradient(x) on atom1</td>
<td>...</td>
<td>gradient(x) on atomN</td>
</tr>
<tr>
<td></td>
<td>gradient(y) on atomN</td>
<td>gradient(z) on atomN</td>
</tr>
</tbody>
</table>

example:

```
-1.135276876846e+02
-1.144030900000e-05 3.458417100000e-05 7.686904800000e-06
-4.502217000000e-05 -2.016015000000e-05 -2.617359400000e-05
4.460242300000e-05 -3.290908700000e-05 5.698279500000e-06
1.026743800000e-06 -4.889225700000e-05 3.474765100000e-05
6.178236500000e-05 -1.506876000000e-04 -1.288283000000e-04
1.601578300000e-05  1.670611600000e-05  2.747591400000e-05
-4.360515500000e-06  5.840020000000e-06  8.823311100000e-06
-1.135159000000e-04  1.384714300000e-04  6.197283200000e-05
 5.043762200000e-05  -4.073673300000e-05  8.597172100000e-06
```

NOTE:

- the energy should be given in Eh, gradients should be given in Eh/Bohr, Hessian values should be given in Eh/Bohr2

ORCA then performs the next optimization step, checks for convergence, and if the optimization has not yet converged, it goes on to the next optimization step.

Gaussian as External Optimizer. To use the external optimizer from Gaussian in ORCA, the following keywords were provided in the past:
%geom

UseGaussian true # Use the external Gaussian optimizer instead
of the ORCA optimizer.
GaussianName "GAU" # String defining the name of the Gaussian
optimizer
GauOptFlags # String indicating the optimization flags
Gaussian Constraints # List defining the constraints for
the Gaussian optimizer.
end

Since the ORCA team got banned by Gaussian in January 2007 we can no longer support these option flags. They have not been removed from the code and may or may not work. If there is trouble with it we can – unfortunately – not offer any help since we do not have access to the Gaussian code any longer.

9.18 Frequency calculations - numerical and analytical

The ORCA program package contains the orca_numfreq and the orca_scfhess modules to perform numerical or analytical frequencies calculations.

The parameters to control these frequency calculations can be specified in the %freq-block.

%freq

 # Flags to switch frequencies calculation on/off

 NumFreq false # numerical frequencies (available for all methods)
 AnFreq false # analytical frequencies (available for SCF, MP2)
 # (One of these options has to be set to true,
 # to request a freq calculation)

 # Flags to control NumFreq calculation:

 CentralDiff true # use central differences (f(x+h)-F(x-h))/2h - or -
 # use one-sided differences (f(x+h)-f(x))/h
 Restart false # restart a (numerical) frequency calculation
 DX 0.005 # increment h
 Increment 0.005 # increment h

Hybrid_Hess {...} end # calculate (numerical) Hybrid Hessian
Partial_Hess [...] end # calculate (numerical) Partial Hessian
At present, analytical Hessians can be calculated for SCF and MP2 only. However, there are some additional restrictions. Analytical Hessians cannot be performed for
- Double-Hybrid functionals
- meta-GGAs
- RI-JK approximation
- relativistic corrections
- CPCM

The Hess2ElFlags that control the approximations used during the various steps of analytical Hessian calculations are set automatically according to global input flags and accuracy requirements. E.g. 1,2,2,1 is the default setting for RIJCOSX Hessian. The default settings have been tested very carefully.

NOTE: You should only change these flags, if you really know what you are doing.

9.19 Excited States via RPA, CIS and TD-DFT

ORCA features a relatively efficient single-excitation CI (CIS), “random-phase approximation” and time-
dependent DFT module that can be used to calculate excitation energies, absorption intensities and CD intensities. Especially TD-DFT became very popular for excited state calculations as it offers significantly better results than HF-CIS at about the same cost. However, there are also many pitfalls of TD-DFT, some of which are discussed in reviews [373] [374]. TD-DFT methods are available for closed-shell and spin-unrestricted reference states. Analytic gradients are available. There also is a doubles correction implemented that improves the results (but also the computational cost). It is often used together with double-hybrid functionals as explained below. The TD-DFT module of ORCA is also extensively used for the calculation of X-ray absorption spectra at the K-edge of a given element.

9.19.1 General Features

The module is invoked with the block:

```plaintext
%cis end

# or equivalently
%tddft end
```

There are a variety of options. The most important one is the number of excited states that you want to have calculated:

```plaintext
%cis NRoots 10
MaxDim 10 # Davidson expansion space = MaxDim * NRoots
end
```

The variable `NRoots` gives the number of excited states to be calculated. The expansion space in the Davidson procedure is limited by MaxDim · NRoots. With MaxDim values of 5-10 the calculations will show favorable convergence but also increased disk space demands. In general the larger `NRoots` the more core memory is needed while the disk space requirements are proportional to MaxDim.

The convergence tolerances are:

```plaintext
%cis ETol 1e-6
RTol 1e-6
end
```

The variable `ETol` gives the required convergence of the energies of the excited states (in Eh) and `RTol` is the required convergence on the norm of the residual vectors. Under normal circumstances the calculations need about 5-10 iterations to converge to the default convergence tolerances.

If closed-shell references are used the program can calculate the singlet and triplet excited states at the same time by using:
This is available for all combinations of methods except double-hybrid DFT or analytic gradients.

In order to control the orbitals that should be taken into account in the calculation two mechanisms are available. The first mechanism is the default mechanism and consists of specifying and orbital energy window within which all single excitations will be considered:

```
%cis EWin -3,3 # (orbital energy window in Eh)
end
```

Thus, the default is to keep core orbitals frozen and to neglect very high lying virtual orbitals which is a sensible approximation. However, you may want to consider to include all virtual orbitals by choosing for example `EWin -3,10000`. The second mechanism is to explicitly give an orbital energy window for each operator, i.e.

```
%cis OrbWin[0] 2,-1,-1,14 # orbital window for spin-up MOs
  OrbWin[1] 2,-1,-1,16 # orbital window for spin-down MOs
end
```

The “-1”’s in the above example mean that the HOMO and LUMO for the spin-up and spin-down orbitals will be automatically determined by the program.

In using the CIS/TD-DFT module five different types of calculations should be distinguished:

- Semiempirical methods
- Hartree-Fock calculations
- DFT calculations without HF exchange (non-hybrid functionals)
- DFT calculations with HF exchange (hybrid functionals)
- DFT calculations with HF exchange and MP2 correlation (double-hybrid functionals)

9.19.2 Semiempirical Methods

The semiempirical INDO/S method is very suitable to calculate absorption spectra of medium sized to large organic and inorganic molecules. It has been parameterized by the late M. C. Zerner for optical spectroscopy and in my experience at least, it tends to work nicely for many systems. With the semiempirical approach it is easy to calculate many states of large molecules. For example, consider the following calculation on a bis-histidine ligated iron-porphyrin model (in the Fe(II) state) that includes 92 atoms and \(\approx 16,500 \) CSFs in the single excitation space. Yet the calculation requires only a few minutes on an ordinary computer for the prediction of the first 40 excited states.
The calculated spectrum is in essentially reasonable agreement with experiment in showing a huge band around 400 nm (the famous Soret band) and a smaller but still intense band between 500 and 550 nm (the Q-band). There are no predicted absorptions below $\approx 10,000 \text{ cm}^{-1}$.

The input for the job is shown below:

```plaintext
# Test CIS in conjunction with INDO/S

! RHF ZINDO/S TightSCF DIIS NoRICO NoMOPrint

%cis

 NRoots  40

* xyz 0 1
Fe  -0.01736  0.71832  -0.30714
C    2.65779  4.03195  -0.13175
C    3.51572  3.02488  -0.24191
C    2.66971  1.82027  -0.30891
C    3.30062  0.51609  -0.42755
C    2.61022  -0.60434  -0.47131
C    3.32146  -1.89491  -0.57434
C    2.35594  -2.79836  -0.57179
C    1.11740  -1.99868  -0.46878
C    -0.04998  -2.61205  -0.44672
C    -1.30967  -1.89127  -0.38984
C    -2.58423  -2.63345  -0.49868
C    -3.50492  -1.68283  -0.37930
C    -2.72946  -0.42418  -0.33711
C    -3.35747  0.73319  -0.28970
C    -2.66935  2.01561  -0.22869
C    -3.31167  3.19745  -0.16277
C    -4.72835  3.62642  -0.14517
C    -5.84825  2.89828  -0.29597
C    -2.21443  4.15731  -0.09763
C    -1.11572  3.39398  -0.14235
C    0.19578  4.02696  -0.10122
C    1.33370  3.36290  -0.15370
C    3.09165  5.44413  -0.02579
C    2.35656  6.55323  0.10940
N    1.43216  2.09428  -0.24815
N    1.34670  -0.74673  -0.42368
N    -1.39885  2.15649  -0.21891
N    -1.47620  -0.63353  -0.34705
C    5.03025  3.02708  -0.28544
C    4.81527  -2.12157  -0.66646
C    -5.01065  -1.83771  -0.38886
C    -2.28137  5.66820  -0.00321
C    -2.73691  -4.14249  -0.43699
C    -2.42579  -4.72805  -1.83259
C    2.45978  -4.31073  -0.64869
C    2.19678  -4.82182  -2.08291
```
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.60835</td>
<td>-6.22722</td>
<td>-2.10748</td>
</tr>
<tr>
<td>C</td>
<td>-1.90102</td>
<td>-6.15737</td>
<td>-1.82447</td>
</tr>
<tr>
<td>O</td>
<td>-1.96736</td>
<td>-6.92519</td>
<td>-2.75599</td>
</tr>
<tr>
<td>O</td>
<td>1.60982</td>
<td>-7.01844</td>
<td>-1.19330</td>
</tr>
<tr>
<td>O</td>
<td>-1.15355</td>
<td>-6.41323</td>
<td>-0.74427</td>
</tr>
<tr>
<td>O</td>
<td>0.89871</td>
<td>-6.14433</td>
<td>3.22828</td>
</tr>
<tr>
<td>H</td>
<td>4.17823</td>
<td>5.62170</td>
<td>-0.65623</td>
</tr>
<tr>
<td>H</td>
<td>2.86221</td>
<td>7.53117</td>
<td>0.17593</td>
</tr>
<tr>
<td>H</td>
<td>1.26303</td>
<td>6.57673</td>
<td>0.17212</td>
</tr>
<tr>
<td>H</td>
<td>-1.78003</td>
<td>6.14426</td>
<td>-0.87498</td>
</tr>
<tr>
<td>H</td>
<td>-3.22281</td>
<td>6.05139</td>
<td>0.61906</td>
</tr>
<tr>
<td>H</td>
<td>-1.78374</td>
<td>6.93115</td>
<td>0.92347</td>
</tr>
<tr>
<td>H</td>
<td>-4.89690</td>
<td>4.71221</td>
<td>-0.87358</td>
</tr>
<tr>
<td>H</td>
<td>-6.82566</td>
<td>3.40843</td>
<td>-0.18907</td>
</tr>
<tr>
<td>H</td>
<td>-5.88239</td>
<td>1.80643</td>
<td>-0.28628</td>
</tr>
<tr>
<td>H</td>
<td>-4.44893</td>
<td>0.70720</td>
<td>-0.28575</td>
</tr>
<tr>
<td>H</td>
<td>-5.32107</td>
<td>-2.89387</td>
<td>-0.54251</td>
</tr>
<tr>
<td>H</td>
<td>-5.45075</td>
<td>-1.49552</td>
<td>0.57400</td>
</tr>
<tr>
<td>H</td>
<td>-5.46788</td>
<td>-1.24144</td>
<td>-1.20929</td>
</tr>
<tr>
<td>H</td>
<td>-2.05997</td>
<td>-4.55939</td>
<td>0.34045</td>
</tr>
<tr>
<td>H</td>
<td>-3.76430</td>
<td>-4.43895</td>
<td>-0.12880</td>
</tr>
<tr>
<td>H</td>
<td>-3.33638</td>
<td>-4.66246</td>
<td>-2.47119</td>
</tr>
<tr>
<td>H</td>
<td>-1.65517</td>
<td>-4.10119</td>
<td>-2.33605</td>
</tr>
<tr>
<td>H</td>
<td>-0.56422</td>
<td>-7.14866</td>
<td>1.00437</td>
</tr>
<tr>
<td>H</td>
<td>0.26056</td>
<td>-7.12181</td>
<td>-3.00953</td>
</tr>
<tr>
<td>H</td>
<td>1.48118</td>
<td>-4.13253</td>
<td>-2.58671</td>
</tr>
<tr>
<td>H</td>
<td>3.13949</td>
<td>-4.79028</td>
<td>-2.67491</td>
</tr>
<tr>
<td>H</td>
<td>3.46153</td>
<td>-4.65168</td>
<td>-0.30336</td>
</tr>
<tr>
<td>H</td>
<td>1.73023</td>
<td>-4.75206</td>
<td>0.06633</td>
</tr>
<tr>
<td>H</td>
<td>5.26172</td>
<td>-1.51540</td>
<td>1.48550</td>
</tr>
<tr>
<td>H</td>
<td>5.31767</td>
<td>-1.84036</td>
<td>0.28550</td>
</tr>
<tr>
<td>H</td>
<td>5.96416</td>
<td>-3.18438</td>
<td>-0.87628</td>
</tr>
<tr>
<td>H</td>
<td>0.67991</td>
<td>-3.70928</td>
<td>-0.48866</td>
</tr>
<tr>
<td>H</td>
<td>4.39835</td>
<td>0.46775</td>
<td>-0.47078</td>
</tr>
<tr>
<td>H</td>
<td>5.39550</td>
<td>2.59422</td>
<td>-1.24309</td>
</tr>
<tr>
<td>H</td>
<td>5.47197</td>
<td>4.00419</td>
<td>-0.19892</td>
</tr>
<tr>
<td>H</td>
<td>5.44914</td>
<td>2.41988</td>
<td>0.54738</td>
</tr>
<tr>
<td>N</td>
<td>0.01831</td>
<td>0.60829</td>
<td>1.68951</td>
</tr>
<tr>
<td>C</td>
<td>0.02054</td>
<td>1.64472</td>
<td>2.54371</td>
</tr>
<tr>
<td>C</td>
<td>0.04593</td>
<td>-0.50152</td>
<td>2.45186</td>
</tr>
<tr>
<td>N</td>
<td>0.04934</td>
<td>1.20474</td>
<td>3.84418</td>
</tr>
<tr>
<td>C</td>
<td>0.06582</td>
<td>-0.16578</td>
<td>3.80848</td>
</tr>
<tr>
<td>H</td>
<td>0.00322</td>
<td>-2.72212</td>
<td>2.31829</td>
</tr>
<tr>
<td>N</td>
<td>-0.05951</td>
<td>0.81937</td>
<td>-2.30431</td>
</tr>
<tr>
<td>H</td>
<td>0.05251</td>
<td>-1.53704</td>
<td>2.08183</td>
</tr>
<tr>
<td>C</td>
<td>0.11803</td>
<td>1.92670</td>
<td>-3.04495</td>
</tr>
<tr>
<td>H</td>
<td>0.05712</td>
<td>1.81091</td>
<td>4.70485</td>
</tr>
</tbody>
</table>
Figure 9.19: Structure of the iron-porphyrin used for the prediction of its absorption spectrum (the structure was obtained from a molecular mechanics calculation and the iron-imidazole bondlength was set to 2.0 Å).
Figure 9.20: The ZINDO/S predicted absorption spectrum of the model iron porphyrin shown above. The spectrum has been plotted using the orca_mapspc tool.

Note that ORCA slightly departs from standard ZINDO/S in using dipole integrals in the intensity calculations that include all one- and two-center terms which are calculated via a STO-3G expansion of the Slater basis orbitals. The calculated intensities are not highly accurate anyways. In the present case they are overestimated by a factor of ≈ 2.

9.19.3 Hartree-Fock Wavefunctions

When applying the procedures outlined above to pure Hartree-Fock, one obtains the “random-phase approximation” (RPA) or the CI singles (CIS) model (when effectively using the Tamm-Dancoff Approximation, TDA). In general, RPA and CIS calculations do not lead to good agreement with experimental excitation energies and errors of 1-5 eV are common. Therefore HF/CIS is mostly a qualitative tool or can be used with caution for larger molecules if more extensive and more well balanced CI calculations are not computationally tractable.

9.19.4 Non-Hybrid and Hybrid DFT

For DFT functionals there is the choice between the full TD-DFT (eq. 9.239) treatment and the so-called Tamm-Dancoff approximation (TDA).

$$
\begin{pmatrix}
 A & B \\
 B^* & A^*
\end{pmatrix}
\begin{pmatrix}
 X \\
 Y
\end{pmatrix} =
\begin{pmatrix}
 \omega & 0 \\
 0 & -\omega
\end{pmatrix}
\begin{pmatrix}
 X \\
 Y
\end{pmatrix}
$$

(9.239)
The TDA is the same approximation that leads from RPA to CIS (i.e. neglect of the so-called “B” matrix, see eq. 9.240). The results for vertical excitation energies are usually very similar between the two approaches.

\[AX_{\text{TDA}} = \omega_{\text{TDA}} X_{\text{TDA}} \] (9.240)

In general, the elements of matrix “A” and “B” for singlet-singlet excitations in the spin-restricted case are given by eqs. 9.241 and 9.242.

\[
A_{ia,jb} = \delta_{ij} \delta_{ab} (\epsilon_a - \epsilon_i) + 2(ia|jb) - a_X (ij|ab)
+ (1 - a_X)(ia|f_XC|jb)
\] (9.241)

and

\[
B_{ia,jb} = 2(ia|bj) - a_X (ib|aj) + (1 - a_X)(ia|f_XC|bj).
\] (9.242)

Here, \(i, j\) denote occupied and \(a, b\) virtual orbitals. \(a_X\) is the amount of non-local Fock exchange in the density functional. If \(a_X\) is equal to one, eqs. 9.239 and 9.240 correspond to the RPA and CIS case, based on a Hartree-Fock ground state determinant.

The TDA is turned on by:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%tddft TDA</td>
<td>true # (default)</td>
</tr>
<tr>
<td>TammDancoff</td>
<td>true # (equivalent)</td>
</tr>
</tbody>
</table>

There are situations where hybrid functionals give significantly better results than pure functionals since they suffer less from the self-interaction error. The RIJCOSX procedure [104] [248] leads to very large speedups in such calculations at virtually no loss in accuracy [375].

9.19.5 Simplified TDA and TD-DFT

ORCA also supports calculations of excited states using the simplified Tamm-Dancoff approach (sTDA) by S. Grimme [376]. The sTDA is particularly suited to calculate absorption spectra of very large systems. sTDA as well as the simplified time-dependent density functional theory (sTD-DFT) [377] approach require a (hybrid) DFT ground state calculation. For large systems, using range-separated hybrid functionals (e.g. \(\omega B97X\)) is recommended. [378]

The sTD-DFT approach in particular yields much better electronic circular dichroism (ECD) spectra and should be used for this purpose.

9.19.5.1 Theoretical Background

A brief outline of the theory will be given in the following. For more details, please refer to the original papers [376,377]. In the sTDA, the TDA eigenvalue problem from eq. 9.240 is solved using a truncated and semi-empirically simplified \(A'\) matrix. The truncation neglects all excitations that are beyond the energy range of interest, except a few strongly coupled ones. The matrix elements from eq. 9.241 are simplified by neglecting the response of the density functional and by approximating the remaining two-electron integrals.
as damped Coulomb interactions between transition/charge density monopoles. In the following, the indices
i, j denote occupied, a, b virtual and p, q either kind of orbitals.

$$A'_{ia,jb} = \delta_{ij} \delta_{ab} (\epsilon_a - \epsilon_i) + \sum_{A,B} (2q^A_{ia} \gamma^K_{AB} q^B_{jb} - q^A_{ia} \gamma^J_{AB} q^B_{jb}) \quad (9.243)$$

q^A_{pq} and q^B_{pq} are the transition/charge density monopoles located on atom A and B, respectively. These are obtained from Löwdin population analysis (see Sec. 9.31.3). ϵ_p is the Kohn-Sham orbital energy of orbital p. γ^K_{AB} and γ^J_{AB} are the Mataga-Nishimoto-Ohno-Klopman damped Coulomb operators for exchange-type (K) and Coulomb-type (J) integrals, respectively.

$$\gamma^J_{AB} = \left(\frac{1}{(R_{AB})^\alpha + \eta^{-\alpha}} \right)^\frac{1}{2}$$

$$\gamma^K_{AB} = \left(\frac{1}{(R_{AB})^\beta + (a_X \eta)^{-\beta}} \right)^\frac{1}{2}$$

Here, η is the arithmetic mean of the chemical hardness of atom A and B. α and β are the parameters of the method and are given by:

$$\alpha = \alpha_1 + a_x \alpha_2$$

$$\beta = \beta_1 + a_x \beta_2$$

For any global hybrid functional, α_1, α_2, β_1 and β_2 are identical. α and β then depend on the amount of Fock exchange (a_X) only. This is different for range-separated hybrid functionals where α_2 and β_2 are set to zero. α_1 and β_1 along with a value a_x for the sTDA treatment are individually fitted for each range-separated hybrid functional. [378] It can be seen from eq. 9.243 that the method is asymptotically correct which is crucial for excitations of charge transfer type.

In sTD-DFT, eq. 9.239 is solved using the simplified matrices A' (see above) and B'.

$$B'_{ia,jb} = \sum_{A,B} (2q^A_{ia} \gamma^K_{AB} q^B_{jb} - a_X q^A_{ia} \gamma^K_{AB} q^B_{ja}) \quad (9.248)$$

This approach yields better transition dipole moments and therefore spectra but the method is more costly than sTDA (a factor of 2–5 for typical systems). The parameters used in sTDA and sTD-DFT are identical. There are no additional parameters fitted for this method.

9.19.5.2 Calculation Set-up

sTDA and sTD-DFT can be combined with any (restricted or unrestricted) hybrid DFT singlepoint calculation. Gradients and frequencies are not implemented! The methods can be invoked via the `%tddft` block.

<p>| Mode sTDA | Invokes a sTDA calculation |
| Mode sTDDFT | Invokes a sTD-DFT calculation |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EThresh value</td>
<td>Energy threshold up to which CSFs are included (in eV)</td>
</tr>
<tr>
<td>PTLimit value</td>
<td>Energy threshold up to which CSFs beyond EThresh may be selected (in eV)</td>
</tr>
<tr>
<td>PThresh value</td>
<td>Selection criterion to include CSF beyond EThresh (in Eh)</td>
</tr>
<tr>
<td>axstda value</td>
<td>Fock exchange parameter used in sTDA/ST-DFT calculation (for range-separated hybrids)</td>
</tr>
<tr>
<td>beta1 value</td>
<td>Constant part of J integral parameter β</td>
</tr>
<tr>
<td>beta2 value</td>
<td>a_{χ} scaled part of J integral parameter β</td>
</tr>
<tr>
<td>alpha1 value</td>
<td>Constant part of K integral parameter α</td>
</tr>
<tr>
<td>alpha2 value</td>
<td>a_{χ} scaled part of K integral parameter α</td>
</tr>
<tr>
<td>triplets true</td>
<td>Calculate singlet-triplet excitations (default: singlet-singlet)</td>
</tr>
</tbody>
</table>

The following example shows how to run such a sTDA calculation using the BHLYP functional if one is interested in all excitations up to 10 eV.

```plaintext
! bhlyp def2-SV(P) rijcosx gridx5 nososcf tightscf
! smallprint printgap nopop
%maxcore 5000
%tddft
  Mode sTDA
  Ethresh 10.0
  maxcore 5000
end

* xyzfile 0 1 coord.xyz
```

Replacing `Mode sTDA` by `Mode sTDDFT` will invoke a sTD-DFT calculation instead. This is shown in the next example in combination with the ωB97X functional and user specified parameters:

```plaintext
! wb97x def2-SV(P) rijcosx gridx5 nososcf tightscf
! smallprint printgap nopop
%maxcore 5000
%tddft
  Mode sTDDFT
  Ethresh 10.0
  axstda 0.56
  beta1 8.00
  beta2 0.00
  alpha1 4.58
  alpha2 0.00
  maxcore 5000
end

* xyzfile 0 1 coord.xyz
```
For the range-separated hybrid functionals LC-BLYP, CAM-B3LYP, ωB97, ωB97X and ωB97X-D3, parameters are available and will be used by default if one of these functionals is used. The way of specifying parameters as shown above is useful if there is a range-separated hybrid functional that has not been parametrized for sTDA yet. For very large systems (e.g. > 500 atoms), it may be useful to define an upper boundary PTLimit for the selection of configurations that are beyond Ethresh (otherwise the whole configuration space will be scanned). This can be done as shown below:

```
! cam-b3lyp grid5 nofinalgrid def2-SV(P) nori tightscf
! nososcf smallprint printgap nopop
%pal
nprocs 4
end
%maxcore 5000
%tddft
  Mode sTDDFT
  Ethresh 10.0
  PThresh 1e-4
  PTLimit 30
  maxcore 20000
end
%method
  runtyp energy
end
* xyzfile 0 1 coord.xyz
```

In this case, all excitations up to 7 eV are considered from the very beginning. Configurations between 7 and 14 eV are included if their coupling to the configurations below 7 eV is strong enough (in total larger than PThresh). All configurations beyond 14 eV are neglected. Since the sTDA/sTD-DFT calculations run in serial mode, it is recommended to reset the maxcore within the %tddft block (as done in the above examples). In the latter sample input, the ground state procedure runs in parallel mode on 4 cores with a maxcore of 5000 MB set for each node. The subsequent sTD-DFT calculation then runs on a single core, but in order to use all the available memory, the maxcore is reset to a larger value (i.e., 20000 MB). If the maxcore statement within the %tddft block was missing, only 5000 MB of memory would be available in the sTD-DFT calculation. Note furthermore that for very large systems, using a functional with the correct asymptotic behaviour is very important (due to the fixed amount of GGA exchange, CAM-B3LYP does not provide this property).

The ORCA output will summarize the important properties of your calculation which allows you to check your input:

```
---------------------------------------------------------------------------------
ORCA sTDA CALCULATION
please cite in your paper
---------------------------------------------------------------------------------
```
The spectroscopic data is also printed out after the calculation has finished:

<table>
<thead>
<tr>
<th>state</th>
<th>eV</th>
<th>nm</th>
<th>fl</th>
<th>fV</th>
<th>Rl</th>
<th>RV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.627</td>
<td>187.1</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.0002400</td>
<td>0.0033014</td>
</tr>
<tr>
<td>1</td>
<td>6.637</td>
<td>186.8</td>
<td>0.000188</td>
<td>0.000233</td>
<td>-6.595360</td>
<td>-6.544674</td>
</tr>
<tr>
<td>2</td>
<td>8.162</td>
<td>151.9</td>
<td>0.000022</td>
<td>0.000113</td>
<td>-8.169704</td>
<td>-8.380921</td>
</tr>
<tr>
<td>3</td>
<td>8.185</td>
<td>151.5</td>
<td>0.708166</td>
<td>0.559459</td>
<td>-33.378989</td>
<td>-33.157817</td>
</tr>
<tr>
<td>4</td>
<td>8.514</td>
<td>145.6</td>
<td>0.461396</td>
<td>0.349012</td>
<td>64.100474</td>
<td>55.364958</td>
</tr>
<tr>
<td>5</td>
<td>8.531</td>
<td>145.3</td>
<td>0.000004</td>
<td>0.000282</td>
<td>0.539213</td>
<td>4.637973</td>
</tr>
<tr>
<td>6</td>
<td>8.927</td>
<td>138.9</td>
<td>0.000050</td>
<td>0.001340</td>
<td>0.439265</td>
<td>1.794914</td>
</tr>
<tr>
<td>7</td>
<td>8.929</td>
<td>138.9</td>
<td>0.002612</td>
<td>0.003077</td>
<td>-5.590091</td>
<td>-7.144206</td>
</tr>
<tr>
<td>8</td>
<td>9.156</td>
<td>135.4</td>
<td>0.432008</td>
<td>0.300685</td>
<td>-30.271745</td>
<td>-29.351033</td>
</tr>
<tr>
<td>9</td>
<td>9.347</td>
<td>132.6</td>
<td>0.058500</td>
<td>0.054136</td>
<td>-37.502752</td>
<td>-36.077121</td>
</tr>
<tr>
<td>10</td>
<td>9.534</td>
<td>130.0</td>
<td>0.338851</td>
<td>0.235400</td>
<td>59.790273</td>
<td>68.042758</td>
</tr>
<tr>
<td>11</td>
<td>9.624</td>
<td>128.8</td>
<td>0.000213</td>
<td>0.004968</td>
<td>25.554619</td>
<td>21.288832</td>
</tr>
</tbody>
</table>
\(f_L, \ f_V, \ RL \) and \(RV \) are the length and velocity expressions of the oscillator and rotatory strengths, respectively. They may be convoluted by a spectrum processing program to yield the UV/Vis absorption and ECD spectra.

9.19.6 Double-hybrid functionals and Doubles Correction

The program can compute a doubles correction to the CIS excitation energies. The theory is due to Head-Gordon and co-workers. \[379\] The basic idea is to compute a perturbative estimate (inspired by EOM-CCSD theory) to the CIS excited states that is compatible with the MP2 ground state energy. In many cases this is a significant improvement over CIS itself and comes at a reasonable cost since the correction is computed \textit{a posteriori}. Of course, if the CIS prediction of the excited state is poor, the (D) correction – being perturbative in nature – cannot compensate for qualitatively wrong excited state wavefunctions.

In addition – and perhaps more importantly – the (D) correction is compatible with the philosophy of the double-hybrid functionals and should be used if excited states are to be computed with these functionals. The results are usually much better than those from TD-DFT since due to the large fraction HF exchange, the self-interaction error is much smaller than for other functionals and after the (D) correction the results do not suffer from the overestimation of transition energies that usually comes with increased amounts of HF exchange in TD-DFT calculations.

Since the calculations would require a fairly substantial integral transformation that would limit it to fairly small molecules if no approximation are introduced we have decided to only implement a RI version of it. With this approximation systems with more than 1000 basis functions are readily within the reach of the implementation.

Since one always has a triad of computational steps: MP2-CIS solution-(D) correction, we have implemented several algorithms that may each become the method of choice under certain circumstances. The choice depends on the size of the system, the number of roots, the available main memory and the available disk space together with the I/O rate of the system. The formal cost of the (D) correction is \(O(N^5) \) and its prefactor is higher than that of RI-MP2. In the best case scenario, the rate limiting step would be the calculation of the pair-contribution in the “U-term” which requires (for a closed-shell system) twice the effort of a RI-MP2 calculation \textit{per state}.

The use of the (D)-correction is simple. Simply write:
! RKS B3LYP/G SV(P) SV/C TightSCF
%cis dcorr n # n=1-4. The meaning of the four algorithms is
explained below.
algorithm 1 Is perhaps the best for small systems. May use a
lot of disk space
algorithm 2 Stores less integrals
algorithm 3 Is good if the system is large and only a few
states are calculated. Saves disk and main
memory.
algorithm 4 Uses only transformed RI integrals. May be the
fastest for large systems and a larger number
of states
end

Table 9.14: Integral handling in various implementations of the (D) correction (i,j=occupied MOs, a,b=virtual
MOs, Q=aux function; NumInt=numerical integration).

<table>
<thead>
<tr>
<th>DCORR=</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ia</td>
<td>jb) integrals</td>
<td>Stored</td>
<td>Stored</td>
<td>Not stored</td>
</tr>
<tr>
<td>(ij</td>
<td>ab) integrals</td>
<td>Stored</td>
<td>Not made</td>
<td>Not made</td>
</tr>
<tr>
<td>(ab</td>
<td>Q) integrals</td>
<td>Stored</td>
<td>Not made</td>
<td>Not made</td>
</tr>
<tr>
<td>(ij</td>
<td>Q) integrals</td>
<td>Stored</td>
<td>Stored</td>
<td>Stored</td>
</tr>
<tr>
<td>(ia</td>
<td>Q) integrals</td>
<td>Stored</td>
<td>Stored</td>
<td>Stored</td>
</tr>
<tr>
<td>Coulomb CIS</td>
<td>From (ia</td>
<td>jb)</td>
<td>From (ia</td>
<td>jb)</td>
</tr>
<tr>
<td>Exchange CIS</td>
<td>From (ij</td>
<td>ab)</td>
<td>RI-AO-direct</td>
<td>RI-AO-direct</td>
</tr>
<tr>
<td>V-term in (D)</td>
<td>From (ia</td>
<td>jb)</td>
<td>From (ia</td>
<td>jb)</td>
</tr>
<tr>
<td>U-term in (D)</td>
<td>From (ab</td>
<td>Q)</td>
<td>RI-AO-direct</td>
<td>RI-AO-direct</td>
</tr>
</tbody>
</table>

NOTE:

- In all three involved code sections (MP2, CIS, (D)) the storage format FLOAT is respected. It cuts
down use of disk and main memory by a factor of two compared the default double precision version.
The loss of accuracy should be negligible; however it is – as always in science – better to double check.

- The (ab|Q) list of integrals may be the largest for many systems and easily occupies several GB of disk
space (hence algorithms 2 and 3). However, that disk-space is often well invested unless you run into
I/O bottlenecks.

- The (ia|jb) and (ij|ab) lists of integrals is also quite large but is relatively efficiently handled. Nevertheless,
I/O may be a problem.

- Making the exchange contribution to the CIS residual vector in an RI-AO direct fashion becomes quite
expensive for a larger number of states. It may be a good choice if only one or two excited states are
to be calculated for a larger system.
9.19.7 Natural Transition Orbitals

Results of TD-DFT or CIS calculations can be tedious to interpret as many individual MO pairs may contribute to a given excited state. In order to facilitate the analysis while keeping the familiar picture of an excited state originating from essentially an electron being promoted from a donor orbital to an acceptor orbital, the device of "natural transition orbitals" can be used.

The procedure is quite straightforward. For example, consider the following job on the pyridine molecule:

```plaintext
! PBE D3ZERO def2-SVPD def2/J tightscf
%
tddft nroots 5
   DoNTO true     # flag to turn on generation of natural transition orbitals
   NTOSates 1,2,3 # States to consider for NTO analysis;
        #if empty all will be done
   NTOThresh 1e-4 # threshold for printing occupation numbers
end

* xyz 0 1
N  0.000000  0.000000  1.401146
C  0.000000  1.146916  0.702130
C  0.000000 -1.146916  0.702130
C -0.000000  1.205574 -0.702848
C -0.000000 -1.205574 -0.702848
C  0.000000  0.000000 -1.421344
H  0.000000  2.079900  1.297897
H  0.000000 -2.079900  1.297897
H  0.000000  2.179600 -1.219940
H  0.000000 -2.179600 -1.219940
H  0.000000  0.000000 -2.525017
*
```

which results in:

```
------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 1
------------------------------------------
Making the (pseudo)densities ... done
Solving eigenvalue problem for the occupied space ... done
Solving eigenvalue problem for the virtual space ... done
Natural Transition Orbitals were saved in TD-DFT-Example-6.s1.nto
Threshold for printing occupation numbers 0.000100

E= 0.158492 au 4.313 eV 34785.0 cm**-1
20a -> 21a : n= 0.99825296
19a -> 22a : n= 0.00067172
18a -> 23a : n= 0.00051394
```
17a → 24a : n = 0.00030846

NATURAL TRANSITION ORBITALS FOR STATE 3

Making the (pseudo)densities ... done
Solving eigenvalue problem for the occupied space ... done
Solving eigenvalue problem for the virtual space ... done
Natural Transition Orbitals were saved in TD-DFT-Example-6.s3.nto
Threshold for printing occupation numbers 0.000100

E = 0.197103 au 5.363 eV 43259.2 cm⁻¹

20a → 21a : n = 0.64493520
19a → 22a : n = 0.34962356
18a → 23a : n = 0.00166855
17a → 24a : n = 0.00112178
16a → 25a : n = 0.00073279
15a → 26a : n = 0.00062556
14a → 27a : n = 0.00045135
13a → 28a : n = 0.00019911
12a → 29a : n = 0.00017459
10a → 31a : n = 0.00011544

We see that there is a weakly allowed transition (S1) that is essentially totally composed of a single NTO pair (20a→21a : n = 0.99825296), while the third excited state (S3) is strongly allowed and requires two NTO pairs for its description (20a→21a : n = 0.64493520 and 19a→22a : n = 0.34962356).

These orbitals are shown below. It is evident that the S1 state donor orbital (NTO10) is a nitrogen lone pair and the acceptor orbital is a π* orbital of the ring. For the S3 state the two NTO donor orbitals are comprised of a nearly degenerate set of π orbitals (they would be degenerate in the parent benzene) and the acceptor orbitals are a pair of nearly degenerate π* orbitals. It is evident from this example that by looking at the NTOs one can obtain a nicely pictorial view of the transition process, even if many orbital pairs contribute to a given excited state in the canonical basis.

Similar analysis can be performed in the case of ROCIS and DFT/ROCIS calculations as it will be described in section 9.20.3.
9.19 Excited States via RPA, CIS and TD-DFT

Figure 9.21: Natural transition orbitals for the pyridine molecule in the S1 and S3 states.

9.19.8 Computational Aspects

9.19.8.1 RI Approximation (AO-Basis)

If the SCF calculation used the RI approximation it will also be used in the TD-DFT calculation. The RI approximation saves a large amount of time while giving close to identical results (the errors will usually be <0.1 eV) and is generally recommended. If the functional is a hybrid functional the RI-approximation will only be applied to the Coulomb term while the exchange will be treated as before. In the SCF you can use this feature with the keyword (! RIJONX). It will then also be used in the TD-DFT calculation. Again, the RIJCOSX approximation can be used in TD-DFT and CIS calculations and leads to very large speedups at virtually no loss in accuracy.

9.19.8.2 RI Approximation (MO-Basis)

As an alternative to the direct AO-basis computation ORCA allows to use RI-integrals transformed to the MO basis to generate the CI matrix. This algorithm is more disk-intensive. However, for medium sized molecules we have observed speedups on the order of 15 or more with this method. It is particularly beneficial together with hybrid functionals.

In order to use this method you have to specify mode riints in the %tddft block and you also have to assign an auxiliary basis set (for example def2-TZVP/C). There is a second algorithm of this kind that is labelled mode riints_disk

Note that the auxiliary basis set has to be valid for correlation treatments in case that you have a hybrid functional. Thus the basis sets developed for RI-MP2 are suitable (def2-SVP/C, def2-TZVP/C and def2-TZVPP/C). If you have a non-hybrid functional the normal RI-J auxiliary basis sets are fine.
An example that uses the B3LYP functional is given below:

```
! RKS B3LYP/G SV(P) def2-SVP/C TightSCF

%tddft
  mode riints # or riints_disk (often faster but requires more disk space)
  nroots 8
end

* int 0 1
  C  0 0 0  0.0 0.0 0.0
  O  1 0 0  1.20 0.0 0.0
  H  1 2 0  1.08 120.0 0.0
  H  1 2 3  1.08 120.0 180.0
*
```

NOTE:

- Do not forget to assign a suitable auxiliary basis set! If Hartree-Fock exchange is present (HF or hybrid-DFT) these are the auxiliary bases optimized for correlation while for non-hybrid functionals the standard RI-J bases are suitable.

- The standard auxiliary basis sets may not be suitable if you have diffuse functions present and want to study Rydberg states. You have to augment the auxiliary basis with diffuse functions yourself in this case.

- Be prepared that the transformed integrals take up significant amounts of disk space.

9.19.8.3 Integral Handling

If the SCF calculation is carried out in an integral direct fashion this will also be done in the CIS/TD-DFT calculation. Thus, no bottlenecks arising from large integral transformations or large disk space requirement arise in the calculations. An exception is the MO based RI approximations described in the previous section.

9.19.8.4 Valence versus Rydberg States

For valence excited states the usual orbital basis sets are reasonable. Thus, with polarized double-zeta basis sets sensible results are obtained. Especially DFT calculations have the nice feature of not being overly basis set dependent.

If Rydberg states are desired you should make sure that diffuse functions are present in your basis set. These can be added to any “normal” basis set. For example, the following example provides a rather high quality basis for excited state calculations that is based on the Ahlrichs basis set:
9.19 Excited States via RPA, CIS and TD-DFT

%basis basis vtz # standard triple-zeta
pol Ahlrichs_2df # large (2df) polarization
diff _p # plus 1 s,p diffuse set
augment the carbon basis set by even more
diffuse functions
addgto 6
 s 1
 1 0.01 1.0
 p 1
 1 0.01 1.0
 d 1
 1 0.07 1.0
end
end

Smaller basis sets may also be sufficient.

TIP

- If you want to augment a given basis set it is sensible to run a preliminary SCF calculation and use %output print[p.basis] 2 end. This will provide you with a detailed listing of basis functions and their exponents. You can then add additional s, p and perhaps d-functions with the AddGTO command as in the example above. It is sensible to decrease the exponent of the diffuse functions by roughly a factor of 3 from the smallest exponent in the original basis.

9.19.8.5 Restrictions for Range-Separated Density Functionals

Several restrictions apply for range-separated density functionals. They are currently only implemented to work with the AO-based algorithm within the RIJONX, RIJCOSX, and NORI integral schemes. Moreover, the calculation of triplet states has been disabled. Additionally, the asymptotic correction (section 9.19.8.6) has been disabled. However, the nuclear gradient for the excited states is now available.

9.19.8.6 Asymptotically Corrected Density Functionals

In studying Rydberg states one general shortcoming of the present day density functionals becomes particularly prominent. This is the too fast decay of the DFT potential in the long range limit. This causes the DFT orbital energies being too positive by several eV. Likewise the excitation energies to Rydberg states are underestimated by several eV. This can be fixed by using density functionals with improved long range behavior. One such functional is the LB94 functional. However, the LB94 has the disadvantage of being only defined through the potential and that this potential is not accurate in the bonding region. Therefore it is reasonable to only correct an existing functional (like the BP functional) in the long range with the LB94 functional. In ORCA the so-called “gradient regular asymptotic correction” (GRAC) is implemented and can be applied with any “bulk” density functional in the bonding region. The energetics and occupied orbital
energies are only affected to a minor extent while the virtual orbital energies are significantly changed and the excitation energies to Rydberg states are improved.

The following example shows how to use the asymptotic correction. The run almost exactly reproduces the results of Grüning et al. [380] who also developed the method implemented in ORCA.

```
# Gradient-regulated asymptotic correction calculation on the excited states of the CO molecule.
#
#
! RKS BP NoRI Grid5 NoFinalGrid TightSCF
%method xkernel lda
   ldaopt c_vwn5
   xckernellda c_vwn5
   # *** turn on the asympt. correction
   gracLB true
   # *** the input ionization potential
   # *** in eV !!!
   ip 14.01
end
%basis basis "tzvpp++"
   addgto 6
      s 1
      1 0.01 1.0
      p 1
      1 0.01 1.0
      d 1
      1 0.07 1.0
   end
   addgto 8
      s 1
      1 0.02 1.0
      p 1
      1 0.02 1.0
      d 1
      1 0.1 1.0
   end
%tddft nroots 10 # no of roots to determine
tda false # Tamm-Dancoff approx
   etol -1 # energy tolerance
   rtol 1e-5 # residual tolerance
   triplets true # generate triplets ?
end
* xyz 0 1
   C  0  0  0.00
   O  0  0  1.130
```
From the example two additional inputs are necessary compared to a standard DFT calculation. The first is “gracLB true” in the method block to turn on the asymptotic correction. The second is “ip 14.01” also in the method block. The second input is the ionization potential of the molecule in eV and is required for the correction to be meaningful. If there is no experimental value available you have to calculate the IP first by a ΔSCF calculation before you can run the TD-DFT!

CAUTION:

- The corrected density functional potentials are not functional derivatives of well defined energy functionals. Therefore you should not rely on the total energies delivered by these functionals because these are not variational energies!

9.19.8.7 Potential Energy Surface Scans

ORCA allows the combination the scan feature with CIS or TD-DFT. This can be used to map out the excited state potential energy surfaces as a function of one- two- or three parameters. The output of the “trajectory” run automatically contains the excited state energies in addition to the ground state energy. For example consider the following simple job.

```plaintext
! def2-TZVPD
%method scanguess pmodel # this assignment forces a PModel guess at each step
    # which is often better if diffuse functions are present
end
%cis NRots 7
end
%paras rCO = 0.85,1.45,21;
end
* xyz 0 1
  O 0 0 0
  C 0 0 {rCO}
*  
```

The output file from this job contains the total energies (i.e. the ground state energy plus the excitation energy) for each excited state as a function of C-O bondlength as shown below. However, the assignment of the individual states will change with geometry due to curve crossings. Thus, the state-to-state correlation must be worked out “by hand”. These calculations are nevertheless very helpful in obtaining at least a rough idea about excited state energy surfaces.
9.19.8.8 Potential Energy Surface Scans along Normal Coordinates

The ground and excited state potential energy surfaces can also be mapped as a function of normal coordinates. The normal mode trajectory run is invoked by the keyword !MTR. In addition several parameters have to be specified in the block %mtr. The following example illustrates the use:

First you run a frequency job:

```
#
! BP86 def2-SV(P) def2/J TightSCF AnFreq

* xyz 0 1
 C   0.000001  -0.000000   -0.671602
 C   0.000000   0.000000    0.671602
 H   -0.000000   -0.940772   -1.252732
 H   -0.000000    0.940772   -1.252732
 H   -0.000000   -0.940772    1.252732
 H   -0.000000    0.940772    1.252732
*
```

and then:
The **HessName** parameter specifies the name of the file which contains nuclear Hessian matrix calculated in the frequency run. The Hessian matrix is used to construct normal mode trajectories. The keyword **MList** provides the list of the normal modes to be scanned. The parameters **RSteps** and **LSteps** specify the number of steps in positive and negative direction along each mode in the list. In general, for a given set of parameters

\[mlist \ m_{12}, \ldots, \ m_{nn} \]
\[rsteps \ r_{m_{12}}, \ldots, \ r_{nn} \]
\[lsteps \ l_{m_{12}}, \ldots, \ l_{nn} \]

the total number of the displaced geometries for which single point calculations will be performed is equal to \(\prod_{m_i} (r_{m_i} + l_{m_i} + 1) \). Thus, in the present case this number is equal to \((4 + 4 + 1) (5 + 5 + 1) = 99 \).

The **ddnc** parameter specifies increments \(\delta q_{\alpha} \) for respective normal modes in the list in terms of dimensionless normal coordinates (DNC’s). The trajectories are constructed so that corresponding normal coordinates are varied in the range from \(-l_{\alpha}\delta q_{\alpha}\) to \(r_{\alpha}\delta q_{\alpha}\). The measure of normal mode displacements in terms DNC’s is appropriate choice since in spectroscopical applications the potential energy function \(U \) is usually expressed in terms of the DNC’s. In particular, in the harmonic approximation \(U(q_{\alpha}) \) has a very simple form around equilibrium geometry:
\[
U = U_0 + \sum_\alpha \frac{\hbar \omega_\alpha}{2} q_\alpha^2
\]
(9.249)

where \(\omega_\alpha\) is the vibrational frequency of the \(\alpha\)-th mode.

Dimensionless normal coordinate \(q_\alpha\) can be related to the vector of atomic Cartesian displacements \(\delta X\) as follows:

\[
q_\alpha = \left(\frac{\omega_\alpha}{\hbar}\right)^{\frac{1}{2}} \sum_{k=1}^{3N} L_{k\alpha} \delta X_k \sqrt{M_k}
\]
(9.250)

where \(\{L_{k\alpha}\}\) is the orthogonal matrix obtained upon numerical diagonalization of the mass-weighted Hessian matrix, and \(M\) is the vector of atomic masses. Accordingly, the atomic Cartesian displacements corresponding to a given dimensionless normal coordinate \(q_\alpha\) are given by:

\[
\delta X_k = \left(\frac{\hbar}{\omega_\alpha}\right)^{\frac{1}{2}} L_{k\alpha} q_\alpha (M_k)^{-\frac{1}{2}}
\]
(9.251)

Alternatively, it is possible to specify in the input the Cartesian increment for each normal mode. In such a case, instead of the \(\text{ddnc}\) parameter one should use the \(\text{dxyz}\) keyword followed by the values of Cartesian displacements, for example:

```
%mtr
   HessName "ethene.hess"
   modetype normal
   MList 9,13
   RSteps 4,5
   LSteps 4,5
   dxyz 0.01, 0.02 # increments in the Cartesian basis
           # are given in angstrom units
end
```

For a given Cartesian increment \(dX_\alpha\) along the \(\alpha\)-th normal mode the atomic displacements are calculated as follows:

\[
\delta X_k = \frac{dX_\alpha}{\|T_\alpha\|} L_{k\alpha} (M_k)^{-\frac{1}{2}}
\]
(9.252)

The vector \(T_\alpha\) in the Cartesian basis has components \(T_{i\alpha} = L_{k\alpha} (M_k)^{-\frac{1}{2}}\) and length (norm) \(\|T_k\|\).

The increment length can also be selected on the basis of an estimate for the expected change in the total energy \(\Delta E\) due to the displacement according to eq.9.123. The value of \(\Delta E\) can be specified via the \(\text{EnStep}\) parameter:
All quantum chemical methods have to tolerate a certain amount of numerical noise that results from finite convergence tolerances or other cutoffs that are introduced into the theoretical procedures. Hence, it is reasonable to choose ΔE such that it is above the characteristic numerical noise level for the given method of calculation.

At the beginning of the program run the following trajectory files which can be visualized in gOpenMol will be created:

- **BaseName.m9.xyz** and **BaseName.m13.xyz** contain trajectories along normal modes 9 and 13, respectively.
- **BaseName.m13s1.m9.xyz - BaseName.m13s5.m9.xyz** contain trajectories along normal mode 9 for different fixed displacements along mode 13, so that the file **BaseName.m13s.n.m9.xyz** corresponds to the n-th step in the positive direction along mode 13.
- **BaseName.m13s-1.m9.xyz - BaseName.m13s-5.m9.xyz** contain trajectories along normal mode 9 for different fixed displacements along mode 13, so that the file **BaseName.m13s-n.m9.xyz** corresponds to the n-th step in the negative direction along mode 13.
- **BaseName.m9s1.m13.xyz - BaseName.m9s4.m13.xyz** contain trajectories along normal mode 13 for different fixed displacements along mode 9, so that the file **BaseName.m9s.n.m13.xyz** corresponds to the n-th step in the positive direction along mode 9.
- **BaseName.m9s-1.m13.xyz - BaseName.m9s-4.m13.xyz** contain trajectories along normal mode 13 for different fixed displacements along mode 9, so that the file **BaseName.m9s-n.m13.xyz** corresponds to the n-th step in the negative direction along mode 9.

The results of energy single point calculations along the trajectories will be collected in files **BaseName.mtr.escf.S.dat** (for the SCF total energies) and files **BaseName.mtr.ecis.S.dat** (for the CIS/TDDFT total energies), where "S" in the suffix of *.S.dat filenames provides specification of the corresponding trajectory in the same way as it was done for the case of trajectory files *.xyz (e.g. S='m9s-1.m13'). Likewise, the calculated total energies along the trajectories will be collected in files **BaseName.mtr.emp2.S.dat** in the case of MP2 calculations, **BaseName.mtr.emdci.S.dat** (MDCI), **BaseName.mtr.ecasscf.S.dat** (CASSCF), **BaseName.mtr.emrci.S.dat** (MRCI).

Note, that in principle normal coordinate trajectories can be performed for an arbitrary number normal modes. This implies that in general trajectories will contain geometries which involve simultaneous displacement along several (>2) modes. However, trajectory files *.xyz and corresponding *.dat files will be generated only for the structures which are simultaneously displaced along not more than 2 normal coordinates.
Figure 9.23: Result of a potential energy surface scan along C-C stretching normal coordinate (mode 13 in the present example) for the excited states of the ethene molecule using the \texttt{orca} \texttt{cis} module.

9.19.8.9 Normal Mode Scan Calculations Between Different Structures

This type of job allows to map PES between two different structures as a function of normal coordinates. The H$_2$O molecule represent a trivial case which has formally 2 equivalent equilibrium structures which differ by angle H$_1$—O—H$_2$ (103.5° and 256.5°, respectively, as follows from the BP86/SV(P) calculations). In such a case the input for the normal mode trajectory run would require the calculation of geometry difference between both structures in terms of the dimensionless normal coordinates. This can be done in \texttt{orca_vib} run as follows:

```
> orca_vib water.hess ddnc geom.xyz
```

The second parameter ddnc in the command line invokes the calculation of geometry difference in terms of the DNC’s. Both structures are specified in the file \texttt{geom.xyz} which has a strict format:

```
2 3
0
```
The first line of the input specifies the number of the structures and total number of atoms (2 and 3, respectively). Specification of each structure in sequence starts with a new line containing the number of the structure. The number 0 in the second line is used to denote the reference structure. Note that atomic coordinates should be given in units of Å and in the same order as in the ORCA input for the frequency run from which the file water.hess was calculated.

At the end of the orca_vib run the file geom.ddnc is generated. It contains the geometry difference in terms of the dimensionless normal coordinates between the structures with nonzero numbers and the reference one in geom.xyz:

```
1
1 9
0 0.000000
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 9.091932
7 -9.723073
8 0.000000
```

The output file indicates that the structural difference occurs along 2 normal coordinates: 6 (bending mode) and 7 (totally symmetric O—H stretching mode). On the basis of the calculated displacement pattern the following input for the normal mode trajectory run between two structures can be designed:

```
! RKS BP86 SV(P) def2/J RI TightScf MTR

%mtr
  HessName "water.hess"
  modetype normal
  mlist 6,7
  rsteps 10,0
  lsteps 0, 10
  ddnc  0.9091932, 0.9723073
end
```
Here the parameters \texttt{RSteps}, \texttt{LSteps} and \texttt{ddnc} are chosen in such a way that in the scan along modes 6 and 7 the corresponding dimensionless normal coordinates will be varied in the range 0 – 9.091932 and -9.723073 – 0, respectively, in accordance with the projection pattern indicated in the file \texttt{geom.ddnc}. Note that normal modes are only defined up to an arbitrary choice of sign. Consequently, the absolute sign of the dimensionless displacements is ambiguous and in principle can vary in different \texttt{orca_vib} runs. It is important that the normal mode scan between different structures exemplified above is performed using the same sign of normal modes as in the calculation of normal mode displacements. This condition is fulfilled if the same normal modes are used in \texttt{orca_vib} run and trajectory calculation. Thus, since in \texttt{orca_vib} calculation normal modes are stored in \texttt{.hess} file it is necessary to use the same Hessian file in the trajectory calculation.

9.20 Excited States via ROCIS and DFT/ROCIS

The ORCA program package includes the \texttt{orca_rocis} module to perform configuration interaction with single excitations (CIS) calculations using a restricted open-shell Hartee-Fock (ROHF) reference function. It produces excitation energies, absorption energies and CD intensities. It was designed with the aim to reproduce and - even more importantly - reliably predict transition metal L-edges as observed in X-ray absorption spectroscopy (XAS).

9.20.1 General Use

In the present implementation the \texttt{orca_rocis} module is only able to perform CIS calculations on top of a high-spin ROHF reference function. All spins of the unpaired electrons have to be coupled ferromagnetically to give a total spin of $S = \frac{1}{2} N$, where N is the number of unpaired electrons. Other ROHF functions such as Zerner’s configuration averaged or spin averaged ROHF cannot be used as reference. The input for a high spin ROHF calculation is done in the \texttt{%scf} block.

```%
%scf HFTyp ROHF #Flag for ROHF
   ROHF_Case HighSpin #selects the high-spin case
   ROHF_NEl[1] = 4 #the number of unpaired electrons
end
```

In our experience ROHF calculations suffer a lot from convergence problems. UHF calculations generally exhibit better convergence properties. In most cases the quasi-restricted orbitals (qro’s) of a UHF calculation resemble the ROHF orbitals. Thus the program features the ability to start a ROCIS calculation on top of
a UHF calculation. It will automatically create the qro’s and build the reference determinant with them. If one wants to avoid the (small) errors that are introduced by this procedure, one may take the qro’s of a UHF calculation as starting orbitals for a subsequent ROHF calculation. Furthermore it is possible to invoke the `orca_rocis` module for closed-shell molecules. The program will then perform a CI calculation with the provided RHF reference function. In this case it will yield the same result as the `orca_cis` program.

A number of basic variables in the `%rocis` block control the settings of the Davidson procedure that is used to solve the CI problem:

```
%rocis

 NRoots 6  # number of desired roots
 MaxDim 5  # Davidson expansion space = MaxDim * NRoots
 ETol 1e-6  # energy convergence tolerance
 RTol 1e-6  # residual vector convergence tolerance
 MaxIter 35  # maxmimum number of iterations
 NGuessMat 512  # dimension of the guess matrix: 512x512

end
```

The dimension of the iterative subspace is given by \(\text{MaxDim} \cdot \text{NRoots} \). The lowest possible choice for \(\text{MaxDim} \) is a value of 2. In general, by choosing \(\text{MaxDim} \approx 5-10 \times \text{NRoots} \) you will achieve a more favorable convergence by the cost of an increased disk space requirement. Increasing the \(\text{NGuessMat} \) variable will improve the convergence of the iterative CI procedure. The amount of output produced during the calculation is controlled via the `PrintLevel` variable

```
%rocis

 NRoots 3
 PrintLevel 3

end
```

Note, that this does not influence which spectra are calculated or printed. The absorption spectrum calculated on the basis of the pure dipole approximation for your calculation is always printed. In addition, it is possible to allow for electric quadrupole and magnetic dipole contributions to the absorption spectrum as well as to calculate the CD spectrum:

```
%rocis

 NRoots 6
 DoQuad true  #invokes calculation of electric
 #quadrupole and magnetic dipole
 #magnetic quadrupole and electric octupole contributions
 DoCD true  #invokes the calculation of the CD
 #spectrum

end
```

The printed spectra look like this:
Absorption Spectrum via Transition Electric Dipole Moments

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>fosc</th>
<th>T₂ (au²)</th>
<th>Tₓ (au)</th>
<th>Tᵧ (au)</th>
<th>Tzell (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2635.0</td>
<td>3795.1</td>
<td>0.000000001</td>
<td>0.0000000001</td>
<td>0.00001</td>
<td>-0.00001</td>
<td>0.00029</td>
</tr>
<tr>
<td>2</td>
<td>4365.5</td>
<td>2290.7</td>
<td>0.0000011146</td>
<td>0.000086</td>
<td>0.01200</td>
<td>-0.00864</td>
<td>0.02534</td>
</tr>
<tr>
<td>3</td>
<td>4368.2</td>
<td>2289.3</td>
<td>0.000011174</td>
<td>0.000084</td>
<td>-0.02006</td>
<td>0.01442</td>
<td>0.01523</td>
</tr>
<tr>
<td>4</td>
<td>5977.9</td>
<td>1672.8</td>
<td>0.000093897</td>
<td>0.00517</td>
<td>-0.04164</td>
<td>-0.05863</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>65245.3</td>
<td>153.3</td>
<td>0.027669631</td>
<td>0.13961</td>
<td>-0.20555</td>
<td>-0.31203</td>
<td>-0.00023</td>
</tr>
</tbody>
</table>

Absorption Spectrum via Transition Velocity Dipole Moments

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>fosc</th>
<th>P₂ (au²)</th>
<th>Pₓ (au)</th>
<th>Pᵧ (au)</th>
<th>Pzell (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2635.0</td>
<td>3795.1</td>
<td>0.000000085</td>
<td>0.00000000085</td>
<td>0.00000</td>
<td>-0.00000</td>
<td>-0.00004</td>
</tr>
<tr>
<td>2</td>
<td>4365.5</td>
<td>2290.7</td>
<td>0.001777771</td>
<td>0.00005</td>
<td>-0.00315</td>
<td>0.00223</td>
<td>-0.00618</td>
</tr>
<tr>
<td>3</td>
<td>4368.2</td>
<td>2289.3</td>
<td>0.001850956</td>
<td>0.00006</td>
<td>0.00526</td>
<td>-0.00372</td>
<td>-0.00371</td>
</tr>
<tr>
<td>4</td>
<td>5977.9</td>
<td>1672.8</td>
<td>0.003237195</td>
<td>0.00013</td>
<td>0.00667</td>
<td>0.00937</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>65245.3</td>
<td>153.3</td>
<td>0.057301314</td>
<td>0.02555</td>
<td>0.08779</td>
<td>0.13358</td>
<td>0.00016</td>
</tr>
</tbody>
</table>

CD Spectrum

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>R (1e40*sgs)</th>
<th>Mₓ (au)</th>
<th>Mᵧ (au)</th>
<th>Mzell (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2635.0</td>
<td>3795.1</td>
<td>0.000007</td>
<td>-0.00511</td>
<td>-0.01539</td>
<td>0.00021</td>
</tr>
<tr>
<td>2</td>
<td>4365.5</td>
<td>2290.7</td>
<td>0.017777771</td>
<td>0.57434</td>
<td>-0.40490</td>
<td>0.42899</td>
</tr>
<tr>
<td>3</td>
<td>4368.2</td>
<td>2289.3</td>
<td>-0.03730</td>
<td>0.34432</td>
<td>-0.24269</td>
<td>-0.71470</td>
</tr>
<tr>
<td>4</td>
<td>5977.9</td>
<td>1672.8</td>
<td>0.01537</td>
<td>-0.00033</td>
<td>-0.00032</td>
<td>-0.00286</td>
</tr>
<tr>
<td>5</td>
<td>65245.3</td>
<td>153.3</td>
<td>-0.00865</td>
<td>0.00004</td>
<td>0.00003</td>
<td>-0.00005</td>
</tr>
</tbody>
</table>

Combined Electric Dipole + Magnetic Dipole + Electric Quadrupole Spectrum

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>D² (*1e6)</th>
<th>m² (*1e6)</th>
<th>Q² (*1e6)</th>
<th>D²+m²+Q² (*1e6)</th>
<th>D²/TOT</th>
<th>m²/TOT</th>
<th>Q²/TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2635.0</td>
<td>3795.1</td>
<td>0.000000</td>
<td>0.000111</td>
<td>0.000000</td>
<td>0.00000000080469</td>
<td>0.86010</td>
<td>0.13938</td>
<td>0.00052</td>
</tr>
<tr>
<td>2</td>
<td>4365.5</td>
<td>2290.7</td>
<td>0.000001</td>
<td>0.47866</td>
<td>0.000000</td>
<td>0.0000189497194</td>
<td>0.95976</td>
<td>0.04024</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>4368.2</td>
<td>2289.3</td>
<td>0.000001</td>
<td>0.48629</td>
<td>0.000000</td>
<td>0.00001166062671</td>
<td>0.95839</td>
<td>0.04170</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>5977.9</td>
<td>1672.8</td>
<td>0.000009</td>
<td>0.00001</td>
<td>0.000001</td>
<td>0.00000938964787</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>65245.3</td>
<td>153.3</td>
<td>0.02767</td>
<td>0.00000</td>
<td>0.86183</td>
<td>0.02766969236580</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

Combined Electric Dipole + Magnetic Dipole + Electric Quadrupole Spectrum (origin adjusted)

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>D² (*1e6)</th>
<th>m² (*1e6)</th>
<th>Q² (*1e6)</th>
<th>D²+m²+Q² (*1e6)</th>
<th>D²/TOT</th>
<th>M²/TOT</th>
<th>Q²/TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2635.0</td>
<td>3795.1</td>
<td>0.000000</td>
<td>0.000111</td>
<td>0.000000</td>
<td>0.00000000080469</td>
<td>0.86010</td>
<td>0.13938</td>
<td>0.00052</td>
</tr>
<tr>
<td>2</td>
<td>4365.5</td>
<td>2290.7</td>
<td>0.000001</td>
<td>0.38277</td>
<td>0.000000</td>
<td>0.00001189497194</td>
<td>0.95976</td>
<td>0.04024</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>4368.2</td>
<td>2289.3</td>
<td>0.000001</td>
<td>0.48629</td>
<td>0.000000</td>
<td>0.00001166062671</td>
<td>0.95839</td>
<td>0.04170</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>5977.9</td>
<td>1672.8</td>
<td>0.000009</td>
<td>0.00001</td>
<td>0.000001</td>
<td>0.00000938964787</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>65245.3</td>
<td>153.3</td>
<td>0.02767</td>
<td>0.00000</td>
<td>0.86183</td>
<td>0.02766969236580</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
Furthermore like in TD-DFT one may obtain nearly origin independent intensities by evaluating in addition to the electric dipole (D), electric quadrupole (Q) and magnetic dipole (m) intensities the corresponding electric dipole - magnetic quadrupole (DM) and the electric dipole - electric octupole (DO) intensities. Hence in addition to the above spectra one obtains

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>D² (1e6)</th>
<th>m² (1e6)</th>
<th>Q² (1e6)</th>
<th>DM (1e6)</th>
<th>DO (1e6)</th>
<th>D²+m²+Q²+DM+DO (1e6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4368.2</td>
<td>2289.3</td>
<td>0.00001</td>
<td>0.36798</td>
<td>0.00045</td>
<td>0.000001154275975</td>
<td>0.96808</td>
<td>0.93188</td>
</tr>
<tr>
<td>4</td>
<td>5977.9</td>
<td>1672.8</td>
<td>0.00009</td>
<td>0.00000</td>
<td>0.00001</td>
<td>0.00009389663928</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>65245.3</td>
<td>153.3</td>
<td>0.02767</td>
<td>0.00003</td>
<td>0.06176</td>
<td>0.02766969232228</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

These spectra are plotted by calling

```
orca_mapspc MyOutput.out ABS/ABSV/CD/ABSQ/ABSOI -eV -x0(start) -x1(stop) -w(width) -n(points)
```

If calculations on large molecules are conducted, the integral transformation will be the most time-consuming part. Therefore it is strongly recommended to use the resolution of the identity (RI) approximation in those cases. It effectively reduces the computational costs of the transformation step by only introducing minor errors to the calculation. It has to be kept in mind that in order to keep the introduced errors small, one has to provide a reasonable auxiliary basis sets along with your normal basis set input.
The **orca_ronis** module provides two ways of choosing the orbital excitation space: by orbital energy or orbital number. In the former case an energy window has to be specified and the program will then take all orbitals, whose orbital energies lie within this window, into account. Note, that one actually has to define two orbital windows: One for the donor and the second for the acceptor orbital. The input of the windows is done as an array: The first two numbers define the donor space while the last two numbers define the acceptor space.

```
%rocis NRoots 3
EWin = -5,5,-5,5
end
```

The default is to keep core orbitals and very high lying virtual orbitals out of their respective orbital excitation spaces. Since these orbitals span a space that is usually not reachable with regular UV/Vis spectroscopy, this is a reasonable approximation. One has to keep in mind that an orbital energy window makes only sense if the orbitals used in the calculation have a well-defined orbital energy. As a consequence one cannot use an orbital energy window for a calculation with localized orbitals. The second way to specify the excitation space is by orbital numbering.

```
%rocis NRoots 3
OrbWin = 1,13,9,22
end
```

In restricted calculations only one set of spatial orbitals is created. Hence it is not necessary to provide orbital windows for α and β electrons separately. Of course, only doubly or singly occupied orbitals can act as donor orbitals and only singly and nonoccupied orbitals can act as acceptor orbitals. The program recognizes nonoccupied orbitals in the donor space and doubly occupied orbitals in the acceptor space and removes both.

The many-electron expansion space of a ROCIS calculation in **ORCA** is divided into five classes. Using second quantized replacement operators \(E_p^\beta = \hat{a}_{q\alpha}^\dagger \hat{a}_{p\alpha} + \hat{a}_{q\beta}^\dagger \hat{a}_{p\beta} \) they take the form [381].

\[
\begin{align*}
|\Phi_1^\ast\rangle &= E_1^\ast |0\rangle \\
|\Phi_2^\ast\rangle &= E_2^\ast |0\rangle \\
|\Phi_3^\ast\rangle &= \frac{1}{\sqrt{2}} E_3^\ast |0\rangle \\
|\Phi_4^\ast\rangle &= E_4^\ast |0\rangle \\
|\Phi_5^\ast\rangle &= \frac{1}{\sqrt{6}} (E_5^\ast - 2E_6^\ast E_5^\ast) |0\rangle
\end{align*}
\]

The orbital label \(i \) denotes a doubly occupied orbital, \(s \) and \(t \) refer to singly occupied orbitals and orbital label \(a \) corresponds to a virtual orbital. The form of the excitation classes ensures that all excited states are eigenfunctions of the \(\hat{S}^2 \)-operator and have the same total spin \(S \) as the electronic ground state. Each of the five excitation classes can be switched on or off manually.
Formally, the $|\Phi_n^m\rangle$ and $|\Phi_n^m\rangle$ excitation classes can be regarded as double excitations. When the program finishes the ROCIS calculation it gives the excitation energy together with the composition for each root. According to the number of labels of the respective functions $|\Phi\rangle$, contributions from excited configuration state functions belonging to the different excitation classes are given by two, three or four numbers.

<table>
<thead>
<tr>
<th>STATE</th>
<th>Exc. Energy:</th>
<th>STATE</th>
<th>Exc. Energy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>47->50</td>
<td>0.2196</td>
<td>38->46</td>
<td>0.0103</td>
</tr>
<tr>
<td>47->51</td>
<td>0.0138</td>
<td>37->46</td>
<td>0.0150</td>
</tr>
<tr>
<td>37->50</td>
<td>0.1165</td>
<td>37->47</td>
<td>0.0938</td>
</tr>
<tr>
<td>41->50</td>
<td>0.0960</td>
<td>37->48</td>
<td>0.0179</td>
</tr>
<tr>
<td>38->46 ; 47->50</td>
<td>0.0103</td>
<td>37->49</td>
<td>0.0179</td>
</tr>
<tr>
<td>37->46 ->50</td>
<td>0.0150</td>
<td>41->46</td>
<td>0.0174</td>
</tr>
<tr>
<td>47->51</td>
<td>0.0138</td>
<td>41->47</td>
<td>0.0585</td>
</tr>
<tr>
<td>37->50</td>
<td>0.1165</td>
<td>41->48</td>
<td>0.0213</td>
</tr>
<tr>
<td>41->50</td>
<td>0.0211</td>
<td>41->49</td>
<td>0.0211</td>
</tr>
</tbody>
</table>

Furthermore the orca_rocis module is able to calculate the effect of spin-orbit coupling (SOC) on the calculated ground and excited states. It introduces SOC in the framework of quasi-degenerate perturbation theory (QDPT). The SOC Hamiltonian is diagonalized in the basis of the calculated ROCIS states $|\Psi_I^{SM}\rangle$, where I is the root label and S and M are the spin and magnetic spin quantum numbers, respectively [162], [381].
SOC true #invokes the calculation of SOC effects
SOCTEMP 10 #temperature for SOC #corrected spectra in Kelvin
end

After the SOC calculation the program will produce additional spectra for the SOC corrected results. The spectra contain transitions from the $2S + 1$ lowest lying states into all excited states, where S is the spin quantum number of the electronic ground state. These $2S + 1$ lowest states may be split up in the order of 1-100 cm$^{-1}$. Due to the small magnitude of the splitting, all of the $2S+1$ states can be significantly populated even at low temperatures. Experimentally, the intensity of a given transition is dependent on the population of the corresponding initial state. With the SOCTemp keyword the population of the theoretically calculated states can be manipulated by the varying the fictive temperature of the system. It has to be mentioned that the electric quadrupole transitions between spin-orbit coupled states are not well defined and are likely to give unreasonable results. Hence it is recommended to use the DoQuad keyword only for calculations that do not include SOC.

<table>
<thead>
<tr>
<th>States</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>fosc</th>
<th>T2 (au**2)</th>
<th>TX (au)</th>
<th>TY (au)</th>
<th>TZ (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00003</td>
<td>0.00002</td>
<td>0.00000</td>
</tr>
<tr>
<td>0 2</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00005</td>
</tr>
<tr>
<td>0 3</td>
<td>23.7</td>
<td>42287.3</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>0 4</td>
<td>23.7</td>
<td>421562.8</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00018</td>
<td>0.00025</td>
</tr>
<tr>
<td>0 5</td>
<td>2621.7</td>
<td>3814.3</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00005</td>
</tr>
<tr>
<td>0 6</td>
<td>2622.0</td>
<td>3813.9</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00003</td>
<td>0.00000</td>
</tr>
<tr>
<td>0 7</td>
<td>2634.7</td>
<td>3795.5</td>
<td>0.0000000095</td>
<td>0.00002</td>
<td>0.00388</td>
<td>0.00273</td>
<td>0.00049</td>
</tr>
<tr>
<td>0 8</td>
<td>2634.9</td>
<td>3795.2</td>
<td>0.0000000103</td>
<td>0.00002</td>
<td>0.00393</td>
<td>0.00257</td>
<td>0.00049</td>
</tr>
<tr>
<td>0 9</td>
<td>2639.5</td>
<td>3788.6</td>
<td>0.0000000001</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00001</td>
<td>0.00036</td>
</tr>
<tr>
<td>1 0</td>
<td>4223.6</td>
<td>2367.6</td>
<td>0.0000000103</td>
<td>0.00002</td>
<td>0.00043</td>
<td>0.00029</td>
<td>0.00039</td>
</tr>
<tr>
<td>1 1</td>
<td>4223.9</td>
<td>2367.5</td>
<td>0.0000000120</td>
<td>0.00002</td>
<td>0.00348</td>
<td>0.00236</td>
<td>0.00046</td>
</tr>
<tr>
<td>1 2</td>
<td>4296.3</td>
<td>2327.6</td>
<td>0.0000000696</td>
<td>0.00010</td>
<td>0.00562</td>
<td>0.00482</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 3</td>
<td>4357.6</td>
<td>2294.8</td>
<td>0.0000000002</td>
<td>0.00000</td>
<td>0.00064</td>
<td>0.00001</td>
<td>0.00049</td>
</tr>
<tr>
<td>1 4</td>
<td>4481.8</td>
<td>2263.4</td>
<td>0.0000000578</td>
<td>0.00003</td>
<td>0.00653</td>
<td>0.00468</td>
<td>0.02762</td>
</tr>
<tr>
<td>1 5</td>
<td>4422.1</td>
<td>2261.4</td>
<td>0.0000000517</td>
<td>0.00007</td>
<td>0.02184</td>
<td>0.01559</td>
<td>0.00832</td>
</tr>
<tr>
<td>1 6</td>
<td>4488.2</td>
<td>2228.0</td>
<td>0.0000000001</td>
<td>0.00000</td>
<td>0.00004</td>
<td>0.00006</td>
<td>0.00038</td>
</tr>
<tr>
<td>1 7</td>
<td>4524.2</td>
<td>2210.3</td>
<td>0.0000000001</td>
<td>0.00000</td>
<td>0.00030</td>
<td>0.00018</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 8</td>
<td>4597.2</td>
<td>2175.2</td>
<td>0.0000000027</td>
<td>0.00000</td>
<td>0.00023</td>
<td>0.00016</td>
<td>0.00019</td>
</tr>
<tr>
<td>1 9</td>
<td>4597.4</td>
<td>2175.2</td>
<td>0.0000000051</td>
<td>0.00001</td>
<td>0.00213</td>
<td>0.00153</td>
<td>0.00023</td>
</tr>
<tr>
<td>1 10</td>
<td>6043.6</td>
<td>1654.6</td>
<td>0.0000000479</td>
<td>0.00052</td>
<td>0.04104</td>
<td>0.05779</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 11</td>
<td>6049.5</td>
<td>1653.0</td>
<td>0.0000000614</td>
<td>0.00000</td>
<td>0.01099</td>
<td>0.00657</td>
<td>0.00001</td>
</tr>
<tr>
<td>1 12</td>
<td>6513.3</td>
<td>1652.5</td>
<td>0.0000000021</td>
<td>0.00000</td>
<td>0.00901</td>
<td>0.00604</td>
<td>0.00150</td>
</tr>
<tr>
<td>1 13</td>
<td>6697.7</td>
<td>1647.5</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00005</td>
<td>0.00007</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 14</td>
<td>6699.9</td>
<td>1647.5</td>
<td>0.0000000028</td>
<td>0.00000</td>
<td>0.00908</td>
<td>0.00138</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 15</td>
<td>65281.7</td>
<td>153.2</td>
<td>0.014223474</td>
<td>0.13787</td>
<td>0.26423</td>
<td>0.31010</td>
<td>0.00023</td>
</tr>
<tr>
<td>1 16</td>
<td>65281.7</td>
<td>153.2</td>
<td>0.000000033</td>
<td>0.00000</td>
<td>0.00632</td>
<td>0.00048</td>
<td>0.00011</td>
</tr>
<tr>
<td>1 17</td>
<td>65281.7</td>
<td>153.2</td>
<td>0.0000000900</td>
<td>0.00009</td>
<td>0.00522</td>
<td>0.00774</td>
<td>0.00001</td>
</tr>
<tr>
<td>1 18</td>
<td>65281.7</td>
<td>153.2</td>
<td>0.0000000728</td>
<td>0.00007</td>
<td>0.00668</td>
<td>0.00698</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 19</td>
<td>65281.7</td>
<td>153.2</td>
<td>0.0000000474</td>
<td>0.00046</td>
<td>0.01179</td>
<td>0.01791</td>
<td>0.00001</td>
</tr>
<tr>
<td>1 2</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00000</td>
</tr>
<tr>
<td>1 3</td>
<td>18.1</td>
<td>53477.5</td>
<td>0.0000000000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00009</td>
</tr>
</tbody>
</table>
If the `PrintLevel` value is set to 3 or higher, the program will print out the composition of the SOC corrected states in the basis of states $|\Psi^{SM}_I\rangle$.

<table>
<thead>
<tr>
<th>State</th>
<th>Energy</th>
<th>Eigenvector</th>
<th>Weight</th>
<th>Spin</th>
<th>Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00 cm$^{-1}$</td>
<td>0.00000 eV</td>
<td>0.378045</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.235825</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.378045</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>5.61 cm$^{-1}$</td>
<td>0.00070 eV</td>
<td>0.496236</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.496236</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>6.20 cm$^{-1}$</td>
<td>0.00077 eV</td>
<td>0.496291</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.496291</td>
<td>2</td>
<td>-1</td>
</tr>
</tbody>
</table>

Further details of the SOC calculation such as the procedure of SOC integral calculation can be controlled via the `%rel` block (section 9.14).

9.20.2 Transition Metal L-Edges with ROCIS or DFT/ROCIS

The `orca_rocis` program was designed to calculate transition metal L-edge spectra of large molecules as they are observed in X-ray absorption spectroscopy (XAS). An L-edge results when an electron is promoted from the 2p shell of a transition metal ion into the valence d shell by an X-ray photon. Strong spin-orbit coupling in the 2p shell and p-d coupling phenomena complicate the interpretation and even more so the prediction of these spectra. It has to be kept in mind that the present program applies a variety of approximations which might lead to observable deviations from experimentally determined spectra. However, we believe that the results obtained from the program are in general qualitatively correct and in most cases accurate close to the experimental uncertainty. In cases where quantitative accuracy is not met, the provided results might still give some insight into the mechanisms of intensity distribution in the spectra.

The special input structure for orbital windows described in 9.20.1 allows the user to restrict the donor orbital space to the transition metal 2p shell. The acceptor orbital space is the same as in regular UV/Vis spectroscopy. It should include all singly occupied molecular orbitals and as many virtual orbitals as one can...
afford in the calculation. The number of roots should be chosen large enough so that at least all 2p-3d single excitations are calculated. In many cases even more roots are required since doubly excited or charge transfer states may become important. Moreover the strong SOC apparent in the 2p shell of transition metal ions necessitates the additional calculation of excited states with a total spin of \(S' = S + 1\) and \(S' = S - 1\) where \(S\) is the total spin of the electronic ground state. Accordingly four additional excitation classes introduce excited configuration state functions with a lower and higher spin multiplicity. They feature the second quantized spin raising and lowering operators
\[
\hat{S}^+_{pq} = \hat{a}^\dagger_{q\alpha} \hat{a}_{p\beta}, \quad \hat{S}^-_{pq} = \hat{a}^\dagger_{q\beta} \hat{a}_{p\alpha}.
\]

The program will conduct a separate Davidson procedure for each multiplicity. Subsequently it gives the excitation energies and compositions of the calculated excited states for all included multiplicities. After all CI calculations are finished, the program gives a list of all calculated roots with their excitation energies and their multiplicities. It is this number that will be referred to as label \(I\) in the decomposition of spin-orbit coupled states in the basis \(|\Psi_{SM}^{I}\rangle\). It is very important to note, that when states with different multiplicities are calculated this number might deviate from the number that appears in the respective CI part of the output. If one gets confused about the numbering of the states, the state energies might act as a guideline through the output of the program.

Without SOC the spin exclusion rule applies which means that only excited states with a total spin equal to the ground state spin (\(S' = S\)) give rise to non-vanishing intensities. Hence, only these transitions are listed in the spectra before SOC.

The following table shows the root multiplicities, excitation energies, and compositions for different states:

<table>
<thead>
<tr>
<th>ROOT</th>
<th>Mult</th>
<th>Excitation energy [Eh]</th>
<th>[cm⁻¹]</th>
<th>[eV]</th>
</tr>
</thead>
</table>

The program will conduct a separate Davidson procedure for each multiplicity. Subsequently it gives the excitation energies and compositions of the calculated excited states for all included multiplicities. After all CI calculations are finished, the program gives a list of all calculated roots with their excitation energies and their multiplicities. It is this number that will be referred to as label \(I\) in the decomposition of spin-orbit coupled states in the basis \(|\Psi_{SM}^{I}\rangle\). It is very important to note, that when states with different multiplicities are calculated this number might deviate from the number that appears in the respective CI part of the output. If one gets confused about the numbering of the states, the state energies might act as a guideline through the output of the program.

Without SOC the spin exclusion rule applies which means that only excited states with a total spin equal to the ground state spin (\(S' = S\)) give rise to non-vanishing intensities. Hence, only these transitions are listed in the spectra before SOC.
<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>fosc (au²)</th>
<th>T2 (au)</th>
<th>TX (au)</th>
<th>TY (au)</th>
<th>TZ (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00000000</td>
<td>0.00</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26.24822856</td>
<td>5760820.28</td>
<td>714.251</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>26.24833619</td>
<td>5760843.90</td>
<td>714.254</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.27159871</td>
<td>5765949.43</td>
<td>714.887</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26.27982129</td>
<td>5768288.22</td>
<td>715.747</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.301821870</td>
<td>5773189.46</td>
<td>715.784</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>26.33600432</td>
<td>5780665.97</td>
<td>716.639</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>26.33865219</td>
<td>5782108.52</td>
<td>716.890</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26.34577552</td>
<td>5782229.36</td>
<td>716.905</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>26.35183534</td>
<td>5783559.34</td>
<td>717.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>26.34522494</td>
<td>5782108.52</td>
<td>716.890</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>26.34577552</td>
<td>5782229.36</td>
<td>716.905</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>26.35183534</td>
<td>5783559.34</td>
<td>717.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>26.42121780</td>
<td>5798787.03</td>
<td>718.958</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>26.42122881</td>
<td>5798789.45</td>
<td>718.958</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROCIS-EXCITATION SPECTRA

NOTE: At this point no SOC is included!!!
Hence only transitions to states with the same spin multiplicity as the ground state are observed!!!

Center of mass = (-0.0011, -0.0021, 0.0000)*

Calculating the Dipole integrals ... done
Transforming integrals ... done
Calculating the Linear Momentum integrals ... done
Transforming integrals ... done

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

<table>
<thead>
<tr>
<th>State</th>
<th>Energy (cm⁻¹)</th>
<th>Wavelength (nm)</th>
<th>fosc (au²)</th>
<th>T2 (au)</th>
<th>TX (au)</th>
<th>TY (au)</th>
<th>TZ (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>27.22926558</td>
<td>5976133.02</td>
<td>740.946</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>27.23201078</td>
<td>5976735.52</td>
<td>741.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>27.23280499</td>
<td>5976999.83</td>
<td>741.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>27.23594814</td>
<td>5977599.67</td>
<td>741.128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>27.23650509</td>
<td>5978192.77</td>
<td>741.201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>27.26590445</td>
<td>5984174.32</td>
<td>741.943</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>27.26597947</td>
<td>5984190.78</td>
<td>741.945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>27.26604364</td>
<td>5984204.87</td>
<td>741.947</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>27.29447169</td>
<td>5990444.10</td>
<td>742.729</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>27.39121861</td>
<td>5991924.88</td>
<td>742.904</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>27.38655497</td>
<td>5993996.08</td>
<td>743.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>27.38685328</td>
<td>5993161.55</td>
<td>743.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>27.31274496</td>
<td>5994454.62</td>
<td>743.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>27.52164817</td>
<td>6040303.58</td>
<td>748.992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>27.52433114</td>
<td>6040689.42</td>
<td>748.975</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>27.52448641</td>
<td>6040926.59</td>
<td>748.979</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>27.53903479</td>
<td>6044119.50</td>
<td>749.375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>27.53935644</td>
<td>6044190.10</td>
<td>749.384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After calculation of SOC in the basis of all calculated ROCIS roots, the program prints out the composition of the spin-orbit coupled states (if \texttt{PrintLevel} $>$ 2) and the corresponding absorption spectrum.

Eigenvectors of SOC calculation:

The threshold for printing is: 0.010000

Weight: Root Spin Ms

State 0: 0.00 cm$^{-1}$ 0.00000 eV

- 0.129027 : 0 2 2
- 0.741116 : 0 2 0
- 0.129027 : 0 2 -2

SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

<table>
<thead>
<tr>
<th>States</th>
<th>Energy (cm$^{-1}$)</th>
<th>Wavelength (nm)</th>
<th>fosc</th>
<th>T2 (au2)</th>
<th>TX (au)</th>
<th>TY (au)</th>
<th>TZ (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>0.8</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.8</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>5</td>
<td>572930.4</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>572930.4</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>7</td>
<td>5731365.3</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>8</td>
<td>5731365.4</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>9</td>
<td>5733452.5</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>10</td>
<td>5733477.2</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>11</td>
<td>5734964.4</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>12</td>
<td>5737151.2</td>
<td>1.7</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

With the aid of the \texttt{orca_mapspc} program it is possible to extract a .plt file from the printed spectra, which then can be used to generate a plot of the intensity vs the excitation energy. The \texttt{orca_mapspc} program...
applies Gaussian type lineshape functions to the calculated transitions with a user-defined FWHM. One has to provide some information for the program such as the name of the output file, the type of spectrum you wish to plot, the energy range and the like. It is invoked in the command line and the parameters are given as arguments:

```
orca_mapspc FeIICl4.out socabs -eV -w1 -n3000 -x0710 -x1740
```

The first argument has to be the output file of your calculation followed by the type of spectrum that should be plotted. In the case of transition metal L-edges it is an absorption spectrum after the SOC correction. The arguments “-eV” (use electron Volt as energy unit), “-w1” (FWHM = 1eV), “-n3000” (use 3000 grid points), “-x0710” and “-x1740” (energy range: 710 to 740 eV) have to be adapted to the specific calculation. As a result, one obtains a .plt and a .stk file. The .plt file contains five columns. In the first column one finds the energy and in the second the total intensity. Columns three to five contain the x-, y- and z-components of the transition moment. Note, that the distribution of the transition moment among its spatial components depends on the orientation of your molecular axis system. The .stk file contains a list of all transitions with their respective transition energy and intensity. A more detailed description of the orca_mapspc program and its usage can be found in chapter 9.33.1.

![Comparison of the experimentally observed (black) and calculated ROCIS (red) Fe L-edge of [FeCl$_4$]$^{2-}$](image)

Figure 9.24: Comparison of the experimentally observed (black) and calculated ROCIS (red) Fe L-edge of [FeCl$_4$]$^{2-}$. The red bars highlight the contribution of individual states to the total spectrum. The calculation was performed using the TZVP basis set.

For many transition metal compounds the description of the electronic ground and excited states by Hartree-Fock theory and CIS is of rather poor quality. Especially covalency and relative spin state energetics are not reproduced correctly. This in turn might lead to wrong intensity distributions in the calculated L-edge spectra. In the majority of these cases the quality of the description and hence the predicted L-edge spectra can be significantly improved with the DFT/ROCIS method [381]. It features the usage of a restricted open-shell Kohn-Sham matrix as reference and also uses the DFT orbitals for setting up the excited configuration state functions in the CI expansion. The two electron integrals that include the DFT orbitals are scaled according to their nature and their position in the CI matrix by the parameters c_1, c_2, and c_3. They all lie in the interval [0;1]. Parameters c_1 and c_2 scale coulomb- and exchange-like terms in the diagonal part of the CI matrix, whereas c_3 reduces the size of all off-diagonal elements of the CI matrix. For example:
The three default parameters $c_1 = 0.21$, $c_2 = 0.49$ and $c_3 = 0.29$ have been optimized for a test set of molecules and their excited states on a B3LYP/def2-TZVP(-f) level of theory but can be freely chosen [381]. It is most likely that for a different combination of test molecules, functional and basis set, a different set of parameters gives better results. Since the parameters are chosen with regard of a good "balance" between orbital energies, Coulomb and exchange integrals, a new set of parameters should at least crudely resemble their relative proportions.

\begin{align}
H_{\text{DFT/ROCIS}}^{\alpha\alpha} &= F_{\alpha}^{C(KS)} - F_{\alpha}^{C(KS)} - c_1 \langle ii|aa \rangle + 2c_2 \langle ia|ia \rangle \\
H_{\text{DFT/ROCIS}}^{\alpha\beta} &= c_3 \left\{ \delta_{ij} F_{\alpha}^{C(KS)} - \delta_{ab} F_{\beta}^{C(KS)} - \langle ij|ab \rangle + 2 \langle ia|jb \rangle \right\}
\end{align}

Figure 9.25: Comparison of the experimentally observed (black) and calculated (red) Ti L-edge of \([\text{Cp}_2\text{TiCl}_2]\). The red bars highlight the contribution of the individual states to the total spectrum. The pure ROCIS method (left) predicts a wrong L_3-L_2 intensity ratio and strongly overestimates the splitting of the satellite features to the main bands. Better results are obtained with the DFT/ROCIS method (right).

9.20.3 Natural Transition Orbitals/ Natural Difference Orbitals

Likewise to CIS and TD-DFT (section 9.19.7) The nature of the calculated excited states in ROCIS and DFT/ROCIS can be analyzed by using the Natural Transition Orbitals (NTO) or Natural Difference Orbitals (NDO) machineries. [382] Note that:
The NTO analysis is based on the transition density between ground and excited states. Hence is valid for singly excited states and for states of the same multiplicity.

- The NDO analysis on the other hand is somewhat more flexible in this respect as it is based on the difference density between ground and excited states.

- Presently, only one analysis (NTO or NDO) can be performed at a time while when both flags are on the NTO analysis switches off.

An example is given below for $[\text{FeCl}_4]^{2-}$:

```
!B3LYP def2-TZVP def2/J Conv TightSCF LargePrint PAL4
%ROCIS NRoots 40
PrintLevel 3
MaxCore 4000
MaxDim 360
SOC true
DoRI true
DoNTO true
DoNDO true
NDOThresh/NTOThresh 1e-4
NDOStates/NTOStates = 1,2,3,4,5,6,7,8,9,10,13,14,15
DoLowerMult true
DoHigherMult true
DoDFTCIS true
DFTCIS_c = 0.18, 0.20, 0.40
OrbWin = 6,8,0,2000
end

* xyz -2 5
  Fe  -17.84299991694815   0.53096694321123   6.09104775508499
  Cl  -19.84288422845700   0.31089495619796   7.04101319789001
  Cl  -17.84298666758073   0.1186125024595   3.81067954087770
  Cl  -17.84301352218429  -2.87052442818457   6.45826391412877
  Cl  -15.8431156482982   0.31091516495189   7.04099559201853
*
```

Then the respective NTO and NDO analysis for state 15 is given below:

```
------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 14
------------------------------------------
done
Solving eigenvalue problem for the Occupied space ... done
```
Solving eigenvalue problem for the Acceptor space ... done
Natural Transition Orbitals were saved in nto.14.nto
Threshold for printing occupation numbers 1.0e-04

\[E = 25.447756 \text{ au} \quad 692.469 \text{ eV} \quad 5585137.0 \text{ cm}^{-1} \]

\[49[0] \rightarrow 46[1] : n = 0.39056919 \]
\[48[0] \rightarrow 47[1] : n = 0.08619374 \]
\[47[0] \rightarrow 48[1] : n = 0.00441125 \]

NATURAL DIFFERENCE ORBITALS FOR STATE 14

done
Solving eigenvalue problem for the Occupied space ... done
Solving eigenvalue problem for the Acceptor space ... done
Natural Difference Orbitals were saved in ndo.14.ndo
Threshold for printing occupation numbers 1.0e-04

\[E = 25.447756 \text{ au} \quad 692.469 \text{ eV} \quad 5585137.0 \text{ cm}^{-1} \]

\[49[0] \rightarrow 46[1] : n = 0.81173217 \]
\[48[0] \rightarrow 47[1] : n = 0.17903699 \]
\[47[0] \rightarrow 48[1] : n = 0.01165859 \]
\[46[0] \rightarrow 49[1] : n = 0.00922738 \]
\[45[0] \rightarrow 50[1] : n = 0.00112567 \]

For closed shell cases the orbitals are save in similar way to TDDFT and CIS (section 9.19.7). In the case of open shell cases for convenience donor orbitals are saved with orbital operator 0 while acceptor orbitals with orbital operator 1. This needs to be specified in the orca plot program and should not be confused with the spin-up and spin-down orbitals in the UHF and UKS cases.

In practice one can use this machinery to analyze for example the relativistically corrected states located at 705.5 eV (when shifted with respect to experiment). It can be seen that these states contain for example significant contributions from state 14. NTO or NDO analysis then shows that this state is dominated by the spin conserving DOMO-SOMO $2p_z$ – $3d_{yz}$ single electron excitation.

9.20.4 Resonant Inelastic Scattering Spectroscopy

9.20.4.1 General

Starting from ORCA version 4.0 ROCIS module can be used to calculate RIXS spectra

The present implementation is directly based on the Kramers Heisenberg Dirac (KDH) expression formula for near resonant and resonant conditions

\[
|\alpha_{\mu\lambda}(E_{ex}, E_{sc})|^2_{Total} = \sum_F \sum_V \langle F| m_\mu |V \rangle \langle V| m_\lambda |I \rangle^2 \left(\frac{\Gamma_F}{(E_F - E_{ex} + E_{sc})^2 + \frac{1}{4} \Gamma_F^2} \right) \] (9.256)
Figure 9.26: DFT/ROCIS calculated L3 XAS spectrum of [Fe(Cl)₄]²⁻ together with NDO analysis for state 14. Constant broadening 0.5 eV and isovalue for the orbital plots 0.03 a.u. is used throughout

\[
|\alpha_{\rho\lambda}(E_{ex},E_{sc},V)|^2_{resonant} = \sum_F |\langle F| m_\rho |V\rangle|^2 |\langle V|m_\lambda |I\rangle|^2 f(E_{V,1}, E_{F,V}, E_{ex}, E_{sc}, \Gamma_V, \Gamma_F) \quad (9.257)
\]

\[
|\alpha_{\rho\lambda}(E_{V,1}, E_{sc})|^2_{Direct} = \sum_V |\alpha_{\rho\lambda}(E_{V,1}, E_{sc}, V)|^2_{resonant} \quad (9.258)
\]

The resonance scattering cross section for total and direct cases, averaged over all orientations of the molecule and integrated over all directions and polarizations of scattered radiation is given in equations:

\[
\sigma^{Total}_{\text{RXES}}(E_{ex},E_{sc}) = \frac{8\pi E_{sc}^3 E_{ex}}{9c^4} \sum_{\rho,\lambda=x,y,z} |\alpha_{\rho\lambda}(E_{ex},E_{sc})|^2_{Total} \quad (9.259)
\]

\[
\sigma^{Direct}_{\text{RXES}}(E_{ex},E_{sc}) = \frac{8\pi E_{sc}^3 E_{ex}}{9c^4} \sum_{\rho,\lambda=x,y,z} |\alpha_{\rho\lambda}(E_{ex},E_{sc})|^2_{Direct} \quad (9.260)
\]

Interference effects can be then derived in a straightforward way from equation:

\[
\sigma^{interference}_{\text{RXES}}(E_{ex},E_{sc}) = \sigma^{Total}_{\text{RXES}}(E_{ex},E_{sc}) - \sigma^{Direct}_{\text{RXES}}(E_{ex},E_{sc}) \quad (9.261)
\]
In order to access RIXS spectroscopy in the ROCIS module one needs in addition to specify a 2nd donor space. This is specified by defining an OrbWin array with 6 elements: The first four elements define the ranges of the two donor spaces while the last two elements the respective acceptor space range.

\[
\text{OrbWin } 0,0,2,4,45,60
\]

An important difference with respect to the conventional ROCIS or DFT/ROCIS calculations is the fact that two donor spaces of very different energy ranges are involved (e.g. K-edge, L-edge) which requires to restrict somewhat the acceptor space and saturate it with as many states as possible.

The main calling commands in order to perform a RIXS calculation within both ROCIS and CASSCF blocks are the following:

- **RIXS true.** Similar to absorption spectroscopy, this requests the RIXS calculation to be performed based on the calculated non-relativistic ground state multiplicity States

- **RIXSSOC true.** By turning-on this flag the RIXS is calculated by taking in account the relativistically corrected Ms States.

- **Elastic true.** This flag indicates whether the resonant condition in which the initial and Final states coincide should be taken into account. Note that the intensity of this spectral feature might be overestimated as presently the non resonant terms are not treated

The respective ROCIS input reads then as follows:

![image of ROCIS input]

When running the calculation one can monitor if the requested NRroots were sufficient enough to select the states dominated by both the donor orbital spaces
If that is not the case the respective RIXS calculations will not be performed and a Warning Message will be generated:

Making the RIXS files ...
WARNING!: Flag for RIXS property calculation was identified but there is zero number of Intermediate and/or Final states:
No Cross-Section properties will be evaluated ...Skipping this part
TIP: Increase the number of NRoots and/or decrease or increase the acceptor orbital space
...Done

A successful run on the other hand will generate the following messages for RIXS and RIXSSOC calculations.

<table>
<thead>
<tr>
<th>ROOT</th>
<th>Mult</th>
<th>Excitation energy[(\text{Eh})]</th>
<th>[\text{cm}^{-1}]</th>
<th>[\text{eV}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0.00000000</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.0661737</td>
<td>14511.08</td>
<td>1.799</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.0728471</td>
<td>16962.03</td>
<td>2.103</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.0732428</td>
<td>16970.72</td>
<td>2.104</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>33.75471831</td>
<td>7408304.35</td>
<td>918.513</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
<td>33.77873325</td>
<td>7411819.22</td>
<td>918.948</td>
</tr>
<tr>
<td>86</td>
<td>2</td>
<td>33.77876955</td>
<td>7411827.19</td>
<td>918.949</td>
</tr>
<tr>
<td>87</td>
<td>4</td>
<td>34.06882971</td>
<td>7477243.83</td>
<td>927.060</td>
</tr>
<tr>
<td>88</td>
<td>2</td>
<td>34.07021441</td>
<td>7477547.74</td>
<td>927.098</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Making the RIXS-SOC data files for Inelastic and Elastic Scattering

Ms States: 2
Intermediate States: 78
Final States: 214

The RIXS cross section will be generated from:
432 Ground-Final State Pairs and 78 Intermediate States/Pair

Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done
70% done
80% done
90% done
100% done

Storing the files...All Done

In both cases the number of involved Initial, Final and Intermediate states is specified explicitly.

For example in the case of RIXSSOC 2 Ms Ground states, 78 Intermediate states and 214 Final states are involved. Then the RIXS cross section for elastic and inelastic scattering will be generated by 432 \((2\times(2+214))\) Ground-Final State-Pairs and 78 Intermediate States per Ground-Final state pair.

9.20.4.2 Processing the spectra with orca_mapspc

By calling orca_mapspc with the following keywords:

```
orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4
-l -n125 -m125 -dx20 -eaxis1
```

The program will process the `test.el_inel.rocis.rixssoc` file with the following parameters:

Energy range along x : 871-876 eV

Energy range along y: -1-34 eV

-l indicates Lorentzian broadening

Width along x (gamma): 0.4 eV

Width along y (gamma): 0.4 eV
Points along x: 125

Points along y: 125

Shift to be applied along Incident energy/Emission axis: 20 eV

The y axis will be Energy Transfer axis. If -eaxis2 is the y axis will be then Emission Energy axis.

All this information is printed during the data processing:

```
Mode is RIXS
Using Lorentzian shape
Cannot read the paras.inp file ...
taking the line width parameter from the command line
Cannot read the udex.inp file ...
taking the excitation energy ranges from the command line
Cannot read the udem.inp file ...
taking the emission energy ranges from the command line
Cannot read the gfsp.inp file ...
No Ground-Final State Pairs will be evaluated

---------------------------------------------------------------------------------

PLOTTING RIXS SPECTRA
---------------------------------------------------------------------------------

Input File : test.el_inel.rocis.rixssoc
Incident Energy Excitation axis :  871.000 ... 876.000 eV  125 points
Energy transfer axis : -1.000 ... 4.000 eV  125 points
Incident Energy Shift :  20.000 eV
Lorenzian Linewidth along Incident Axis :  0.400 eV
Lorenzian Linewidth along Energy Transfer/Emission Axis :  0.400 eV
y axis : 1 -> Energy transfer
Number of user defined cuts at constant Excitation Energy axis:  0
Number of user defined cuts at constant Emission/Energy Transfer Energy axis :  0

Making checks...Done

Processing data...
10% done
20% done
...
100% done

RIXS-plotting done
Incident Energy range:  845.800 ... 869.249
Emission/Energy-transfer range:  0.000 ... 4.853

Now storing the 2D file...
Done

Making the Integrated spectra along Energy Transfer/Emission axis... Done

Making the Integrated spectra along Incident axis... Done

All Done
```
Successful run will generate the following files: The RIXS planes of the Total, Direct and Interference RIXS intensity as indicated in the above equations:

- `test.el_inel.rocis.rixssoc.total_rixs.dat`
- `test.el_inel.rocis.rixssoc.direct_rixs.dat`
- `test.el_inel.rocis.rixssoc.interference_rixs.dat`

In addition one obtains the integrated spectra at constant Incident energies (CIE):

- `test.el_inel.rocis.rixssoc.dw.dat`

as well as at constant Emission/Energy Transfer energies (CEE/CET):

- `test.el_inel.rocis.rixssoc.wex.dat`

Figure 9.27: DFT/ROCIS calculated RIXS planes for $[Cu(NH_3)_4]^{2-}$. Left: Total RIXS Intensity, Middle: Direct RIXS intensity and Right: Interference RIXS intensity. Lorentzian lineshape broadening with constant widths along Incident and Energy Transfer axis (0.5 and 0.2 eV respectively) were used throughout.

9.20.4.3 Generating Cuts

Cuts along x and y axis can be generated with two ways:
1) At first, this action can be performed by adding the following keywords: \texttt{uex} and \texttt{udw} accounting for generating cuts at constant Incident Energies (CIE) and at constant Emission (CEE)/or at constant Energy Transfer (CET) respectively, together with the desired number of cuts.

2) Alternatively, the energies of the desired cuts can be specified as lists in the files \texttt{udex.inp} (user defined excitations) \texttt{udem.inp} (user defined emissions)

For example if in \texttt{udex.inp} one specifies:

\begin{verbatim}
872.5
874.2
\end{verbatim}

and for the cuts along Energy Transfer axis one just specify -udw3

\begin{verbatim}
orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4 -l -n125 -m125 -dx20 -eaxis1 -udw3
\end{verbatim}

Then at the end one gets:

\begin{verbatim}
Making the specified cuts (2) at constant Excitation Energy axis...
Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_fs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_fs.dat ...Done
Done

Making the specified cuts (3) at constant Emission/Energy Transfer axis...
Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_fs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_-1.50.xas_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_-1.50.xas_fs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_4.00.xas_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_4.00.xas_fs.dat ...Done
Done
All Done
\end{verbatim}

The files \texttt{*rxes_fs.dat} are RXES spectra containing all individual contributions from all Final states together with the Direct, the Total and the Interference contributions at the given constant Incident Energy.

Similarly, the \texttt{*rxes_vs.dat} are RXES spectra containing individual contributions of the Intermediate states, together with the Direct the Total and the Interference contributions at the given constant Incident Energy.

Likewise, the respective \texttt{*xas_fs.dat} and \texttt{*xas_vs.dat} are XAS type spectra with individual contributions at a given constant Emission or Energy transfer Energy.

These files are Energy vs Intensity files and read like:

1) for \texttt{*fs.dat}
In the first case $S^{-1}(0-0)$ represents the individual contribution of a given Ground-Final state pair. The numbering follows the numbering of the output file e.g.:

<table>
<thead>
<tr>
<th>Eigenvalues:</th>
<th>cm^{-1}</th>
<th>eV</th>
<th>Boltzmann populations at $T = 300.000$ K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>0.0000</td>
<td>0.0000</td>
<td>3.44e-01</td>
</tr>
<tr>
<td>1:</td>
<td>8.3818</td>
<td>0.0010</td>
<td>3.31e-01</td>
</tr>
</tbody>
</table>

Hence, in this case S^{-1} represents the elastic scattering intensity.

In the second case $S^{-1}(45)$ represents the individual contribution of a given Intermediate state.

44:	66918.6071	8.2968	1.43e-140
45:	6996678.8061	867.4775	0.00e+00
46:	6996693.0276	867.4793	0.00e+00

In this case S^{-1} represents the intensity contribution of the first Intermediate state.

9.20.5 Keyword List

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRoots</td>
<td>The number of desired roots</td>
</tr>
<tr>
<td>MaxDim</td>
<td>Davidson expansion space = MaxDim * NRoots</td>
</tr>
<tr>
<td>MaxIter</td>
<td>Maximum CI Iterations</td>
</tr>
<tr>
<td>NGuessMat</td>
<td>The dimension of the guess matrix</td>
</tr>
<tr>
<td>ETol</td>
<td>Energy convergence tolerance</td>
</tr>
<tr>
<td>RTol</td>
<td>Residual Convergence tolerance</td>
</tr>
<tr>
<td>MaxCore</td>
<td>Maximum memory used during the calculation in MB</td>
</tr>
<tr>
<td>EWin</td>
<td>Energy Window that defines orbital excitation space</td>
</tr>
<tr>
<td>OrbWin</td>
<td>Orbital Window that defines orbital excitation space</td>
</tr>
<tr>
<td>DoRI</td>
<td>Switch for the RI approximation</td>
</tr>
<tr>
<td>DoLoc</td>
<td>Switch for localization of Donor orbital space</td>
</tr>
<tr>
<td>LocMet</td>
<td>chooses the localization method:</td>
</tr>
<tr>
<td></td>
<td>#PipekMezey or FosterBoys.</td>
</tr>
<tr>
<td></td>
<td>#Abbreviations “PM” and “FB”</td>
</tr>
<tr>
<td></td>
<td>#are equivalent to full names.</td>
</tr>
<tr>
<td>SOC</td>
<td>Switch for inclusion of SOC</td>
</tr>
<tr>
<td>SOCPerm</td>
<td>The fictive temperature for the</td>
</tr>
</tbody>
</table>
#SOC corrected spectra

DoDFTCIS false #Switch for the DFT/ROCIS method
DFTCIS_C = 0.18, 0.20, 0.40 #Array Input of the
#three DFT/ROCIS parameters

#---
FLAGS FOR EXCITATION SPACES
#---

Do_is true #Include DOMO->SOMO excitations
Do_sa true #Include SOMO->Virtual excitation
Do_ia true #Include DOMO->Virtual excitations
Do_ista true #Include DOMO->SOMO excitations #coupled to SOMO->Virtual
#excitations with s not equal t
Do_isa true #Include DOMO->SOMO excitations #coupled to SOMO->Virtual #excitations with s = t

DoLowerMult false #Switch for excitation with S'=S-1
Do_LM_is true #Include DOMO->SOMO excitations #with S'=S-1
Do_LM_sa true #Include SOMO->Virtual excitations #with S'=S-1
Do_LM_ia true #Include DOMO->Virtual excitations #with S'=S-1

DoHigherMult false #Switch for DOMO->Virtual #excitations with S'=S+1

#---
OUTPUT KEYWORDS
#---

PrintLevel 3 #Controls the amount of output #produced during the calculation
DoCD false #Invokes the calculation of CD spectra
DoQuad false #Invokes the calculation of electric quadrupole, magnetic dipole #magnetic quadrupole and electric octupole #contributions to the calculated spectra
RIXS false #Perform a RIXS calculation
RIXSSOC false #Perform a RIXS calculation on the basis of relativistically corrected states
Elastic false #Include the elastic line in the generation #of the RIXS or RIXSSOC spectra
PlotDiffDens = 1,2 #Array input for plotting #difference densities of CI roots #1 and 2 to the ground state.
PlotSOCDiffDens=1,2 #Array input for plotting #difference densities of SOC #states 1 and 2 to the ground state
DoNTO false #Request Natural Transition Orbital Analysis
DoNDO false #Request Natural Difference Orbital Analysis #if true it switches off the NTO analysis
NDOThresh 1e-4 #Threshold for printing occupation numbers
NTOThresh 1e-4 #Threshold for printing occupation numbers
NDOStates = 1,2 #Array input for states to be taken into account
9.21 Excited States via EOM-CCSD

The EOM-CCSD routine is part of the \texttt{orca_mdc}\texttt{i} module of the \texttt{ORCA} program package. It is called after a successful coupled-cluster calculation, if the appropriate flags and the number of roots have been set. In the following chapter the general program flow and all input parameters of the EOM routine will be described in detail (for typical use, see 8.6). For an RHF reference, the EE-, IP- and EA-EOM-CCSD approaches are available for the computation of excitation energies, ionization potentials and electron affinities of closed-shell molecules, respectively. For a UHF reference, only the UHF EE-EOM-CCSD approach is currently available for the calculation of excitation energies in open-shell molecules.

9.21.1 General Description

The EOM wave function is parametrized in the following manner

\[R | \Psi_{CC} \rangle, \tag{9.262} \]

i.e. via the action of a linear excitation operator \(R \) on the coupled-cluster ground state wave function \(\Psi_{CC} \). Here, \(R \) is a particle conserving operator, in the case of the excitation energy problem. However, this is not true for the ionization or electron attachment problems, where \(R \) is a net annihilation or net creation operator, respectively. The ground state coupled-cluster T-amplitudes are obtained from a CCSD calculation, and our task is to obtain \(R \). Note that since the CC Hamiltonian is nonsymmetric, a left hand solution \((L) \) would also be needed to evaluate properties. For the calculation of excitation, ionization or electron attachment energies, however, it is enough to obtain the right hand solutions \((R) \). In principle, this is done by building the Hamiltonian and diagonalizing it in order to obtain energy expectation values.

In practice, the size of the CCSD Hamiltonian matrix is prohibitively large and thus, various methods have been devised to obtain its lowest few eigenvalues and eigenstates. One of the most popular of these approaches is the Davidson method, which can be summarized as follows:

- Construct an initial guess of orthogonal trial vectors, \(C \).
- Evaluate the sigma vectors \(\sigma = HC \).
- Build model Hamiltonian \(\mathcal{H} = C^T \sigma \).
- Diagonalize \(\mathcal{H} : \mathcal{E} = U^T \mathcal{H} U \).
- Compute Ritz vectors \(X = CU \).
- Compute residuals \(R = X \mathcal{E} - \sigma U \), check convergence: if yes, pass \(X, \mathcal{E} \) as solutions.
- Preconditioning: \(T = MR \) (many possible choices for the preconditioner \(M \)).
- Check if adding new trial vectors would exceed the maximum number of trial vectors:
 - if no, add T to C, and orthonormalize the united set
 - if yes, then set X as C (orthonormalize if H is nonsymmetric); then add T and orthonormalize

The advantage of the above method is that, instead of the full Hamiltonian, only the sigma vectors have to be explicitly evaluated and stored.

It is also possible to use a lower scaling version of the EOM-CCSD methods, which relies on the perturbative truncation of the coupled-cluster similarity transformed Hamiltonian. Presently, only the second order truncated version (CCSD(2) approximation) is available. However, it is better to use the PNO based implementation, as it has the cost of EOM-CCSD(2), but its accuracy is comparable to canonical EOM-CCSD. Note that EOM-CCSD(2) and the PNO based implementation are currently only available for closed-shell molecules within the RHF based implementation.

Below are all the parameters that influence the RHF EOM routine. In the following sections, these parameters will be explained following the solver algorithm described above.

%mdci

#EOM parameters - defaults displayed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoEOM</td>
<td>false</td>
<td>Whether to perform EOM</td>
</tr>
<tr>
<td>UseEOMOptS</td>
<td>true</td>
<td>Use optimized sigma routines for singles</td>
</tr>
<tr>
<td>UseEOMOptD</td>
<td>true</td>
<td>Use optimized sigma routines for doubles</td>
</tr>
<tr>
<td>NDav</td>
<td>20</td>
<td>Maximum size of reduced space (i.e. $20 \times \text{NRoots}$)</td>
</tr>
<tr>
<td>CCSD2</td>
<td>false</td>
<td>Use the lower scaling CCSD(2) approximation</td>
</tr>
<tr>
<td>CheckEachRoot</td>
<td>true</td>
<td>Check convergence for each root separately</td>
</tr>
<tr>
<td>RootHoming</td>
<td>true</td>
<td>Apply root homing</td>
</tr>
<tr>
<td>DoLanczos</td>
<td>false</td>
<td>Use the Lanczos procedure rather than Davidson</td>
</tr>
<tr>
<td>UseCISUpdate</td>
<td>true</td>
<td>Use diagonal CIS for updating</td>
</tr>
<tr>
<td>NInitS</td>
<td>0</td>
<td>Number of roots in the initial guess, if 0, use preset value</td>
</tr>
<tr>
<td>DRESS3ES</td>
<td>true</td>
<td>Construct the external dressing to singles</td>
</tr>
<tr>
<td>DRESS3ED</td>
<td>false</td>
<td>Construct the external dressing to doubles</td>
</tr>
<tr>
<td>DOCOSXEOM</td>
<td>false</td>
<td>Use COSX approximation for external exchange term in EOM</td>
</tr>
<tr>
<td>DOAOX3E</td>
<td>false</td>
<td>Use COSX approximation for 4 external terms contribution</td>
</tr>
<tr>
<td>DoRootwise</td>
<td>false</td>
<td>Solves for each root separately,</td>
</tr>
<tr>
<td>DoTDM</td>
<td>false</td>
<td>Option for calculation of default transition moment</td>
</tr>
<tr>
<td>Doleft</td>
<td>false</td>
<td>Calculation of exact left vector</td>
</tr>
<tr>
<td>NR RootsPerBatch</td>
<td>1</td>
<td>No of roots calculated together</td>
</tr>
<tr>
<td>FOLLOWCIS</td>
<td>false</td>
<td>Follows the initial singles guess</td>
</tr>
<tr>
<td>DoCore</td>
<td>true</td>
<td>Initiates ionization or excitation from core orbital</td>
</tr>
<tr>
<td>CoreHole</td>
<td>0</td>
<td>Core orbital from which ionization or excitation is needed</td>
</tr>
<tr>
<td>CVSEP</td>
<td>false</td>
<td>Separates core orbital from valence,</td>
</tr>
</tbody>
</table>
Detailed Documentation

DTol 1e-5 # default for EOM residual threshold
NRoots 9 # number of roots
OTol 1e-14 # orthogonalization threshold
KCOpt KC_MO # method for external exchange formation
 KC_AOX # when asked for exact TDM calculation
 KC_AOBLAS # most efficient
PrintLevel 3 # the amount of information to be printed
MaxCore 500 # total amount of memory

In the case of the UHF EE-EOM-CCSD implementation, the parameters that influence a given calculation are provided below.

%mdci

#UHF EOM parameters - defaults displayed
DoEOM false # whether to perform EOM
NDav 20 # maximum size of reduced space (i.e. 20*NRoots)
CheckEachRoot true # check convergence for each root separately
RootHoming true # apply root homing
NInitS 0 # number of roots in the initial guess, if 0, use preset value
DoRootwise true # solves for each root separately (default in UHF case)
FOLLOWCIS true # follows the initial singles guess
DTol 1e-5 # default for EOM residual threshold
NRoots 9 # number of roots
OTol 1e-14 # orthogonalization threshold
KCOpt KC_AOX # AO exchange for the four external contributions
 # (the only option available at present)
PrintLevel 3 # the amount of information to be printed
MaxCore 500 # total amount of memory

9.21.2 Memory Management

The most important data coming from the coupled-cluster routine are the ground state energy and wave function, and the molecular integrals. The integrals are then used to create “dressed” integral containers, which allows for an efficient factorization of the EOM equations, since these dressed quantities do not change during the calculation. Most of these are written on disk, with the possible exception of the integral container which has three external labels. This, and the solver files may remain in core if enough memory is available.

The program sequentially tries to allocate memory for the files in the order of their importance, and what cannot be kept in core, goes on disk. The order of allocation is as follows: 1. residual vectors, 2. Ritz vectors, 3. three external integrals, 4. sigma vectors and 5. state (trial) vectors, as seen in the example below:
The present initial guess in the RHF EOM implementation consists of constructing a CIS Hamiltonian of a \(N \) vectors are proportional to \(N_{\text{InitS}} \) to converge to the proper roots. The program can be made to follow the initial CIS guess by setting \(N_{\text{Roots}} \) be replaced by some higher roots which are “easier” to find. In such cases, it may help to increase \(N_{\text{Roots}} \). In some cases, the roots calculated using EOM may not be the lowest ones, but a few of these may be preselected based on the energetic ordering of the diagonal elements of the Hamiltonian. In the UHF case, the guess is constructed from the solutions of a UHF calculation. The number of roots in the initial guess is determined as 20 times the number of roots desired to converge to the proper roots. The keyword \(\text{NRoots} \) sets \(N_{\text{Roots}} \), while \(\text{NDav} \) determines \(N_{\text{Dav}} \). Luckily, the contributions that, in our experience, are the most important to keep in memory, are also the ones that require the smallest amount of it. It is advisable to use KCOpt AOBLAS, as it has the lowest memory requirements.

In order to estimate the amount of necessary memory, it should be kept in mind that, in the closed shell case, the memory requirements of the residual and Ritz vectors are proportional to \(N_{\text{R}}N_{\text{P}}N_{\text{V}}^2 \), the three external integrals to \(N_{\text{R}}N_{\text{O}}N_{\text{V}}^3 \) and the sigma and trial vectors to \(N_{\text{D}}N_{\text{R}}N_{\text{P}}N_{\text{V}}^3 \), where \(N_{\text{O}} \) and \(N_{\text{V}} \) are the number of occupied and virtual orbitals, \(N_{\text{P}} = \frac{N_{\text{O}}(N_{\text{O}}+1)}{2} \) is the number of occupied pairs, \(N_{\text{R}} \) is the number of roots, and \(N_{\text{D}} \) is the maximum size of the reduced space. The keyword \(\text{NRoots} \) sets \(N_{\text{Roots}} \), while \(\text{NDav} \) determines \(N_{\text{Dav}} \). One should keep in mind, while increasing the number of initial guess vectors, that this corresponds to diagonalizing a matrix of increasing dimension. If, for example \(\text{NRoots} \) is 10, then by default 200 roots are considered in the initial guess (unless it exceeds the size of the CIS space), or if \(\text{NInitS} \) is set to 100, then there will be 1000 roots in the guess. In some cases, the roots calculated using EOM may not be the lowest ones, but a few of these may be replaced by some higher roots which are “easier” to find. In such cases, it may help to increase \(\text{NRoots} \) or \(\text{NInitS} \) to converge to the proper roots. The program can be made to follow the initial CIS guess by setting

<table>
<thead>
<tr>
<th>Memory available</th>
<th>...</th>
<th>6512.00 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory needed for Residual-vectors</td>
<td>...</td>
<td>71.27 MB</td>
</tr>
<tr>
<td>Memory needed for Ritz-vectors</td>
<td>...</td>
<td>71.27 MB</td>
</tr>
<tr>
<td>Memory needed for 3-ext integrals</td>
<td>...</td>
<td>92.05 MB</td>
</tr>
<tr>
<td>Memory needed for Sigma-vectors</td>
<td>...</td>
<td>1425.31 MB</td>
</tr>
<tr>
<td>Memory needed for State-vectors</td>
<td>...</td>
<td>1425.31 MB</td>
</tr>
<tr>
<td>-> Final InCoreLevel</td>
<td>...</td>
<td>5</td>
</tr>
</tbody>
</table>

Half of the memory specified with the keyword \(\text{MaxCore} \) is distributed among the five candidates. In the above case, everything fits in memory. Note that these are only the largest contributors to memory consumption, and there should ideally be a safety margin when allocating memory.

Note that in the UHF EE-EOM-CCSD implementation, the memory requirements of the residual and Ritz vectors are proportional to \(N_{\text{R}}(N_{\text{P}}N_{\text{V}}^2 + N_{\text{P}}^2N_{\text{V}}^2 + N_{\text{O}}N_{\text{D}}N_{\text{V}}N_{\text{V}}) \), the three external integrals to \(N_{\text{R}}(N_{\text{O}}N_{\text{V}}^2 + N_{\text{O}}^2N_{\text{V}}^2 + N_{\text{O}}N_{\text{V}}N_{\text{V}}^2 + N_{\text{O}}N_{\text{V}}N_{\text{V}}^2) \) and the sigma and trial vectors memory requirements are proportional to \(N_{\text{D}}N_{\text{R}}(N_{\text{P}}N_{\text{V}}^2 + N_{\text{P}}^2N_{\text{V}}^2 + N_{\text{O}}N_{\text{D}}N_{\text{V}}N_{\text{V}}) \), where \(N_{\text{O}}, N_{\text{O}} \), \(N_{\text{V}} \), and \(N_{\text{V}} \) are respectively, the number of occupied alpha, occupied beta, virtual alpha and virtual beta orbitals and \(N_{\text{P}} = \frac{N_{\text{O}}(N_{\text{O}}+1)}{2} \) and \(N_{\text{P}} = \frac{N_{\text{O}}(N_{\text{O}}+1)}{2} \) are the number of alpha and beta occupied pairs, respectively.

9.21.3 Initial Guess

The present initial guess in the RHF EOM implementation consists of constructing a CIS Hamiltonian of a certain dimension, and diagonalizing it. The roots are preselected based on the energetic ordering of the diagonal elements of the Hamiltonian. In the UHF case, the guess is constructed from the solutions of a UHF CIS calculation. The number of roots in the initial guess is determined as 20 times the number of roots desired in EOM (\(\text{NRoots} \)) if \(\text{NDav} \) is 20 or smaller, otherwise it is set to \(\text{NDav} \) times the number of EOM roots. If the parameter \(\text{NInitS} \) is larger than zero, then the number of initial guess roots will be set to this parameter times \(\text{NRoots} \). The maximum possible number of roots is the full CIS dimension, \(N_{\text{O}}N_{\text{V}} \). One should keep in mind, while increasing the number of initial guess vectors, that this corresponds to diagonalizing a matrix of increasing dimension. If, for example \(\text{NRoots} \) is 10, then by default 200 roots are considered in the initial guess (unless it exceeds the size of the CIS space), or if \(\text{NInitS} \) is set to 100, then there will be 1000 roots in the guess. In some cases, the roots calculated using EOM may not be the lowest ones, but a few of these may be replaced by some higher roots which are “easier” to find. In such cases, it may help to increase \(\text{NRoots} \) or \(\text{NInitS} \) to converge to the proper roots. The program can be made to follow the initial CIS guess by setting
FOLLOWCIS to true and is necessary if we wish to ionize or excite from inner-valence or core orbitals. In the RHF implementation, the core orbital, from which the ionization or excitation originates, can be specified using the keyword CoreHole, in addition to setting DoCore and FollowCIS to true. The CoreHole keyword is quite general and in principle, ionization or excitation processes from any occupied orbital can be specified using this keyword.

9.21.4 Hamiltonian Construction

The Hamiltonian construction begins by calling the sigma routines. The logical variables UseEOMOptS and UseEOMOptD choose the routines to be used in the evaluation of the singles and doubles sigma vectors, respectively. If true, the optimized sigma routine, using dressed integrals, will be used. This should not be changed, the option is there mainly for debugging purposes. If set to false, an automatically generated, and much slower serial code will be used instead. In each early iteration, \(N_R \) sigma vectors will be determined, except in the case of a restart, where the number of sigma vectors is \(2N_R \). For further details on convergence, see 9.21.6 below.

The most time consuming part of the sigma vector construction is the formation of the external exchange contribution, which can be influenced via the CC keyword KCopt. Currently, there are three options that are compatible with EOM: KC_MO_KC_AOX and KC_AOBLAS (see the MDCI documentation). The external exchange term can be treated most efficiently using COSX, which leads to average speed ups of 10x for the external exchange term and an overall speedup of 3x for the EOM calculation. This is accompanied by a drastic reduction of the storage cost [383]. The error introduced is below 1 meV, which is 200-fold less than the error bar of the method [383] itself. It is the default for KCopt KC_AOX and KC_AOBLAS and can be controlled by the keyword DOCOSXEOM. The default grid settings for EOM are GridX 1 and IntAccX 2.68.

Once the sigma vectors are available, they are multiplied with the trial vectors to yield the reduced space Hamiltonian. The Hamiltonian is built in a way that, in each iteration, only the new vector products are added to the “edge” of the old Hamiltonian, so that a full build is avoided. It should be clear that the parameter NDav plays an important role here, since it determines the maximum size of the Hamiltonian \((N_D N_R)\), and also controls how much memory is needed for the trial and sigma vectors, as seen above. Since the choice of this parameter influences convergence properties, it will be discussed further in 9.21.6.

9.21.5 Solution of the (Nonsymmetric) Eigenproblem

Following the construction of the Hamiltonian, a nonsymmetric eigensolver is called. In this case, it is possible to have complex eigenvalues. In practice, this is rarely the case, and indicates a problem of some kind. A warning will be given if this happens, however, one may get away with this if it only happens in an isolated iteration step.

Once the eigenvectors are available, they are compared with those of the previous iteration, if root homing is turned on, i.e. if the RootHoming keyword is set to true. This means evaluating the overlap of the old and new eigenvectors, in order to keep track of the possible movement of the eigenvectors if root flipping occurs. If converged roots are removed from further iterations (see next section), it is important to keep track of changes in ordering, especially if a converged and a non-converged root is swapped. After diagonalization, the Ritz vectors and residuals can be evaluated.
9.21 Excited States via EOM-CCSD

9.21.6 Convergence, Restart, Preconditioning and Subspace Expansion

Convergence is signaled once a residual square norm based criteria is fulfilled. This criteria is determined by the CheckEachRoot keyword. If it is true (default), the convergence of the residual square norm of each root is checked separately. This is due to the fact that different roots converge at a different rate. Once a root is converged, no new trial vectors will be generated, belonging to that vector. This means that the EOM iterations will progressively become faster (until restart). Turning off the rootwise convergence check is possible, but not recommended. In this case, the maximum of all residual square norms is checked for convergence, and all iterations will take roughly the same amount of time since no vectors are removed in any iteration. However, this procedure can be numerically unstable, since the residuals of some roots might become very close to zero, and trying to generate new vectors, which are orthogonal to these, may lead to numerical disaster. In short, the recommended default is having both CheckEachRoot and RootHoming set to true. If CheckEachRoot is false, then RootHoming should also be set to false, as it may cause problems if NDav is too small. The convergence threshold of the residual in Davidson's method can be larger than that for the ground state CC residual threshold in order to obtain converged results. Namely, a value of DTol of 1e-5 is almost always enough to get well converged energies.

At this point it is worth discussing the role of the keyword NDav. This keyword determines at what point the Davidson algorithm should be restarted. If it is chosen too small, it may cause slow convergence. If this value is too large, this may result in overwhelming demands on memory/disk space requirements. The default value (20) is chosen with the hope that no, or maybe one restart will be required. It should only be changed if computational resources demand it. However, the treatment of core ionization or core excitation processes often requires a large value of NDav. At restart, Ritz vectors are copied as new trial vectors for all roots, which will then be orthonormalized, while new vectors will only be generated for the non-converged roots. This means that the step after the rebuilding of the expansion space will be 1-2 times as expensive as one of the initial steps.

New directions (trial vectors) are generated from the preconditioned residual vectors. If no preconditioning is applied (the preconditioner is taken to be a unit matrix), one falls back to the Lanczos algorithm, which is inferior to the Davidson algorithm. This happens if the keyword DoLanczos is true. This is not recommended, as the Lanczos algorithm converges several times slower than Davidson’s, and is there for debugging mainly. The original Davidson preconditioner is the inverse of a diagonal matrix which contains the difference of the diagonal elements of the Hamiltonian and the current approximation to the eigenvalue belonging to the given root. If R_{ia} and R_{ijab} are elements of the singles and doubles amplitudes, respectively, then the updated vectors (T_{ia}, T_{ijab}) have the form

$$T_{ia} = \frac{R_{ia}}{D_{ia} + \varepsilon_R}$$

(9.263)

for singles, and

$$T_{ijab} = \frac{R_{ijab}}{D_{ijab} + \varepsilon_R}$$

(9.264)

for doubles. Here, D_{ia} and D_{ijab} are related to, and possibly approximations of, the respective diagonal Hamiltonian elements. The simplest approximation is just to construct these from diagonal Fock matrix elements (i.e. orbital energies) as $D_{ia} = \varepsilon_a - \varepsilon_i$ and $D_{ijab} = \varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j$. A slightly better preconditioning
can be obtained as follows. For singles, take the exact CIS diagonal elements, \(D_{ia} = \varepsilon_a - \varepsilon_i + \overline{g}_{iaa} \), where the last term is the respective antisymmetrized integral; and construct the doubles as \(D_{ijab} = D_{ia} + D_{jb} \). This is the default, and can be changed back to the simple Fock matrix guess by setting \textbf{UseCISUpdate} to false.

Following the preconditioning step, the resulting vectors are orthogonalized to the previous set of trial vectors, and orthonormalized among themselves. Since, the trial vectors do not change once they are generated (unless a restart occurs), only the new elements of the overlap matrix need to be generated for the orthonormalization. The numerical threshold for the inversion (and other division steps) is controlled by the parameter \textbf{OTol}. Finally, the amount of printed information can be controlled via the \textbf{PrintLevel} keyword. If not given or equal to 2, only basic iteration information will be printed. If set to 3, detailed iteration information will be printed (recommended if timing results for individual steps are required), while 4 or higher triggers additional (and very verbose) information from other subroutines as well.

The default solver in the RHF case is a multi-root Davidson procedure. The single-root solver can be initiated setting \textbf{DoRootwise} true and \textbf{FollowCIS} to true. The latter is more stable, when large number of roots are requested. The single-root solver is also currently the default in the UHF EOM-CCSD implementation, since the multiroot solver can be unstable (its use is not recommended at present).

\subsection*{9.21.7 Properties in the RHF EOM implementation}

The only property that can be calculated with the current RHF EOM implementation is the transition moment. It is calculated as a CI-like expectation value, as proposed by Stanton and Bartlett. The right and left transition density are defined as

\begin{equation}
\rho_{pq}^{Gr \rightarrow Ex} = \langle \phi_0 | (1 + \Lambda) [e^{-T} \{ p^+ q^- \} e^T, R] | \phi_0 \rangle \tag{9.265}
\end{equation}

\begin{equation}
\rho_{pq}^{Ex \rightarrow Gr} = \langle \phi_0 | L e^{-T} \{ p^+ q^- \} e^T | \phi_0 \rangle \tag{9.266}
\end{equation}

In the above equation, \(\Lambda \) corresponds to the ground state left vector, which needs to solved once and \(L \) is the left vector, which needs to be solved separately for each root. Once the right and left vectors have been obtained, the left and right transition densities are constructed and the oscillator strength is calculated using following formula

\begin{equation}
f = \frac{2}{3} \varepsilon |\mu_{pq} \rho_{pq}^{Ex \rightarrow Gr} || \mu_{pq} \rho_{pq}^{Gr \rightarrow Ex} | \tag{9.267}
\end{equation}

The oscillator strength, calculated by default, employs a linear approximation for \(\Lambda \). The \(L \) vectors are, on the other hand, calculated as a general inverse of the corresponding \(R \) vectors. This approximation requires no additional effort over the energy calculation and gives similar accuracy as that of the exact oscillator strength calculation, which is at least twice the cost of the energy calculation. Exact EOMCC transition moments can, however, be calculated by setting \textbf{DoLeft} and \textbf{DoTDM} to true. Please note that transition moments have not yet been implemented for the UHF EOM-CCSD approach.
9.21.8 Some tips and tricks for EOM-CC calculation

- The COSX approximation gives significant savings in terms of memory use, disk space use and computational timings without almost no loss of accuracy [383]. Therefore, the preferred setting for large scale calculations should include 'DoCOSXEOM true,DoAOX3e true and KCOpt KC_AOBLAS' (N.B. COSX is only possible in the RHF EOM implementation, in the UHF EOM implementation AOX is currently the only option that can be used).

- The EOMCC code in ORCA has three version of the Davidson's solver. In the closed-shell case, the default one is multi-root solver which does optimization of all the roots together. It gives the fastest convergence and is more suitable when one is interested only in a few roots of a big molecule. However, the multi-root solver can land into numerical issues, if more than 10 root are desired. In that case, one can invoke the root-wise solver by setting DoRootwise true. The single root solver is very stable and should be used when large number of roots are desired (i.e. the single root solver is also the default in the UHF implementation, since the multi-root solver can be unstable). However, the convergence of the single root solver is slower than the multi-root one. In the RHF implementation, there is also a batchwise solver, where a subset of the total number of roots is optimized together. This can be invoked by setting NRotsPerBatch to true and is intermediate between the multi-root and single-root solver in terms of stability and convergence.

- If the EOM iterations do not converge within 50 cycles, one can try to increase the number of iterations by setting MaxIter to a larger value. One can also try to increase the dimension of the Davidson’s space by increasing the NDAV value and this generally helps in convergence acceleration. However, setting NDAV to a value larger than 200 can make the calculation prohibitively costly.

- Convergence thresholds of DTol 1e-5 (Davidson convergence) and STOL 1e-7 (ground state CCSD convergence) generally yield sufficiently converged energies, and are suitable for most purposes.

- The normal Davidson solver generally leads to the lowest energy solutions. This procedure can also yield roots dominated by double excitations (the so-called satellite states) for the IP and EA variants of EOMCC, when one asks for a large number of roots. If one interested in the low lying Koopman’s type of IP and EA states, they can be obtained by setting FOLLOWCIS to true. This will follow the initial guess provided by the Fock operators.

9.22 Excited States via STEOM-CCSD

The EOM-CCSD approach for excitation energies becomes prohibitively costly for large systems because of its $O(N^6)$ scaling. Therefore, one needs a more compact form of the wave-function ansatz. A second similarity transformation can compress the final matrix diagonalization step to the CIS space only. The resulting STEOM-CCSD method of Marcel Nooijen and co-workers is an efficient way for accurate calculations of excitation energies.
9.22.1 General Description

In the standard EOMCC method, the transformed Hamiltonian is diagonalized over a singles and doubles space to obtain ionized, attached, or excited states of the reference state. In STEOMCC, one performs a second similarity transformation

\[\hat{G} = \{ e^{\hat{S}} \}^{-1} \hat{H} \{ e^{\hat{S}} \} \]

(9.268)

The transformation operator \(\hat{S} \), including singles and doubles, is defined as

\[\hat{S} = \hat{S}^{IP} + \hat{S}^{EA} \]

(9.269)

\[\hat{S}^{IP} = S_{m_i}^{m_i'} \hat{E}_{m_i}^{m_i'} + \frac{1}{2} S_{mb}^{mb} \hat{E}_{mb}^{mb} \]

(9.270)

\[\hat{S}^{EA} = S_{a_e}^{a_e'} \hat{E}_{a_e}^{a_e'} + \frac{1}{2} S_{ab}^{ab} \hat{E}_{ab}^{ab} \]

(9.271)

In the above equations, \(m \) and \(e \) denote active indices of the hole and particle type respectively, while a prime denotes a restriction to orbitals that are not active. The amplitudes of the operator \(\hat{S} \) are defined in such a way that matrix elements of the transformed Hamiltonian, in second quantized notation, become equal to zero.

\[g_{m_i}^{m_i'} = g_{mb}^{mb} = g_{a_e}^{a_e'} = g_{ab}^{ab} = 0 \]

(9.272)

In addition, the zeros which pre-existed in \(\hat{H} \), after solving the CCSD equations, remain preserved. The above equations are linear in \(\hat{S} \) and are equivalent to the Fock space multireference coupled cluster equations for the one valence problem. However, to ensure numerical stability, the equations are recasted as matrix diagonalization problem and solved as EOMIP-CCSD and EOMEA-CCSD problems. The \(\hat{S}^{IP} \) and \(\hat{S}^{EA} \) are extracted from converged EOMIP-CCSD and EOMEA-CCSD calculations, respectively, by invoking intermediate normalization on the suitably chosen eigenvectors corresponding to active holes and active particles. The total process can be described as following

- Solution of the ground state coupled cluster equations
- Construct the first similarity transformed Hamiltonian as \(\hat{H} = e^{-\hat{T}} \hat{H} e^{\hat{T}} \)
- Solution of the EOMIP and EOMEA equation
- Extraction of the \(\hat{S} \) amplitudes
- Construct the second similarity transformed Hamiltonian as \(\hat{G} = e^{-\hat{T}} \hat{H} e^{\hat{T}} \)
- Diagonalization of \(\hat{G} \) in CIS space

The advantage of the above method is that, instead of one iterative \(O(N^6) \) scaling diagonalization step, it requires two iterative \(O(N^5) \) scaling steps, one non-iterative \(O(N^5) \) scaling step and one iterative \(O(N^4) \) scaling matrix diagonalization step. The presence of so-called 'disconnected triples' terms ensures the charge transfer separability of the excited states, which is absent even in EOM-CCSD. In addition, since
the final diagonalization step is performed in a CIS space, the spin adaption is trivial and excited states of triplet multiplicity can be obtained without going through the complications of a spin orbital based implementation.

All the speed up options, including CCSD(2) and COSX, which are available for EOM-CCSD are also available for STEOM. The most important step in a STEOMCC calculation is the EOMIP-CC and EOMEA-CC calculation steps. These steps are performed using the EOM-CCSD module and the relevant keywords are the same as that described in 9.21. The keywords which are exclusive to the STEOM module are:

```
%mdci
#STEOM parameters - defaults displayed
DoCISNAT true # automatic selection of active space
NACTIP 3 # number of states defined as active in the IP calculation
NACTEA 2 # number of states defined as active in the EA calculation
DOTRIPLET false # target state of triplet multiplicity
Dodbfilter true # filters out states with doubles excitation character
DONEWACTSCH true # new active space selection scheme for STEOM-CCSD
DoSOLV # perturbative correction for solvation effects (experimental)
#End values for automatic active space selection scheme
OTHRESH 0.001 # Cut of occupation of CIS natural orbitals in the IP calculation
VTHRESH 0.001 # Cut off occupation of CIS natural orbitals in the EA calculation
IPSTHRS 80 # The percentage singles threshold for the IP calculation
EASTHRS 80 # The percentage singles threshold for the EA calculation
end
```

9.22.2 Selection of Active space

The results of a STEOMCC calculation depend upon the number of roots selected as active in the EOMIP and EOMEA calculations. In ORCA, they are chosen automatically, by using state-averaged CIS natural transition orbitals (NTO). The orbitals up to a predefined occupation are chosen to be active in the EOMIP and EOMEA calculations, and this is controlled by the keywords OTHRESH and VTHRESH respectively. Now, there is two possible ways to chose active space. One is to use the criteria of percentage occupation of NTO’s as described in ref [384]. However, a newer and more robust approach is to use the criteria of absolute occupation, which is default in the current implementation. One can switch on the old percentage occupation based active space selection by setting DONEWATSCH to true.

One can also select the active spaces manually by turning the DoCISNAT to false, and setting the NACTIP and NACTEA to desired values. However, this is not recommended for general users. The following shows the output of the active orbital selection procedure:

```
------------------------------------------
STATE AVERAGED NATURAL ORBITALS FOR ACTIVE SPACE SELECTION
------------------------------------------
Solving eigenvalue problem for the occupied space ... Occupied block occupation :
  6  0.960478
```
Orbital taken as active for IP roots:
0 0.345541
1 0.310125
2 0.171663
3 0.169928
done
Solving eigenvalue problem for the virtual space ... Virtual block occupation:
6 0.640886
7 0.332262
8 0.017272
9 0.005326
10 0.001752
11 0.000667
12 0.000574
13 0.000540
14 0.000160
15 0.000150
16 0.000139
17 0.000086
18 0.000082
19 0.000037
20 0.000023
21 0.000016
22 0.000013
23 0.000008
24 0.000003
25 0.000002
26 0.000001
27 0.000000
28 0.000000
29 0.000000
30 0.000000
31 0.000000
32 0.000000
33 0.000000
34 0.000000
35 -0.000000
Orbital taken as active for EA roots:
0 0.640886
1 0.332262
2 0.017272
done
No of roots active in IP calculation: 4
No of roots active in EA calculation: 3

9.22.3 The reliability of the calculated excitation energy

The excitation energy for any states calculated in STEOMCC are only reliable when the dominant excitation for that states are confined within the active space. This can be verified from the percentage active character
of the calculated states, a posteriori diagnostic which is defined as

\[
\%\text{active character} = \frac{\sum_{m,e} (m,e) \ast C(m,e)}{\sum_{i,a} (i,a) \ast C(i,a)} \ast 100
\]

(9.273)

where, \(m\) and \(e\) are the no active occupied and virtual orbital. The roots which has \%active character higher than 98.0 are considered to be converged with respect to the active space.

STEOM-CCSD RESULTS

IROOT= 1: 0.145412 au 3.957 eV 31914.3 cm\(^{-1}\)

Amplitude Excitation
-0.169361 4 -> 8
-0.984822 7 -> 8

Percentage Active Character 99.86

Amplitude Excitation in Canonical Basis
-0.166580 4 -> 8
-0.975432 7 -> 8
-0.124356 7 -> 13

IROOT= 2: 0.309409 au 8.419 eV 67907.5 cm\(^{-1}\)

Amplitude Excitation
0.994141 7 -> 9

Percentage Active Character 99.78

Amplitude Excitation in Canonical Basis
-0.990029 7 -> 9

IROOT= 3: 0.336993 au 9.170 eV 73961.4 cm\(^{-1}\)

Amplitude Excitation
-0.994878 5 -> 8

Percentage Active Character 99.10

Amplitude Excitation in Canonical Basis
-0.984116 5 -> 8
-0.136769 5 -> 13

IROOT= 4: 0.357473 au 9.727 eV 78456.2 cm\(^{-1}\)

Amplitude Excitation
0.181761 4 -> 10
0.728209 6 -> 8
0.611668 7 -> 10
-0.191540 7 -> 12

Percentage Active Character 94.10

Warning:: the state may have not converged with respect to active space

------------------ Handle with Care ------------------
If the % active character for any calculated state is less than 98, that state may have not converged with respect to active space and the excitation energy for that particular state is less reliable. The user should ask for more no of roots under those conditions.

9.22.4 Removal of IP and EA states with double excitation character

To obtain accurate results with STEOM-CCSD, only the \hat{S} amplitudes corresponding to the states dominated by single excitations should be included in the second similarity transformation. This is ensured in ORCA in two ways. First, the root following (FOLLOWCIS) is activated by default so that it converges to the states dominated by singly excited guess vectors. This avoids the calculation of so called 'satellite states', which are of double excitation character with respect to the ground state. Secondly, among the converged IP and EA roots, the states which have %singles character below a certain predefined threshold (i.e. controlled by the keywords IPTHRESH and EATHRESH) are automatically excluded from the second similarity transformation.
9.22 Excited States via STEOM-CCSD

<table>
<thead>
<tr>
<th>IROOT</th>
<th>Amplitude</th>
<th>Excitation</th>
<th>Energy (eV)</th>
<th>Wavenumber (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.304098</td>
<td>0.090458</td>
<td>8.275</td>
<td>66741.8</td>
</tr>
<tr>
<td>4</td>
<td>0.350387</td>
<td>0.702705</td>
<td>9.535</td>
<td>76901.1</td>
</tr>
<tr>
<td>5</td>
<td>0.651462</td>
<td>0.837352</td>
<td>17.727</td>
<td>142979.4</td>
</tr>
</tbody>
</table>

EA STATE 0: percentage singles 95.282
EA STATE 1: percentage singles 96.981
EA STATE 2: percentage singles 96.540
EA STATE 3: percentage singles 97.844
EA STATE 4: percentage singles 68.884

Warning: high double excitation character, excluding from the STEOM transformation
Final no active EA roots: 4

Note that the use of CIS natural transition orbitals can lead to convergence issues for the IP and EA states which are dominated by double excitation character. This can be remedied by setting Dodbfilter to true.

9.22.5 Properties

Presently, the only property which can be calculated with the current implementation is the transition moment. It is calculated using a simple CIS-like formulation, employing the converged STEOM eigenvectors. The transition moments are computed by default in a STEOM calculation.

9.22.6 Some tips and tricks for STEOMCC calculations

- The accuracy of results depends upon the threshold defining the occupation of the NTOs which are taken as active. The following threshold settings are optimal and can be used for almost all the calculations.

```
OTRESH 0.001
VTHRESH 0.001
end
```

- The convergence problems with the underlying CIS for NTO generation can be removed by setting Maxiter to a high value.
9.23 Excited States using PNO based coupled cluster

Despite the successes of the DLPNO-CC approximation for ground states, the use of PNOs for excited states has been less fruitful. It is not straightforward to define a PNO based scheme for excited states, which will maintain the balance between speed and accuracy, as observed for the ground state. As an intermediate solution, the ground state DLPNO quantities are transformed back to the canonical basis and are used within the canonical EOM routine. This procedure is justified, as the main bottle neck of the EOM-CCSD or STEOM-CCSD methods comes from the ground state calculation. Approximating the ground state CCSD amplitudes with MP2 amplitudes is also possible, as in the EOM-CCSD(2) approach. However, it is not very reliable and can lead to very large errors when the reference Hartree-Fock wave-function does not provide a correct zeroth order description of the ground state.

9.23.1 General Description

The back-transformation of the ground state DLPNO-CCSD amplitudes to the virtual space involves three steps. The T amplitudes in the PNO basis are first converted into the PAO basis, then subsequently to the atomic orbital (AO) basis, and finally to the canonical MO basis [385],

\[
\begin{align*}
T_{\tilde{\alpha}_{ij}} & \Rightarrow T_{\tilde{\mu}_{ij}} \Rightarrow T_{\mu_{ij}} \Rightarrow T_{\alpha_{ij}}, \\
T_{\tilde{\nu}_{ii}} & \Rightarrow T_{\tilde{\mu}_{ii}} \Rightarrow T_{\mu_{ii}} \Rightarrow T_{\nu_{ii}}.
\end{align*}
\] (9.274)

The AO basis functions are denoted as μ, ν, \ldots, while $\tilde{\mu}, \tilde{\nu}, \ldots$ refers to PAOs. The missing pairs are treated using MP2 amplitudes. If all the thresholds are set to zero, the back-transformed amplitudes match exactly with the canonical RI-EOM-CCSD ones. On the other hand, when all the thresholds are made infinitely tight, one obtains the EOM-CCSD(2) results. This PNO based excited state approach is available for all the flavors of EOM-CCSD and for STEOM-CCSD.

Below, we list all the parameters that influence the DLPNO-CCSD based excited state calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoEOMMP2 true</td>
<td># MP2 correction for missing pairs</td>
</tr>
<tr>
<td>DoRECAN true</td>
<td># recanonicalization of the occupied</td>
</tr>
<tr>
<td></td>
<td># orbitals before the excited state calculation</td>
</tr>
</tbody>
</table>

9.23.2 Reference State Energy

Here it should be noted that the reference energy for PNO based EOM-CCSD or STEOM-CCSD is slightly different from that printed from a converged ground state DLPNO-CCSD calculation, as it includes the perturbative correction for different truncated quantities.
In the bt-PNO-EOM-CCSD scheme, the CI-like excited state treatment of the reference state is defined by back transformed DLPNO amplitudes (or MP2 amplitudes for the weak pairs). The energy corresponding to this set of amplitude is printed at the beginning of the EOM calculations.

Therefore, to calculate the total energy of an excited (ionized or electron attached) state, one needs to add the excitation energy to the reference state energy in bt-PNO-EOM-CCSD.

9.23.3 Use of Local Orbitals

The use of local orbitals makes it difficult to follow a particular guess vector in the Davidson diagonalization process in EOM-CC and STEOM-CC. Therefore, it is advisable to recanonicalize the occupied orbitals after the ground state DLPNO-CCSD calculation by setting DoRECAN to true. It should be noted that the recanonicalization does not change the EOM-CCSD energies. However, the STEOM-CC energies are not invariant to orbital rotations and differ slightly for local and canonical orbitals.

9.23.4 Some tips and tricks for bt-PNO calculations

- The bt-PNO scheme with tightPNO settings gives results, which are within 0.01 eV of the canonical EOM-CCSD numbers, at a fraction of the computational cost [385]. So, use of bt-PNO scheme is always preferable over canonical calculations.

- One should set 'DLPNOLINEAR true' and 'NEWDOMAINS true' in the mdci block input to use the 2015 fully linear scaling implementation, which is more robust than the 2013 implementation used as default in bt-PNO scheme.
• The transition moment in bt-PNO-EOM and bt-PNO-STEOM is only available using the linear approximation.

9.24 The Multireference Correlation Module

9.24.1 General Description

A number of uncontracted multireference approaches are implemented in ORCA and reside in the `orca_mrci` module. All of these approaches start with a reference wavefunction that consists of multiple configurations (orbital occupation patterns). The reference wavefunction defined in the `ref` subblock can be a complete active space (CAS), restricted active space (RAS) or an arbitrary list of configurations. The total wavefunction is constructed by considering single and double excitations out of the reference configurations. These excited configurations are then used to generate configuration state functions (CSF) that have the proper spin and spatial symmetry. The number of wavefunction parameters rapidly grows with the number of reference functions. The `orca_mrci` module features a set of truncation criteria (`TSel`, `TPre`, `TNat`) that help to reduce the number of wavefunction parameters. Furthermore, by default, the program only considers reference configurations that already have the target spin and spatial symmetry. There are situations, where this is undesired and the restrictions can be lifted with the keyword `rejectinvalidrefs false`. For more information on the theory, the program module as well as its usage we recommend the review article by Neese et al. [386]. A tutorial type introduction to the subject is presented in chapter 9.24 of the manual and more examples in the CASSCF tutorial. The detailed documentation of all features of the MR-CI and MR-PT module is somewhat premature and at this point only a summary of keywords is given below. A thorough description of all technical and theoretical subtleties must wait for a later version of the manual.

The overall scaling of uncontracted approaches is steep. Hence, the methodology is restricted to small reference spaces and small molecules in general. **Note that all integrals must be kept in memory!**

Internally contracted multireference approaches such as NEVPT2 do not share these bottlenecks. Aside from NEVPT2, ORCA features a fully internally contracted MRCI (FIC-MRCI) that resides in the `orca_autoci` module. For more details on the FIC-MRCI we refer to section 9.16.
SENSE!
A sensible two-step procedure is:
* generate some orbitals and **LOOK AT THEM**. Decide which ones
to include in the CI.
* re-read these orbitals with ! MORead NoIter. Perhaps use
the "rotate" feature to reorder the MOs
Then jump right into the CI which is defined in this se-
cond job
#
NOTE: the MRCI module respects the %method FrozenCore settings
#---

Loc 0,0,0
Localize orbitals in the internal (first flag), active
(second flag) and external space (third flag).
UseIVOs false
Use improved virtual orbitals in the CI

Method selection

CIType MRCI # Multireference CI (default)
MRDDCI1 # Difference dedicated CI 1-degree of freedom
MRDDCI2 # Difference dedicated CI 2-degrees of freedom
MRDDCI3 # Difference dedicated CI 3-degrees of freedom
MRACPF # Average coupled-pair functional
MRACPF2 # Modified version of ACPF
MRACPF2a # A slightly modified version of ACPF-2a
MRAQCC # Average quadratic coupled-cluster
MRCEPA_R # Multireference CEPA due to Ruttink
MRCEPA_0 # CEPA-0 approximation
SORCI # Spectroscopy oriented CI
SORCP # Spectroscopy oriented couplet pair approx.
MRMP2 # Multireference Moeller-Plesset at second order
MRMP3 # Multireference Moeller-Plesset at third order
MRMP4 # Multireference Moeller-Plesset at fourth order
but keeping only singles and doubles relative to
the reference configurations.

Selection thresholds

Tsel 1e-6 # Selection threshold for inclusion in the CI based
2nd order MP perturbation theory <0\vert H\vert I>/DE(MP)
Tpre 1e-4 # Selection of configurations in the reference space
after the initial diagonalization of the reference
space only configurations with a weight large>Tpre
to any root are included
AllSingles false
Include ALL SINGLES in the CI. Default is now TRUE!!!

perturbative estimate of the effect of the rejected configurations
EunselOpt 0 # no correction
based on the overlap with the 0th order wavefunction
calculation with the relaxed reference space
coefficients. This is the most accurate and only
slightly more expensive
For CIType=MRCI, MRDDCI and SORCI the approximate correction for higher excitations

DavidsonOpt

- Davidson1 # default
- Davidson2 # modified version
- Siegbahn # Siegbahn’s approximation
- Pople # Pople’s approximation

For MRACPF, MRACPF2, MRAQCC and SORCP

NelCorr

- 0 # Number of electrons used for computing the average coupled-pair correction.
- =0 : set equal to ALL electrons in the CI
- =-1: set equal to all ACTIVE SPACE electrons
- =-2: set equal to ACTIVE SPACE electrons IF inactive doubles are excluded (as in MRDDCI)
- >0 : set equal to user defined input value

LinearResponse false

Use ground state correlation energy to compute the shift for higher roots (not recommended)

Natural Orbital Iterations

NatOrbIters 0 # default

number of average natural orbital iterations

Tnat 1e-4

cutoff of natural orbitals. NOs with an occupation number less than Tnat will not be included in the next iteration
Also, orbitals with occupation number closer than Tnat to 2.0 will be frozen in the next iteration

Tnat2 -1

if chosen >0 then Tnat2 is the threshold for freezing the almost doubly occupied orbitals. Otherwise it is set equal to Tnat

Additional flags and algorithmic details

PrintLevel 2 # default. Values between 1 and 4 are possible

DoDDCIMP2 false

for DDCI calculations: if set to true the program computes a MP2 like correction for the effect of inactive double excitations which are not explicitly included in the CI. This is necessary if you compare molecules at different geometries or compute potential energy surfaces.

The SORCP model

CIType_in # First step CIType
CIType Fi # Second step CIType
Exc_in # First step excitation scheme
Exc Fi # Second step excitation scheme
Tsel_in # First step Tsel
Tsel Fi # Second step Tsel
9.24 The Multireference Correlation Module

Tpre_in # First step Tsel
Tpre_fi # Second step Tpre

Thus, the SORCI model corresponds to CItypes=SORCP with
CItypes_in MRCl CItypes_fi MRCl
Exc_in DDCI2 CExc_fi DDCI3
Tsel_in 1e-5 Tsel_fi 1e-5
Tpre_in 1e-2 Tpre_fi 1e-2

Multireference perturbation theory

MRPT_b 0.02 # Intruder state avoidance PT after Hirao (default 0.0)
with this flag individual intruders are shifted away to
to some extent from the reference space
MRPT_shift 0.3 # Level shift introduced by Roos which shifts the entire
excited manifold away in order to avoid intruder states.
A correction is applied afterwards but results do depend
on this (arbitrary) value to some extent.
HHOpt projected # use an off-diagonal definition of H0
Diagonal # use a diagonal definition of H0 (much faster but maybe
a little less reliable
Partitioning MP # Moeller plesset partitioning
EM # Epstein-Nesbet partitioning (not recommended)
Fopt Standard # Standard definition of MR Fock operators
G3 # uses Anderson's g3 correction also used in CASPT2

#---------------------------------------
restrict reference configurations
#---------------------------------------
RejectInvalidRefs true # by default reference CSFs are restricted
to target spin and spatial symmetry

--
Definitions of blocks of the CI Matrix
--
NewBlock 2 * # generate a Block with doublet(=2) multiplicity
Nroots 1 # number of roots to be generated
Excitations cis # CI with single excitations
cid # CI with double excitations
cisd # CI with single and double excitations
ddci1 # DDCI list with one degree of freedom
ddci2 # DDCI list with two degrees of freedom
ddci3 # DDCI list with three degrees of freedom
Flags[_class_] 0 or 1
Turn excitation classes on or off individually
"s" stands for any SOMO, "i","j" for internal orbitals and
"a","b" for external orbitals
Singles_class_ = ss, sa, is, ia
Doubles_class_ = ijs, ijsa, ijab,
iss, issa, isab,
sss, sssa, ssab
"Flags" takes priority over "Excitations". In fact "Excitations"
does nothing but to set "Flags". So, you can use "Excitations"
to provide initial values for "Flags" and then modify them
Detailed Documentation

refs
#
First choice - complete active space
#
CAS(nel,norb) # CAS-CI reference with nel electrons in
Norb orbitals
#
Second choice - restricted active space
#
RAS(nel: m1 h/ m2 / m3 p)
RAS-reference with nel electrons
m1= number orbitals in RAS-1
h = max. number of holes in RAS-1
m2= number of orbitals in RAS-2 (any number of
electrons or holes)
m3= number of orbitals in RAS-3
p = max. number of particles in RAS-3
#
Third choice - individually defined configurations
#
{ 2 0 1 0 }
{ 1 1 1 0 }
etc.
define as many configurations as you want. Doubly occupied MOs
singly occupied MOs and empty MOs. Important notes:
a) the number of electrons must be the same in all references
b) the number of orbitals is determined from the number of
definitions. Thus, in the example above we have three active
electrons and four active orbitals despite the fact that the
highest orbital is not occupied in any reference.
The program determines the internal, active and external spaces
automatically from the number of active electrons and orbitals
end
there can be as many blocks as you want!!!

Density matrix generation flags
First Key= State densities <I|D|I>
=0: none
=1: Ground state only (lowest root of all blocks; Electron only)
=2: Ground state only (Electron and spin density)
=3: Lowest root from each block (Electron density)
=4: Lowest root from each block (Electron and spin density)
=5: All states (Electron density)
=6: All states (Electron and spin density)
Second Key= Transition densities <I|D|J>
=0: none
=1: from the ground state into all excited states (el)
=2: from the ground state into all excited states (el+spin)
=3: from all lowest states into all excited states (el)
=4: from all lowest states into all excited states (el+spin)
=5: all state pairs (el)
=6: all state pairs (el+spin)
Note that for perturbation theory the density is computed as
an expectation value over the first (second) order wavefunction.
which is renormalized for this purpose

Densities 1,1

Complete printing of the wavefunction

PrintWF 1 # CFG based printing (default)
det # Determinant based wavefunction printing
TPrintWF 3e-3 # Threshold for the printing of the CFGs/Dets

Algorithm for the solver

Solver Diag # Davidson like solver
DIIS # DIIS like solver
both solvers have their pros and cons. The DIIS may converge
better or use less time since it only recomputes the vectors that
have not yet converged; The DIIS may be less sensitive to root flipping
effects but occasionally it converges poorly and states of the same
symmetry are occasionally a little problematic
For perturbation theory DIIS is always used.
For both solvers
MaxIter 100 # the maximum number of iterations
Etol 1e-6 # convergence tolerance for energies in Eh
Rtol 1e-6 # convergence tolerance for residual

For Solver=Diag (Davidson solver)
Otol 1e-6 # Orthogonality threshold for Schmidt process
NGuessMat 512 # Dimension of the guess matrix 512x512
 # be used to compute the initial guess of the actual MRCI calculation
NGuessMatRefCI 512 # Dimension of the guess matrix
 # for the reference CI

MaxDim 3 # Davidson expansion space = MaxDim * NRoots
For the Solver=DIIS. Particularly recommended for anything else but
straightforward CI and also for calculations in direct2 mode!
MaxDIIS 5 # Maximum number of old vectors to be used in DIIS
RelaxRefs true # Relax reference space coefficients in the CI or
 # freeze them to their zeroth order values
LevelShift 0.4 # Level Shift for stabilizing the DIIS procedure

RI Approximation

IntMode RITrafo #Use RI integrals
 FullTrafo #No RI (default)

Integral storage, memory and files

IntStorage FloatVals
 DoubleVals (default)
 # store integrals with float (4 byte) or double (8 byte)
9.24.2 Properties Calculation Using the SOC Submodule

9.24.2.1 Zero-Field Splitting

The spin-orbit coupling (SOC) and spin-spin coupling (SSC) contributions to the zero-field splitting (ZFS) can be calculated very accurately using a wavefunction obtained from a multiconfigurational calculation of a multi-reference type such as CASSCF, MRCI, or MRPT in the form of:

\[|\Psi_{SS}^{SM} \rangle = \sum_{\mu} C_{\mu} |\Phi_{\mu}^{SS} \rangle \] \hspace{1cm} (9.276)

Here the upper indices \(SS \) stand for a wave function of the spin quantum number \(S \) and spin projection \(M_S = S \). Since the BO Hamiltonian does not contain any complex-valued operator, the solutions \(|\Psi_{SS}^{SM} \rangle \) may be chosen to be real-valued.

The SOC and SSC effects along with the Zeeman interaction can be included by means of the quasi-degenerate perturbation theory (QDPT). In this approach the SOC, the SSC, and the Zeeman operators are calculated in the basis of pre-selected solutions of the BO Hamiltonian \(\{ \Psi_{i}^{SM} \} \).

\[\left\langle \Psi_{i}^{SM} \left| \hat{H}_{BO} + \hat{H}_{SOC} + \hat{H}_{SSC} + \hat{H}_{Z} \right| \Psi_{j}^{S'M'} \right\rangle = \delta_{ij} \delta_{SS'} \delta_{MM'} E_{i}^{(S)} + \left\langle \Psi_{i}^{SM} \left| \hat{H}_{SOC} + \hat{H}_{SSC} + \hat{H}_{Z} \right| \Psi_{j}^{S'M'} \right\rangle \] \hspace{1cm} (9.277)

Diagonalization of this matrix yields the energy levels and eigenvectors of the coupled states. These eigenvectors in fact represent linear combinations of the solutions of \(\hat{H}_{BO} \) with complex coefficients.

The effective one-electron SOC operator in second quantized form can be written as:
\[\hat{H}_{\text{SOMF}} = \frac{1}{2} \sum_{pq} z_{pq}^{\uparrow \uparrow} b_p^\dagger b_q + z_{pq}^{\uparrow \downarrow} b_p^\dagger \hat{a}_q + z_{pq}^{\downarrow \uparrow} \hat{a}_p^\dagger b_q + z_{pq}^{\downarrow \downarrow} \hat{a}_p^\dagger \hat{a}_q - \hat{b}_p^\dagger \hat{b}_q \]

(9.278)

Here \(\hat{a}_p^\dagger \) and \(\hat{b}_p^\dagger \) stand for creation of \(\alpha \) and \(\beta \) electrons respectively; \(\hat{a}_p \) and \(\hat{b}_p \) represent the corresponding annihilation operators. The matrix elements \(z_{pq}^{\uparrow \uparrow} = z_{pq}^x - iz_{pq}^y \), \(z_{pq}^{\uparrow \downarrow} = z_{pq}^x + iz_{pq}^y \), and \(z_{pq}^{\downarrow \downarrow} = z_{pq}^z \) (upper \(x, y, z \) indices denote the Cartesian components) are constructed from the matrix elements described in section 9.29.3.3.

The SSC Hamiltonian reads:

\[\hat{H}_{\text{SSC}} = -\frac{3g_e^2}{8} \sum_{i \neq j} \sum_{m=0, \pm 1, \pm 2} \frac{(-1)^m}{r_{ij}^3} \left[r_{ij} \times r_{ij} \right]_{-m}^{(2)} |S(i) \times S(j)|_{-m}^{(2)} \]

(9.279)

For matrix elements between states of the same multiplicity it can be simplified to

\[\langle aSM | \hat{H}_{\text{SSC}} | a'S'M' \rangle = \sqrt{(S+1)(2S+3)} \sqrt{S(2S-1)} \sum_{m} (-1)^m \binom{S'}{M'} \binom{2}{m} \sum_{pqrs} D_{pqrs}^{(m)} \langle aSS | Q_{pqrs}^{(0)} | a'SS \rangle \]

(9.280)

Here

\[Q_{pqrs}^{(0)} = \frac{1}{4\sqrt{6}} \left\{ E_{pq} \delta_{sr} - S_{ps}^z S_{rq}^z + \frac{1}{2} \left(S_{ps}^z S_{rq}^z - E_{pq} E_{rs} \right) \right\} \]

(9.281)

represents the two-electron quintet density. The operators \(E_{pq} = \hat{a}_p^\dagger \hat{a}_q + \hat{b}_p^\dagger \hat{b}_q \) and \(S_{pq}^z = \hat{a}_p^\dagger \hat{a}_q - \hat{b}_p^\dagger \hat{b}_q \) symbolize here the one-electron density operator and the spin density operator accordingly. The spatial part

\[D_{pqrs}^{(0)} = \frac{1}{\sqrt{6}} \int \int \varphi_p (r_1) \varphi_r (r_2) \varphi_q (r_1) \varphi_s (r_2) \frac{3r_1 r_2 - r_1^2 r_2}{r_{12}^3} dr_1 dr_2 \]

(9.282)

denotes the two-electron field gradient integrals. These two-electron integrals can be evaluated using the RI approximation.

Finally, the Zeeman Hamiltonian is included in the form of:

\[\hat{H}_Z = \mu_B \left(\hat{L} + g_e \hat{S} \right) B \]

(9.283)

with \(\hat{L} \) representing the total orbital momentum operator, and \(\hat{S} \) being the total spin operator.

Since the both the energies and the wavefunction of the low-lying spin-orbit states are available, the effective Hamiltonian theory can be used to extract EPR parameters such as the full G and/or ZFS tensors. In this approach one starts by constructing a model Hamiltonian, which for the mononuclear complexes is:

\[\hat{H}_{\text{mod}} = \hat{S} \hat{D} \hat{S} \]

(9.284)
provided that the ground state is non-degenerate. By applying this Hamiltonian on the basis of the model space, i.e. the \(|S, M_S\rangle\) components of the ground state, the interaction matrix is constructed.

The construction of effective Hamiltonian relies on the information contained in both the energies and the wavefunctions of the low-lying spin-orbit states. Following des Cloizeaux formalism, the effective Hamiltonian reproduces the energy levels of the “exact” Hamiltonian \(E_k\) and the wavefunctions of the low-lying states projected onto the model space \(\tilde{\Psi}\):

\[
\hat{H}_{\text{eff}} |\tilde{\Psi}_k\rangle = E_k |\tilde{\Psi}_k\rangle
\]

(9.285)

These projected vectors are then symmetrically orthonormalized resulting in an Hermitian effective Hamiltonian, which can be written as:

\[
\hat{H}_{\text{eff}} |\tilde{\Psi}\rangle = \sum_k |S^{-\frac{1}{2}}\tilde{\Psi}_k\rangle E_k (S^{-\frac{1}{2}}\tilde{\Psi}_k|\rangle
\]

(9.286)

The effective interaction matrix obtained by expanding this Hamiltonian into the basis of determinants belonging to the model space, is the compared to the matrix resulted from expanding the model Hamiltonian. Based on a singular value decomposition procedure, all 9 elements of the G and/or ZFS tensors are extracted.

In the input file the relevant keys are located in the soc sub-block:

```%
mrci
soc
  DoSOC true  # include the SOC contribution
  DoSSC true  # include the SSC contribution
  PrintLevel 2 # printing level
  TPrint 0.01 # threshold for printing eigenvalue contributions
end
end
```

Firstly, the SSC contribution to ZFS is calculated. The output file for a CASCI calculation on top of a CASSCF(8,6) reference of an oxygen molecule with def2-SVP basis set and four singlets and four triplet states included into the QDPT treatment is presented as follows:

```
---------------------
SSC MATRIX GENERATION
---------------------

Blocks order: 1 0
Ground state mult 3
Ground state block 1
Ground state root 0

Calculated reduced SSC matrix elements
```
Next, the SSC matrix is constructed from the precalculated matrix elements and subjected to diagonalization. The full SSC matrix is available with the PrintLevel key set to 3. Then, the SSC energy levels are printed in \(\text{cm}^{-1} \) and eV along with the Boltzmann level populations.

Additionally, the eigenvectors of the SSC matrix are printed if the PrintLevel key is set to 2:
The SSC coupled states are counted here from the lowest one, and the energy of a state is printed in cm$^{-1}$. The “Weight” column represents here squared absolute values of the complex contribution coefficients of the BO Hamiltonian states to the SSC coupled states. “Real” and “Image” are real and imaginary parts of complex coefficients. Accordingly, “Root”, “Spin”, and “Ms” denote here the spin quantum number and the spin projection number of a particular contribution. The column “Block” represent the symmetry block number. Note that the program re-aranges blocks from the order given in the input file.

Next, the SSC contribution to the ZFS obtained with first-order perturbation theory is printed along with the D values and the E/D ratio.

Here the eigenvalues are printed in the increasing order, and the column under the eigenvalue represents the eigenvector belonging to this eigenvalue. The axes for the coordinate system that diagonalizes the D tensor are chosen to fulfill the condition

$$0 \leq E/D \leq \frac{1}{3} \quad (9.287)$$

Next, the SOC part to the splitting is calculated. Firstly, the diagonal (with respect to the spin) matrix element type of $\langle \Psi_I | \sum_{pq} z_{pq}^x S_{pq}^z | \Psi_J \rangle$, $\langle \Psi_I | \sum_{pq} z_{pq}^y S_{pq}^z | \Psi_J \rangle$, $\langle \Psi_I | \sum_{pq} z_{pq}^z S_{pq}^z | \Psi_J \rangle$ are evaluated between states.
9.24 The Multireference Correlation Module

of the same multiplicity and \(\langle \Psi_I | \sum_{pq} z_{pq} S_{pq}^+ | \Psi_J \rangle \), \(\langle \Psi_I | \sum_{pq} z_{pq}^y S_{pq}^+ | \Psi_J \rangle \), \(\langle \Psi_I | \sum_{pq} z_{pq}^z S_{pq}^+ | \Psi_J \rangle \) between states of different multiplicities.

Calculated reduced SOC matrix elements

| BLOCKI(Mult) | BLOCKJ(Mult) | Root I | Root J | \(<I|L_x S |J> \) | \(<I|L_y S |J> \) | \(<I|L_z S |J> \) |
|--------------|--------------|--------|--------|---------------|---------------|---------------|
| 0 (3) | 0 (3) | 0 | 0 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 0 (3) | 1 | 0 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 0 (3) | 1 | 1 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 0 (3) | 2 | 0 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 0 (3) | 2 | 1 | -0.00 | 0.00 | -289.98 |
| 0 (3) | 0 (3) | 2 | 2 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 0 (3) | 3 | 0 | 0.00 | -0.00 | 0.00 |
| 0 (3) | 0 (3) | 3 | 1 | 0.00 | -0.00 | 0.00 |
| 0 (3) | 0 (3) | 3 | 2 | 0.00 | -0.00 | 0.00 |
| 0 (3) | 0 (3) | 3 | 3 | 0.00 | -0.00 | 0.00 |
| 0 (3) | 1 (1) | 0 | 0 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 1 (1) | 0 | 1 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 1 (1) | 0 | 2 | -0.00 | 0.00 | -225.16 |
| 0 (3) | 1 (1) | 0 | 3 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 1 | 0 | -0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 1 | 1 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 1 | 2 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 1 | 3 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 2 | 0 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 2 | 1 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 2 | 2 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 2 | 3 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 3 | 0 | 0.00 | 0.00 | 0.00 |
| 0 (3) | 1 (1) | 3 | 1 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 1 (1) | 3 | 2 | -0.00 | 0.00 | -0.00 |
| 0 (3) | 1 (1) | 3 | 3 | 0.00 | 0.00 | 205.22 |

The full SOC matrix elements can be printed if the PrintLevel key is set to 3. Similar to the SSC contribution, the SOC energies are printed next.

<table>
<thead>
<tr>
<th>Energy levels (cm^-1,eV) :</th>
<th>Boltzmann populations for T = :</th>
<th>300.000 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : 0.0000 0.0000 3.35e-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 : 1.905 0.0002 3.32e-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 : 1.905 0.0002 3.32e-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 : 7139.930 0.8841 4.71e-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 : 7131.465 0.8842 4.70e-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 : 13308.646 1.6581 6.39e-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 : 46856.467 5.8095 8.53e-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 : 48646.630 6.9314 1.59e-102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 : 48646.630 6.9314 1.59e-102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 : 48791.619 6.0494 7.95e-103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 : 48791.619 6.0494 7.95e-103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 : 48936.608 6.0674 3.97e-103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 : 48936.608 6.0674 3.97e-103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 : 49948.972 6.1929 3.09e-105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 : 49948.972 6.1929 3.09e-105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 : 49955.781 6.1937 2.99e-105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The eigenvectors of the SOC matrix are provided along with contributions from roots S, and M_z.

Eigenvectors:

The threshold for printing is 0.010000

<table>
<thead>
<tr>
<th>Weight</th>
<th>Real</th>
<th>Image</th>
<th>Block</th>
<th>Root</th>
<th>Spin</th>
<th>Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE 0:</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.999857</td>
<td>-0.000000</td>
<td>-0.999928</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STATE 1:</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.464214</td>
<td>-0.228955</td>
<td>0.641711</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.535786</td>
<td>0.154270</td>
<td>-0.715533</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STATE 2:</td>
<td>1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.535786</td>
<td>0.739198</td>
<td>0.058967</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.464214</td>
<td>0.680079</td>
<td>-0.041312</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STATE 3:</td>
<td>7130.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000000</td>
<td>1.000000</td>
<td>-0.000000</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATE 4:</td>
<td>7131.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000000</td>
<td>-1.000000</td>
<td>0.000000</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Next, the SOC contribution to the ZFS obtained with second-order perturbation theory is printed along with the D values and the E/D ratio.

<table>
<thead>
<tr>
<th>ZERO-FIELD SPLITTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SPIN-ORBIT COUPLING CONTRIBUTION)</td>
</tr>
</tbody>
</table>

raw-matrix (cm$^{-1}$):

\[
\begin{pmatrix}
0.000000 & -0.000000 & -0.000000 \\
-0.000000 & 0.000000 & 0.000000 \\
-0.000000 & 0.000000 & 1.905043 \\
\end{pmatrix}
\]

diagonalized D-tensor (cm$^{-1}$):

\[
\begin{pmatrix}
0.000000 & 0.000000 & 1.905043 \\
0.889614 & 0.456713 & -0.000000 \\
-0.456713 & 0.889614 & 0.000000 \\
0.000000 & 0.000000 & 1.000000 \\
\end{pmatrix}
\]

Direction X=1 Y=0 Z=2
D = 1.905043 cm$^{-1}$
E/D = 0.000000

Independent state contribution to the ZFS is printed if **PrintLevel** is set to 3.
Individual contributions to D tensor:

<table>
<thead>
<tr>
<th>block</th>
<th>Mult</th>
<th>root</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 3</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0 3</td>
<td>1</td>
<td>-0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0 3</td>
<td>2</td>
<td>-0.000</td>
<td>-0.000</td>
<td></td>
</tr>
<tr>
<td>0 3</td>
<td>3</td>
<td>-0.000</td>
<td>-0.000</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
<td>1.905</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>2</td>
<td>1.905</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

From this example is readily seen that the whole contribution to the SOC part of D-value comes from the interaction between the ground state and the singlet third root.

The ZFS tensor based on the effective Hamiltonian theory is printed next.

```
raw-matrix (cm^-1):
-0.000000  0.000000  0.000000
 0.000000  0.000000 -0.000000
-0.000000 -0.000000  1.904771
diagonalized D-tensor (cm^-1):
-0.000000  0.000000  1.904771
 0.756590 -0.653889 -0.000000
-0.653889 -0.756590 -0.000000
 0.000000 -0.000000  1.000000
Direction X=1 Y=0 Z=2
D =  1.904771 cm^-1
E/D = 0.000000
```

Finally, all these steps described above are repeated for the combined SOC and SSC matrix.

The diagonal matrix elements of the SOC and SSC matrix which correspond to non-relativistic energies can be replaced by more accurate values. In the output of the program the corresponding transition energies printed in cm⁻¹.

```
# In case that you want to run QDPT-SOC calculation with manually adjusted diagonal energies you can copy the following part into #the %mrci soc block
#and modify it as needed(energies are given in #wavenumbers relative to the lowest state)
# NOTE: It is YOUR responsibility to make sure that the CAS-CI state #that you may want to dress with these energies correlate properly
```
Detailed Documentation

The order of states or even the identity of states may change with and without inclusion of dynamic correlation. In the case that dynamic correlation strongly mixes different CAS-CI states, there may not even be a proper correlation!

Those transition energies can be substituted by more accurate energies provided in the input file as follows:

```plaintext
%soc
dosoc true
dosscc true

EDiag[ 0] 0.00 # root 0 of block 0
EDiag[ 1] 48328.40 # root 1 of block 0
EDiag[ 2] 48328.40 # root 2 of block 0
EDiag[ 3] 49334.96 # root 3 of block 0
EDiag[ 4] 7763.59 # root 0 of block 1
EDiag[ 5] 7763.59 # root 1 of block 1
EDiag[ 6] 11898.46 # root 2 of block 1
EDiag[ 7] 46754.23 # root 3 of block 1
end
```

Accurate diagonal energies generally improve the accuracy of the SOC and SSC splittings.

9.24.2.2 Local Zero-Field Splitting

The submodule can also be used to calculate the local ZFS splitting parameters of atomic centers. The method, referred to as local complete active space configuration interaction (L-CASCI), can be used to separate into atomic contributions the SOC part of the total ZFS tensor. The rational behind it and additional details are described in the original publication [387]; below are listed only the steps required to reproduce the calculation for the dimer complex presented there.

1. The first step consists in obtaining the molecular orbitals that are going to be used in the configuration interaction (CI) procedure. A good set of orbitals can be obtained from a restricted open-shell spin-averaged Hartree-Fock (SAHF) calculation. The relevant part of the input is listed below:

```plaintext
! def2-tzvp keepfock

% scf
  hftyp rohf
```
For the present Mn(II)Mn(III) dimer there are a total of 9 electrons distributed into 10 d-orbitals.

2. Next, the molecular orbitals are localized using one of the implemented localization schemes. Below is the orca_loc input used in this case:

3. Following this, the localized orbitals are made locally canonical by block diagonalizing the Fock matrix using the orca_blockf utility.

4. The recanonicalized orbitals stored in the sahf.loc file can be then used to calculate the SOC contribution to the local ZFS of the Mn(III) center using the following MRCI input:
solver diis
soc
intmode ritrafo
dosoc true
end
newblock 10 *
nroots 5
excitations none
refs
Mn(II) Mn(III)
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 0 1 1
end
newblock 8 *
nroots 45
excitations none
refs
Mn(II) Mn(III)
1 1 1 1 1 2 1 1 0 0
1 1 1 1 1 2 1 0 1 0
1 1 1 1 1 2 1 0 0 1
1 1 1 1 1 2 0 1 1 0
1 1 1 1 1 2 0 1 0 1
1 1 1 1 1 2 0 0 1 1
1 1 1 1 1 1 2 1 0 0
1 1 1 1 1 1 2 0 1 0
1 1 1 1 1 1 2 0 0 1
1 1 1 1 1 1 1 2 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0 2
1 1 1 1 1 1 0 2 1 0
1 1 1 1 1 1 0 2 0 1
1 1 1 1 1 1 0 1 2 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 0 2
1 1 1 1 1 1 0 0 2 1
1 1 1 1 1 0 2 1 0
1 1 1 1 1 1 0 2 0 1
1 1 1 1 1 1 0 1 2 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 0 2
1 1 1 1 1 1 0 0 2 1
1 1 1 1 1 1 0 0 1 2
1 1 1 1 1 0 2 1 1 0
5. The three second order ZFS components printed at the end of the calculation (Second order D-tensor: component 0, etc.) are scaled using the S value for the complex, which in this case is 4.5 (9 electrons \times 0.5). In order to obtain the correct local value of the ZFS, the three matrices have to be rescaled using the S value for Mn(III), which is to 2. Note that the three matrices have different scaling prefactors, and the dependence on S is not the same:

$$D_{SOC}^{(0)} \propto \frac{1}{S^2}$$
$$D_{SOC}^{(-1)} \propto \frac{1}{S(2S-1)}$$
$$D_{SOC}^{(+1)} \propto \frac{1}{(S+1)(2S+1)}$$

These equations can be used to calculate the required prefactors. For example in the case of the $SOC-(0)$ the prefactor is equal to:

$$D_{Mn(III)}^{SOC-(0)} = \frac{4.5^2}{2} \cdot D_{dimer}^{SOC-(0)} = 5.0625 \cdot D_{dimer}^{SOC-(0)}$$

The final step is to scale the two remaining matrices using the appropriate prefactors, sum all three of them up, diagonalize the resulting matrix, and use its eigenvalues to calculate the D and E parameters. These represent the local ZFS parameters of the Mn(III) center.

9.24.2.3 g-Tensor

The orca_mrci program contains an option to calculate g-tensors using MRCI wavefunctions. For a system with an odd number of electrons, the doubly degenerate eigenvalues obtained from the QDPT procedure represent Kramers pairs and used to build the matrix elements of the total spin operator and the total angular momentum operator from the Zeeman Hamiltonian. Denoting Ψ as a solution and $\bar{\Psi}$ as its Kramers partner and using matrix element notations

$$\Phi^k_{11} = \langle \Psi | \hat{L}_k + g_e \hat{S}_k | \Psi \rangle, \; \Phi^k_{12} = \langle \Psi | \hat{L}_k + g_e \hat{S}_k | \bar{\Psi} \rangle, \; k = x, y, z$$

(9.288)
The elements of g-matrix are obtained as:

\[g_{kz} = 2c\Phi_{11}^k, \quad g_{ky} = -2c\Im(\Phi_{12}^k), \quad g_{kx} = 2c\Re(\Phi_{12}^k) \]

(9.289)

Then, the true tensor \(G \) is built from g-matrices:

\[G = gg^T \]

(9.290)

\(G \) is subjected further to diagonalization yielding positive eigenvalues, the square roots of which give the principal values of g-matrix.

\[g_{xx} = \sqrt{G_{xx}}, \quad g_{yy} = \sqrt{G_{yy}}, \quad g_{zz} = \sqrt{G_{zz}} \]

(9.291)

A typical mrci block of the input file for a g-tensor calculation should (e.g. for a S=3/2 problem) look as the following:

```
%mrcri  ewin -4,1000
  citype mrci
  cimode direct2
  intmode fulltrafo
  solver diis
  etol 1e-8
  rtol 1e-8
  tsel 1e-6
  tpre 1e-5
  soc
  PrintLevel 2
  GTensor true # make g-tensor calculations
  NDoubGTensor 2 # number of Kramers doublets to account
  # for every pair a separate
  # calculation is performed
end
newblock 4 *
  excitations cisd
  nroots 10
  refs cas(7,5) end
end
```

The result for the first Kramers pair is printed as follows:
Here for the L and S matrix elements indices 1 and 2 are assumed to denote Kramers partners, and three numbers in the first row stand for x, y, z contributions.

In addition the g-tensor is calculated within the Effective Hamiltonian formalism.
Detailed Documentation

The g-factors are square roots of the eigenvalues of \(g^T g \)

Orientations are the eigenvectors of \(g^T g \)

Finally and only within the MRCI module the g-tensor is evaluated by using the Sum Over States formalism [388]:

SUM OVER STATES CALCULATION OF THE SPIN HAMILTONIAN (for \(g \) and HFC tensors)

<table>
<thead>
<tr>
<th>State</th>
<th>DE</th>
<th>LX</th>
<th>LY</th>
<th>LZ</th>
<th>SOX</th>
<th>SOY</th>
<th>SOZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1349.3</td>
<td>-0.006</td>
<td>-0.004</td>
<td>0.126</td>
<td>-23.45</td>
<td>7.96</td>
<td>-974.31</td>
</tr>
<tr>
<td>1</td>
<td>13826.2</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>337.03</td>
<td>351.15</td>
<td>-10.98</td>
</tr>
<tr>
<td>2</td>
<td>13615.1</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>354.23</td>
<td>332.23</td>
<td>-5.73</td>
</tr>
<tr>
<td>3</td>
<td>56686.3</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>356.23</td>
<td>337.23</td>
<td>-5.73</td>
</tr>
<tr>
<td>4</td>
<td>56954.2</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>356.23</td>
<td>337.23</td>
<td>-5.73</td>
</tr>
<tr>
<td>5</td>
<td>56994.0</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>356.23</td>
<td>337.23</td>
<td>-5.73</td>
</tr>
<tr>
<td>6</td>
<td>63371.5</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>354.23</td>
<td>332.23</td>
<td>-5.73</td>
</tr>
<tr>
<td>7</td>
<td>64176.0</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>356.23</td>
<td>337.23</td>
<td>-5.73</td>
</tr>
<tr>
<td>8</td>
<td>74309.9</td>
<td>-0.015</td>
<td>-0.007</td>
<td>0.003</td>
<td>354.23</td>
<td>332.23</td>
<td>-5.73</td>
</tr>
</tbody>
</table>

ELECTRONIC G-MATRIX

raw-matrix:
Note that within the SOS formalism in addition to the second order (SOC) contributions the bilinear to the field terms: Relativistic mass correction and diamagnetic spin-orbit term (Gauge) are evaluated. As can be seen these corrections are rather negligible in comparison to the second order SOC contributions and most of the time can be safely omitted. Moreover further insight is obtained by printing the individual contribution of each excited state to the g-tensor. In the example above the first excited state contributes to the g_z component while the next two to both the g_x and g_y components, respectively.

So to summarize the g-tensor calculations in the framework of wavefunction based methods like MRCI and/or CASSCF can be evaluated:
via the QDPT approach within an individual Kramers doublet. This is valid analysis only for non-integer spin cases. In particular for systems with well isolated Kramers doublets where the EPR spectrum originates only from one Kramers doublet defined within the pseudo spin 1/2 formalism. This analysis has been proven useful in determining the sign of the ZFS and the electronic structure of the system under investigation. [389]

within the effective Hamiltonian approach. This is a valid analysis for all spin cases as it provides the principal g-values of the system under investigation evaluated in the molecular axis frame. These g-values can be directly compared with the experimentally determined ones. [390]

within the sum over states formalism (SOS). As above this analysis is valid for all spin cases and is only available via the MRCI module.

9.24.2.4 Magnetization and Magnetic Susceptibility

The MRCI and CASSCF modules of ORCA allow for the calculation of magnetization and magnetic susceptibility curves at different fields and temperatures by differentiation of the QDPT Hamiltonian with respect to the magnetic field. For magnetic susceptibility, calculations are performed in two ways when a static field different from zero is defined: (i) as the second derivative of energy with respect to the magnetic field and (ii) as the magnetization divided by the magnetic field. Although the first method corresponds to the definition of magnetic susceptibility, the second approach is widely used in the experimental determination of χT curves. If the static field is low, both formulas tend to provide similar values.

The full list of keywords is presented below.

```%
mrci
citype mrci
newblock 3 *
excitations none
refs cas(2,7) end
end
soc
dosoc true
domagnetization true # Calculate magnetization (def: false)
dosusceptibility true # Calculate susceptibility (def: false)
LebedevPrec 5 # Precision of the grid for different field # directions (meaningful values range from 1 # (smallest) to 10 (largest))
nPointsFStep 5 # number of steps for numerical differentiation # (def: 5, meaningful values are 3, 5 7 and 9)
MAGFieldStep 100.0 # Size of field step for numerical differentiation # (def: 100 Gauss)
MAGTemperatureMIN 4.0 # minimum temperature (K) for magnetization
MAGTemperatureMAX 4.0 # maximum temperature (K) for magnetization
MAGTemperatureNPoints 1 # number of temperature points for magnetization
```
The same keywords apply for CASSCF calculations in rel block (instead of soc in MRCI). Although different aspects of integration and grid precision can be modified through keywords, default values should provide an accurate description of both properties. Calculated magnetization and susceptibility are printed in .sus and .mag files, respectively and also in the output file.

MAGFieldMIN	0.0	# minimum field (Gauss) for magnetization
MAGFieldMAX	70000.0	# maximum field (Gauss) for magnetization
MAGNpoints	15	# number of field points for magnetization
SUSTempMIN	1.0	# minimum temperature (K) for susceptibility
SUSTempMAX	300.0	# maximum temperature (K) for susceptibility
SUSNPoints	300	# number of temperature points for susceptibility
SUSStatFieldMIN	0.0	# minimum static field (Gauss) for susceptibility
SUSStatFieldMAX	0.0	# maximum static field (Gauss) for susceptibility
SUSStatFieldNPoints	1	# number of static fields for susceptibility

FIELD DEPENDENT MAGNETIZATION AND MEAN SUSCEPTIBILITY (chi=M/B)

<table>
<thead>
<tr>
<th>TEMPERATURE (K)</th>
<th>M. FIELD (Gauss)</th>
<th>MAGNETIZATION (B.M.)</th>
<th>chiT (cm³K/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00</td>
<td>0.00</td>
<td>0.000000</td>
<td>inf</td>
</tr>
<tr>
<td>4.00</td>
<td>5000.00</td>
<td>0.359759</td>
<td>1.567189</td>
</tr>
<tr>
<td>4.00</td>
<td>10000.00</td>
<td>0.688804</td>
<td>1.538788</td>
</tr>
<tr>
<td>4.00</td>
<td>15000.00</td>
<td>1.093466</td>
<td>1.494496</td>
</tr>
<tr>
<td>4.00</td>
<td>20000.00</td>
<td>1.287480</td>
<td>1.438115</td>
</tr>
<tr>
<td>4.00</td>
<td>25000.00</td>
<td>1.537346</td>
<td>1.373773</td>
</tr>
<tr>
<td>4.00</td>
<td>30000.00</td>
<td>1.752841</td>
<td>1.305282</td>
</tr>
<tr>
<td>4.00</td>
<td>35000.00</td>
<td>1.936067</td>
<td>1.235764</td>
</tr>
<tr>
<td>4.00</td>
<td>40000.00</td>
<td>2.099650</td>
<td>1.167516</td>
</tr>
<tr>
<td>4.00</td>
<td>45000.00</td>
<td>2.219920</td>
<td>1.102067</td>
</tr>
<tr>
<td>4.00</td>
<td>50000.00</td>
<td>2.328368</td>
<td>1.046815</td>
</tr>
<tr>
<td>4.00</td>
<td>55000.00</td>
<td>2.419335</td>
<td>0.982690</td>
</tr>
<tr>
<td>4.00</td>
<td>60000.00</td>
<td>2.495883</td>
<td>0.929301</td>
</tr>
<tr>
<td>4.00</td>
<td>65000.00</td>
<td>2.560582</td>
<td>0.880952</td>
</tr>
<tr>
<td>4.00</td>
<td>70000.00</td>
<td>2.615538</td>
<td>0.834730</td>
</tr>
</tbody>
</table>

TEMPERATURE DEPENDENT MAGNETIC SUSCEPTIBILITY

<table>
<thead>
<tr>
<th>STATIC FIELD (Gauss)</th>
<th>TEMPERATURE (K)</th>
<th>M/B</th>
<th>chiT (cm³K/mol)</th>
<th>dE/dB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
<td>----</td>
<td>1.576836</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>2.00</td>
<td>----</td>
<td>1.576910</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>3.00</td>
<td>----</td>
<td>1.576951</td>
<td></td>
</tr>
</tbody>
</table>
9.24.2.5 MCD and Absorption Spectra

The MRCI module of the ORCA program allows calculating MCD spectra and the SOC effects on absorption spectra. The formalism is described in detail by Ganyushin and Neese [391]. The approach is based on the direct calculation of the transition energies and transition probabilities between the magnetic levels. Namely, the differential absorption of LCP- and RCP photons for transitions from a manifold of initial states A to a manifold of final states J. Using Fermi’s golden rule, the Franck-Condon approximation, assuming a pure electronic dipole mechanism and accounting for the Boltzmann populations of the energy levels, the basic equation of MCD spectroscopy may be written as (atomic units are used throughout):

$$\frac{\Delta \varepsilon}{E} = \gamma \sum_{a,j} (N_a - N_j) \left(|\langle \Psi_a | m_{\text{LCP}} | \Psi_j \rangle|^2 - |\langle \Psi_a | m_{\text{RCP}} | \Psi_j \rangle|^2 \right) f \left(E \right)$$

(9.292)

Here a and j label members of the initial and state manifold probed in the experiments.

$$N_a (B, T) = \frac{\exp \left(-E_a / kT \right)}{\sum_i \exp \left(-E_i / kT \right)}$$

(9.293)

denotes the Boltzmann population and if the a-th ground state sublevel at energy E_a, $f \left(E \right)$ stands for a line shape function, and γ denotes a collection of constants. The electric dipole operators are given by:

$$m_{\text{LCP}} \equiv m_x - im_y$$

(9.294)

$$m_{\text{RCP}} \equiv m_x + im_y$$

(9.295)
They represent linear combinations of the dipole moment operator:

\[
\vec{m} = \sum_{N} Z_N \vec{R}_N - \sum_{i} \vec{r}_i
\]

(9.296)

where \(N \) and \(i \) denotes summations of nuclei (at positions \(\vec{R}_N \) with charges \(Z_N \)) and electrons (at positions \(\vec{r}_i \)) respectively. The calculated transition dipole moment are subjected to the space averaging over the Euler angles which is performed by a simple summation over three angular grids.

\[
\left(\frac{\Delta \varepsilon}{E} \right)_{eV} = \frac{1}{8\pi^2} \int_{\psi=0}^{2\pi} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \left(\frac{\Delta \varepsilon}{E} \right) \sin \theta d\theta d\phi d\psi \approx \sum_{\mu \eta \tau} \left(\frac{\Delta \varepsilon}{E} \right)_\mu \eta \tau \sin \theta \tau
\]

(9.297)

Finally, every transition is approximated by a Gaussian curve with a definite Gaussian shape width parameter. Hence, the final calculated MCD spectrum arises from the superposition of these curves.

As an illustration, consider calculation of a classical example of MCD spectrum of \([\text{Fe(CN)}_6]^{3-}\). The mrci block of the input file is presented below.

```plaintext
%mrci  ewin -4,10000
   citype mrddci2
   intmode ritrafo
   Tsel  1e-6
   Tpre  1e-5
   etol  1e-8
   rtol  1e-8
   cimode direct2
   maxmemint 300
   solver diis
   davidsonopt 0
   nguessmat 150
   MaxIter 50
   LevelShift 0.5
   PrintLevel 3
   soc
   printlevel 3
   mcd true  # perform the MCD calculation
   NInitStates 24  # number of SOC and SSC state to account
   # Starts from the lowest state
   NPointsTheta 10  # number of integration point for
   NPointsPhi 10  # Euler angles
   NPointsPsi 10  #
   B 43500  # experimental magnetic field strength
   # in Gauss
   Temperature 299.0  # experimental temperature (in K)
```
The parameters B and Temperature can be assigned in pairs, i.e. \(B = 1000, 2000, 3000 \ldots \), \(\text{Temperature} = 4, 10, 300 \ldots \). The program calculates the MCD and absorption spectra for every pair. Now for every point of the integration grid the program prints out the Euler angles, the orientation of the magnetic field in the coordinate system of a molecule, and the energy levels.

\[
\begin{align*}
\text{Psi} &= 36.000 \quad \text{Phi} = 72.000 \quad \text{Theta} = 20.000 \\
Bx &= 8745.0 \quad By = 12036.5 \quad Bz = 40876.6
\end{align*}
\]

| Energy levels (cm\(^{-1}\),eV): Boltzmann populations for \(T = 299.000 \) K |
|-------------|---------|----------|
| 0 | 0.000 | 0.0000 | 4.53e-01 |
| 1 | 3.943 | 0.0005 | 4.45e-01 |
| 2 | 454.228 | 0.0563 | 5.09e-02 |
| 3 | 454.745 | 0.0564 | 5.08e-02 |
| 4 | 1592.142 | 0.1974 | 2.13e-04 |
| 5 | 1595.272 | 0.1978 | 2.10e-04 |
| 6 | 25956.363 | 3.2182 | 2.59e-05 |
| 7 | 25958.427 | 3.2184 | 2.56e-05 |
| 8 | 25985.656 | 3.2218 | 2.25e-05 |
| 9 | 25987.277 | 3.2220 | 2.23e-05 |
| 10 | 26070.268 | 3.2323 | 1.49e-05 |
| 11 | 26071.484 | 3.2325 | 1.49e-05 |
| 12 | 31976.645 | 3.9646 | 6.78e-06 |
| 13 | 31979.948 | 3.9650 | 6.67e-06 |
| 14 | 32018.008 | 3.9697 | 5.56e-06 |
| 15 | 32021.074 | 3.9701 | 5.48e-06 |
| 16 | 32153.427 | 3.9865 | 2.90e-06 |
| 17 | 32157.233 | 3.9870 | 2.84e-06 |
| 18 | 42299.325 | 5.2444 | 1.81e-09 |
| 19 | 42303.461 | 5.2450 | 1.78e-09 |
| 20 | 42346.521 | 5.2503 | 1.45e-09 |
| 21 | 42348.023 | 5.2505 | 1.44e-09 |
| 22 | 42456.119 | 5.2639 | 8.53e-09 |
| 23 | 42456.642 | 5.2640 | 8.51e-09 |

In the next lines, ORCA calculates the strength of LCP and RCP transitions and prints the transition energies,
9.24 The Multireference Correlation Module

The difference between LCP and RCP transitions (denoted as C), and sum of LCP and RCP transitions (denoted as D), and C by D ratio.

<table>
<thead>
<tr>
<th>dE</th>
<th>Na</th>
<th>C</th>
<th>D</th>
<th>C/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-> 1</td>
<td>3.943</td>
<td>4.53e-01</td>
<td>1.14e-13</td>
</tr>
<tr>
<td>0</td>
<td>-> 2</td>
<td>454.228</td>
<td>4.53e-01</td>
<td>5.01e-09</td>
</tr>
<tr>
<td>0</td>
<td>-> 3</td>
<td>454.745</td>
<td>4.53e-01</td>
<td>-4.65e-09</td>
</tr>
<tr>
<td>0</td>
<td>-> 4</td>
<td>1592.142</td>
<td>4.53e-01</td>
<td>-8.80e-08</td>
</tr>
<tr>
<td>0</td>
<td>-> 5</td>
<td>1595.272</td>
<td>4.53e-01</td>
<td>-2.29e-08</td>
</tr>
<tr>
<td>0</td>
<td>-> 6</td>
<td>25956.363</td>
<td>4.53e-01</td>
<td>1.22e+01</td>
</tr>
<tr>
<td>0</td>
<td>-> 7</td>
<td>25958.427</td>
<td>4.53e-01</td>
<td>3.44e+01</td>
</tr>
<tr>
<td>0</td>
<td>-> 8</td>
<td>25985.656</td>
<td>4.53e-01</td>
<td>3.83e+01</td>
</tr>
<tr>
<td>0</td>
<td>-> 9</td>
<td>25987.277</td>
<td>4.53e-01</td>
<td>-7.73e+00</td>
</tr>
<tr>
<td>0</td>
<td>->10</td>
<td>26070.268</td>
<td>4.53e-01</td>
<td>-6.11e+00</td>
</tr>
<tr>
<td>0</td>
<td>->11</td>
<td>26071.484</td>
<td>4.53e-01</td>
<td>6.17e+00</td>
</tr>
<tr>
<td>0</td>
<td>->12</td>
<td>31976.645</td>
<td>4.53e-01</td>
<td>2.45e+01</td>
</tr>
<tr>
<td>0</td>
<td>->13</td>
<td>31979.948</td>
<td>4.53e-01</td>
<td>-6.58e+01</td>
</tr>
<tr>
<td>0</td>
<td>->14</td>
<td>32018.068</td>
<td>4.53e-01</td>
<td>3.42e+01</td>
</tr>
<tr>
<td>0</td>
<td>->15</td>
<td>32021.074</td>
<td>4.53e-01</td>
<td>-6.16e+00</td>
</tr>
<tr>
<td>0</td>
<td>->16</td>
<td>32153.427</td>
<td>4.53e-01</td>
<td>-4.73e+01</td>
</tr>
<tr>
<td>0</td>
<td>->17</td>
<td>32157.233</td>
<td>4.53e-01</td>
<td>-1.02e+00</td>
</tr>
<tr>
<td>0</td>
<td>->18</td>
<td>42299.325</td>
<td>4.53e-01</td>
<td>6.47e+00</td>
</tr>
<tr>
<td>0</td>
<td>->19</td>
<td>42303.461</td>
<td>4.53e-01</td>
<td>-2.59e+00</td>
</tr>
<tr>
<td>0</td>
<td>->20</td>
<td>42346.521</td>
<td>4.53e-01</td>
<td>1.99e+01</td>
</tr>
<tr>
<td>0</td>
<td>->21</td>
<td>42348.023</td>
<td>4.53e-01</td>
<td>3.36e+00</td>
</tr>
<tr>
<td>0</td>
<td>->22</td>
<td>42456.119</td>
<td>4.53e-01</td>
<td>2.52e+00</td>
</tr>
<tr>
<td>0</td>
<td>->23</td>
<td>42456.642</td>
<td>4.53e-01</td>
<td>-2.01e+00</td>
</tr>
<tr>
<td>1</td>
<td>-> 2</td>
<td>450.285</td>
<td>4.45e-01</td>
<td>4.59e-09</td>
</tr>
<tr>
<td>1</td>
<td>-> 3</td>
<td>450.802</td>
<td>4.45e-01</td>
<td>-4.96e-09</td>
</tr>
</tbody>
</table>

All C and D values are copied additionally into the text files input.1.mcd, input.2.mcd..., for every pair of Temperature and B parameters. These files contain the energies and C and D values for every calculated transition. These files are used by the program orca_mapspc to calculate the spectra lines. The orca_mapspc program generates from the raw transitions data into spectra lines. The main parameters of the orca_mapspc program are described in section 7.18.1. A typical usage of the orca_mapspc program for MCD spectra calculation for the current example may look as the following:

```
orca_mapspc input.1.mcd MCD -x02000 -x15000 -w2000
```

Here the interval for the spectra generation is set from 20000 cm$^{-1}$ to 50000 cm$^{-1}$, and the line shape parameter is set to 2000 cm$^{-1}$.

Very often, it is desirable to assign different line width parameters to different peaks of the spectra to obtain a better fitting to experiment. orca_mapspc can read the line shape parameters from a simple text file named
as input.1.mcd.inp. This file should contain the energy intervals (in cm\(^{-1}\)) and the line shape parameters for this energy interval in the form of:

\[
\begin{align*}
20000 & \quad 35000 & \quad 1000 \\
35000 & \quad 40000 & \quad 2000 \\
40000 & \quad 50000 & \quad 1000 \\
\end{align*}
\]

This file should not be specified in the executing command; \texttt{orca_mapspc} checks for its presence automatically:

\[
\texttt{orca_mapspc input.1.mcd MCD -x020000 -x150000} \\
\text{Mode is MCD} \\
\text{Number of peaks} \quad \ldots \quad 276001 \\
\text{Start wavenumber [cm\(-1\)]} \quad \ldots \quad 20000.0 \\
\text{Stop wavenumber [cm\(-1\)]} \quad \ldots \quad 50000.0 \\
\text{Line width parameters are taken from the file: input.1.mcd.inp} \\
\text{Number of points} \quad \ldots \quad 1024
\]

Finally, the \texttt{orca_mapspc} program generates the output text file input.1.mcd.dat which contains seven columns of numbers: transition energies, intensities of MCD transitions (the MCD spectrum), intensities of absorption transitions (the absorption spectrum), the ratio between the MCD and absorption intensities, and the last three columns represent the “sticks” of the corresponding transitions.

\[
\begin{array}{cccccccc}
\text{Energy} & \text{C} & \text{D} & \text{C/D} & \text{C} & \text{D} & \text{E/D} \\
24310.8 & 0.6673 & 980.2678 & 0.0006 & 0.0000 & 0.0000 & 0.0000 \\
24340.1 & 0.8471 & 1174.3637 & 0.0007 & -0.0001 & 0.0129 & -0.0112 \\
24369.5 & 1.0664 & 1408.5788 & 0.0007 & 0.0001 & 0.0281 & 0.0033 \\
24398.8 & 1.3325 & 1690.5275 & 0.0007 & 0.0000 & 0.0000 & 0.0000 \\
24428.1 & 1.6542 & 2029.0152 & 0.0008 & 0.0000 & 0.0000 & 0.0000 \\
24457.4 & 2.0416 & 2434.1699 & 0.0008 & 0.0000 & 0.0332 & 0.0003 \\
\end{array}
\]

Now the MCD and the absorption spectra can be plotted with a suitable graphical program, for instance with the Origin program.

\section*{9.24.2.6 Addition of Magnetic Fields}

The inclusion of the Zeeman contribution into the QDPT procedure allows to obtain the splittings of the magnetic levels in an external magnetic field. The switch for this calculation and the magnetic field strength are defined in the soc subblock of the mrci block:
Then, the output contains three sets of data of splittings of the magnetic levels with the magnetic field applied parallel to x, y, and z directions:

```
%mrcri
soc
  DoSOC true      #
  DoSSC true      #
  MagneticField true  # default false
  B 1,10,100,1000  # Strength of the magnetic field in Gauss.
                  # 4000 is the default value
end
end
```

Then, the output contains three sets of data of splittings of the magnetic levels with the magnetic field applied parallel to x, y, and z directions:

```
End B (Gauss)  Energy levels (cm^-1) and populations for B || x

  1.0  -0.030  0.333  0.012  0.333  0.018  0.333
  10.0 -0.030  0.333  0.012  0.333  0.018  0.333
 100.0 -0.031  0.333  0.012  0.333  0.020  0.333
1000.0 -0.102  0.333  0.012  0.333  0.091  0.333

B (Gauss)  Energy levels (cm^-1) and populations for B || y

  1.0  -0.030  0.333  0.012  0.333  0.018  0.333
  10.0 -0.030  0.333  0.012  0.333  0.018  0.333
```

Figure 9.28: Calculated MCD and absorption spectra of \([\text{Fe(CN)}_6]^{3-}\) (dash lines) compared to experimental spectra (solid lines).
Here the number in a row represents the strength of the magnetic field (in Gauss), and the following pairs of numbers denote the energy of the magnetic level (in cm\(^{-1}\)) with its occupation number. This table can be readily plotted with any suitable graphical program.

9.24.2.7 Relativistic Picture Change in Douglas-Kroll-Hess SOC and Zeeman Operators

The DKH correction to the SOC operator is implemented in ORCA as a correction to the one-electron part of the SOMF operator. The DKH transformation is performed up to the second order, and the two-electron part in our implementation is left untransformed. However, the electronic density employed for evaluating the SOMF matrix elements is obtained from a scalar relativistic calculation. The inclusion of the DKH correction is controlled by the picturechange key in the rel block:

```
%rel method DKH
  picturechange 2
end
```

The “picturechange” key can be set to 0, 1, and 2 for no picture change, the first order, and the second order DKH transformations of the SOC operator.

With “picturechange” set to 1 or 2 the DKH correction are applied in the first order to the Zeeman operator. This correction has a visible effect on calculated g-tensors for molecules containing third-row and heavier atoms.
In analogy with single reference EOM-CC (see sections 8.6 and 9.21) and STEOM-CC (see sections 8.7 and 9.22), Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) theory [141–146] can be viewed a transform and diagonalize approach to molecular electronic structure theory. An MR-EOM calculation involves a single state-averaged CASSCF calculation, incorporating a small number of low-lying states and the solution of a single set of cluster amplitudes, which define a sequence of similarity transformed Hamiltonians. The ultimate goal of these many-body transformations is to effectively decouple the CAS configurations from important excited configurations (e.g. 2p2h, 2p1h, 1p1h, etc.) which comprise the first-order interacting space. Through the definition of suitable cluster operators, in each of the transformations, the majority of these excitations can be included in an internally-contracted fashion. Hence, the resulting final transformed Hamiltonian can be diagonalized over a small subspace of the original first-order interacting space in order to gain access to a large number of electronic states. As discussed in section 8.10, the MR-EOM implementation in ORCA therefore, makes use of the CASSCF module (to obtain the state-averaged CASSCF reference), the MDCI module for the solution of the amplitude equations and the calculation of the elements of the various similarity transformed Hamiltonians and the MRCI module for the diagonalization of the final transformed Hamiltonian. Some desirable features of this methodology are:

- Many states can be obtained through the diagonalization of a similarity transformed Hamiltonian over a compact diagonalization manifold (e.g. the final diagonalization space in MR-EOM-\[T|T^\dagger|SXD|U\] only includes the CAS configurations and 1h and 1p configurations).
- Only a single state-averaged CASSCF calculation and the solution of a single set of amplitudes is required to define the final similarity transformed Hamiltonian and the results are typically quite insensitive to the precise definition of the CAS (only a few low lying multiplets need to be included in the state-averaging).
- The MR-EOM approach is rigourously invariant to rotations of the orbitals in the inactive, active and virtual subspaces and it preserves both spin and spatial symmetry.

As the details concerning the MR-EOM methodology are rather involved, we refer the interested reader to Refs. [141–146] for a more detailed discussion. Note that the details concerning the implementation of MR-EOM in ORCA can be found in Refs. [145] and [146]. In the following discussion, we note that general spatial orbitals \(p,q,r,s\), which comprise the molecular orbital basis, are partitioned into (doubly occupied) inactive core orbitals \(i',j',k',l'\), occupied orbitals \(i,j,k,l\) (i.e. the union of the inactive core and active orbital subspaces), active orbitals \(w,x,y,z\) and virtual orbitals \(a,b,c,d\). In general, the many-body similarity transformations assume the general form

\[
\hat{G} = \{e^\bar{Y}\}^{-1} \hat{H}_2 \{e^\bar{Y}\} = g_0 + \sum_{p,q} g_{pq} \{\hat{E}^p_q\} + \sum_{p,q,r,s} g_{pqrs} \{\hat{E}^{pq}_{rs}\} + \ldots,
\]

in which \(\bar{Y}\) is a cluster operator and \(\hat{H}_2\) is the bare Hamiltonian or a similarity transformed Hamiltonian truncated up to two-body operators. The braces indicate Kutzelnigg-Mukherjee normal ordering [392,393], which is used extensively in the definition of the MR-EOM formalism. The various transformations which need to be considered in the ORCA implementation of MR-EOM are summarized in Table 9.15. The table also includes the expressions for the operator components of the various internally-contracted cluster.
operators and the residual equations that must be solved for the various amplitudes. Note that the residual equations are typically of the many-body type (i.e., obtained by setting the corresponding elements of the similarity transformed Hamiltonian to zero). The only exception is the residual equation which defines the \(t_i^a \) amplitudes, which is a projected equation of the form

\[
R_i^a = \sum_m w_m \langle \Phi_m | \tilde{E}_i^a \tilde{H} | \Phi_m \rangle.
\]

(9.299)

Here, \(| \Phi_m \rangle \) is the \(m^{th} \) state included in the state averaged CAS, with weight \(w_m \). The reason why the equation for the singles is of the projected form is that it satisfies the Brillouin theorem (i.e., the first order singles vanish for all \(i \) and \(a \)), whereas the corresponding many-body equation (\(\tilde{h}_i^a = 0 \)) does not.

Table 9.16: Details of the three MR-EOM approaches implemented in ORCA

<table>
<thead>
<tr>
<th>Method</th>
<th>Input Keyword</th>
<th>Operators</th>
<th>Diagonalization Manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR-EOM-T</td>
<td>T</td>
<td>(T^\dagger)-h-v</td>
<td>MR-EOM-T</td>
</tr>
<tr>
<td>MR-EOM-T</td>
<td>T</td>
<td>(T^\dagger)</td>
<td>SXD-h-v</td>
</tr>
<tr>
<td>MR-EOM-T</td>
<td>T</td>
<td>(T^\dagger)</td>
<td>SXD</td>
</tr>
</tbody>
</table>

Note that there are three different MR-EOM approaches which have been implemented in ORCA. Namely, the current implementation allows for MR-EOM-T|T\(T^\dagger \)-h-v, MR-EOM-T|T\(T^\dagger \)|SXD-h-v and MR-EOM-T|T\(T^\dagger \)|SXD|U-h-v calculations. At this point it is useful to discuss the naming convention used for these approaches. We use a vertical line to separate each transformation involved in the sequence of transformations defining the given MR-EOM approach. For example T\(T^\dagger \)|SXD indicates that a T transformation, is followed by a T\(T^\dagger \) transformation, which is then followed by an SXD transformation. The h-v indicates that the elements of the
transformed Hamiltonian have been hermitized (h) and vertex symmetrized (v) before entering the MRCI diagonalization (see Ref. [146] for more information). Essentially, this means that the full eightfold symmetry of the two-electron integrals (and hermiticity of the one-body elements) have been enforced upon the elements of the transformed Hamiltonian. The details of the three MR-EOM approaches are summarized in Table 9.16. This table includes the keyword (in the first line of input) used to initiate the calculation in ORCA, the various operators involved and the configurations included in the final diagonalization manifold. One can clearly see that the MR-EOM-T|\hat{T}|SXD-h-v approach is the most cost effective, as it only includes the 1h and 1p configurations, beyond the CAS, in the final diagonalization manifold.

The various %mdci keywords, which are important for controlling MR-EOM calculations are (i.e. default values are given here):

<table>
<thead>
<tr>
<th>%mdci</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STol</td>
<td>1e-7</td>
<td>Convergence Tolerance on Residual Equations</td>
</tr>
<tr>
<td>MaxIter</td>
<td>100</td>
<td>Maximum Number of Iterations</td>
</tr>
<tr>
<td>DoSingularPT</td>
<td>false</td>
<td>Activate the Singular PT/Projection Procedure</td>
</tr>
<tr>
<td>SingularPTThresh</td>
<td>0.01</td>
<td>Threshold for the Singular PT/Projection Procedure</td>
</tr>
<tr>
<td>PrintOrbSelect</td>
<td>false</td>
<td>Print the Eigenvalues of the Orbital Selection densities (and R_core and R_virt values) and Terminate the Calculation</td>
</tr>
<tr>
<td>CoreThresh</td>
<td>0.0</td>
<td>Core Orbital Selection Threshold</td>
</tr>
<tr>
<td>VirtualThresh</td>
<td>1.0</td>
<td>Virtual Orbital Selection Threshold</td>
</tr>
</tbody>
</table>

As discussed below, the orbital selection scheme is activated by adding the keyword OrbitalSelection to the first line of input. Keywords that are specific to the CASSCF and MRCI modules are discussed in sections 9.11 and 9.24, respectively. We note that in MR-EOM-T|\hat{T}|SXD-h-v calculations, it is possible to override the default excitation classes in the final MRCI diagonalization. This is done by specifying excitations none and then explicitly setting the excitation flags within a given multiplicity block. For example, if we wanted to have 1h, 1p, 1h1p, 2h and 2h1p excitations in the final diagonalization manifold, we would specify (i.e. here we have requested 6 singlets and have a CAS(6,4) reference):

```%mrci
newblock 1 *
  excitations none
  Flags[is] 1
  Flags[sa] 1
  Flags[ia] 1
  Flags[ijss] 1
  Flags[ijsa] 1
  nroots 6
  refs
    cas(6,4)
end
```
9.25.1 The Steps Required to Run an MR-EOM Calculation

In order to illustrate the various steps required in a typical MR-EOM calculation, we will consider the calculation of the excitation energies of the neutral Fe atom at the MR-EOM-T\(|T^{\dagger}\)|\(|SXD|\)U-h-v level of theory.

9.25.1.1 State-Averaged CASSCF Calculation

Evidently, the first step is to determine a suitable state-averaged CASSCF reference for the subsequent MR-EOM calculation. In choosing the state-averaged CAS for an MR-EOM calculation, we typically include a few of the low-lying multiplets that have the same character as the (much larger number of) states that we wish to compute in the final MR-EOM calculation. For the neutral Fe atom, we typically have electronic states which have either \(4s^23d^6\) character or \(4s^13d^7\) character. From the NIST atomic spectra database [394, 395], we find that the lowest lying \(a^5\)D multiplet is of \(4s^23d^6\) character and the higher lying \(a^5\)F multiplet is of \(4s^13d^7\) character. Hence, we can set up a state-averaged CASSCF(8,6) calculation (i.e. 8 electrons in 6 orbitals (4s and 3d)) which includes the \(5\)D and \(5\)F states and choose the weights such that the average occupation of the 4s orbital is 1.5. As discussed in Ref. [147], this is done to avoid a preference toward either of the 4s configurations in the state-averaging. We will run the state-averaged CASSCF calculation, making use of the second order DKH (see 9.14.3) method for the inclusion of relativistic effects in a Def2-TZVPP basis (i.e. the DKH-Def2-TZVPP relativistically recontracted basis, listed in section 9.3.1). The input file for the state-averaged CASSCF(8,6) calculation takes the form:

```
!CASSCF DKH-Def2-TZVPP VeryTightSCF DKH
%casscf
  nel 8
  norb 6
  mult 5
  nroots 12
  weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
end
* xyz 0 5
  Fe 0.000000 0.000000 0.000000
end
```

Here, we have requested 12 quintet states (the lowest lying \(5\)D and \(5\)F multiplets) and we have chosen the weights to be 0.7 for the five \(5\)D states and 0.5 for the seven \(5\)F states, such that the overall occupation of the 4s orbital will be 1.5. Once the calculation has converged, it is important to inspect the results printed in the final macro-iteration of the CASSCF calculation (macro-iteration 19 in this case). In this case, we have:
9.25 Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) Theory

MACRO-ITERATION 19:
--- Inactive Energy E0 = -1249.82392501 Eh
--- All densities will be recomputed

CI-ITERATION 0:
-1271.258898198 0.000000000000 (0.00)
-1271.258898198 0.000000000000
-1271.258898198 0.000000000000
-1271.258898198 0.000000000000
-1271.258898198 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000
-1271.186289789 0.000000000000

CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -1271.222593993 Eh DE= 0.000000000
--- Energy gap subspaces: Ext-Act = 0.276 Act-Int = 2.469
--- current l-shift: Up(Ext-Act) = 0.02 Dn(Ac-Int) = 0.00
N(occ)= 1.50000 1.30000 1.30000 1.30000 1.30000 1.30000
||g|| = 0.000000404 Max(G)= -0.000000204 Rot=18.5

Directly below CI-ITERATION 0, the final CAS-CI energies are printed and one observes that they follow the correct degeneracy pattern (i.e. 5 states with energy -1271.258898198 and 7 states with energy -1271.186289789). Furthermore, the final state-averaged CASSCF energy (E(CAS)= -1271.222593993) and occupation numbers (N(occ)= 1.50000 1.30000 1.30000 1.30000 1.30000 1.30000) are also printed. As expected, the occupation number of the 4s orbital is indeed 1.5, while the 3d orbitals each have an occupation of 1.3.

9.25.1.2 Selection of the States to Include in the MR-EOM Calculation

Once a satisfactory CASSCF reference has been obtained, the next step is to determine the number of states to include in the MR-EOM calculation. From the NIST atomic spectra database, one finds that the higher lying states of 4s^23d^6 and 4s^13d^7 character are either singlets, triplets or quintets. In order to figure out how many states should be included in each multiplicity block, one can perform an inexpensive CAS-CI calculation. This is done by reading in the orbitals from the previous CASSCF calculation (here they are stored in the file CAS.gbw) and requesting a single iteration (i.e. using the NoIter keyword) of a state-averaged CASSCF calculation:

!CASSCF DKH-Def2-TZVPP ExtremeSCF DKH NoIter

!MOREAD
%moinp "CAS.gbw"
%casscf
 nel 8
Here, after some experimentation, we have chosen 15 quintets, 90 triplets and 55 singlets. It is important that we calculate states up to sufficiently high energy (i.e. all the states that are of interest) and it is absolutely imperative that we have complete multiplets. Hence, several iterations of this procedure might be required to choose the proper number of states for each multiplet. The relevant section of the output file which should be analyzed is the **SA-CASSCF TRANSITION ENERGIES**. For the above calculation, we obtain (i.e. only the CAS-CI energies for the first 33 roots are shown here):

SA-CASSCF TRANSITION ENERGIES

<table>
<thead>
<tr>
<th>STATE</th>
<th>ROOT</th>
<th>MULT</th>
<th>DE/a.u.</th>
<th>DE/eV</th>
<th>DE/cm**-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>1</td>
<td>5</td>
<td>0.000000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>2:</td>
<td>2</td>
<td>5</td>
<td>0.000000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>3:</td>
<td>3</td>
<td>5</td>
<td>0.000000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>4:</td>
<td>4</td>
<td>5</td>
<td>0.000000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>5:</td>
<td>5</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>6:</td>
<td>6</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>7:</td>
<td>7</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>8:</td>
<td>8</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>9:</td>
<td>9</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>10:</td>
<td>10</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>11:</td>
<td>11</td>
<td>5</td>
<td>0.072608</td>
<td>1.976</td>
<td>15935.7</td>
</tr>
<tr>
<td>12:</td>
<td>0</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>13:</td>
<td>1</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>14:</td>
<td>2</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>15:</td>
<td>3</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>16:</td>
<td>4</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>17:</td>
<td>5</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>18:</td>
<td>6</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>19:</td>
<td>8</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>20:</td>
<td>7</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>21:</td>
<td>9</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>22:</td>
<td>10</td>
<td>3</td>
<td>0.092859</td>
<td>2.527</td>
<td>29380.1</td>
</tr>
<tr>
<td>23:</td>
<td>11</td>
<td>3</td>
<td>0.101847</td>
<td>2.771</td>
<td>22352.7</td>
</tr>
<tr>
<td>24:</td>
<td>12</td>
<td>3</td>
<td>0.101847</td>
<td>2.771</td>
<td>22352.7</td>
</tr>
<tr>
<td>25:</td>
<td>13</td>
<td>3</td>
<td>0.101847</td>
<td>2.771</td>
<td>22352.7</td>
</tr>
<tr>
<td>26:</td>
<td>14</td>
<td>3</td>
<td>0.101847</td>
<td>2.771</td>
<td>22352.7</td>
</tr>
<tr>
<td>27:</td>
<td>15</td>
<td>3</td>
<td>0.101847</td>
<td>2.771</td>
<td>22352.7</td>
</tr>
<tr>
<td>28:</td>
<td>16</td>
<td>3</td>
<td>0.101847</td>
<td>2.771</td>
<td>22352.7</td>
</tr>
</tbody>
</table>
9.25.1.3 Running the MR-EOM Calculation

Now that we have chosen a suitable CASSCF reference and the states that we wish to calculate, we can finally proceed with the MR-EOM calculation. The following input file runs an MR-EOM-T|T^†|SXD|U-h-v calculation for 15 quintet, 90 triplet and 55 singlet states of the neutral Fe atom (i.e. the CASSCF orbitals are read from \texttt{CAS.gbw}):

```plaintext
!MR-EOM DKH-Def2-TZVPP VeryTightSCF DKH

!MOREAD
%moinp "CAS.gbw"

%method frozencore fc_ewin end

%casscf
nel 8
norb 6
mult 5
nroots 12
weights[0] = 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
end

%mdci
ewin -6, 10000
STol 1e-7
end

%mrci
ewin -6, 10000
MaxIter 200
newblock 5 *
nroots 15
refs cas(8,6) end
end
newblock 3 *
nroots 90
refs cas(8,6) end
```
Note that since the default frozen core settings exclude the 3p orbitals from the correlation treatment, we have used an energy window (i.e. the line `ewin -6, 10000` in both the `%mdci` and `%mrci` blocks) such that they are included in the current calculation. We note that a detailed discussion of the input and output of an MR-EOM calculation has already been given in section 8.10 and thus, we do not repeat it here. It is important to reiterate that one should always inspect the values of the largest (T, S and U) amplitudes. Ideally, the largest amplitudes should be smaller than 0.1 and should not exceed 0.15. If some of the amplitudes are larger than 0.15, it might be necessary to revisit the definition of the CAS and the weights used. For the T amplitudes, an alternative solution is to use the projection/singular PT scheme discussed in section 9.25.3 below.

As discussed in section 8.10, the excitation energies are printed under the heading **TRANSITION ENERGIES**. For the current calculation, we obtain the following results (only the results for 33 states are shown here):

```plaintext
The lowest energy is  -1271.833871758 Eh

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>l/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>-1</td>
<td>6</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>-1</td>
<td>7</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>-1</td>
<td>8</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>-1</td>
<td>9</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>-1</td>
<td>11</td>
<td>0</td>
<td>33.901</td>
<td>0.922</td>
<td>7440.3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>54.743</td>
<td>1.490</td>
<td>12014.7</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>54.743</td>
<td>1.490</td>
<td>12014.7</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>54.743</td>
<td>1.490</td>
<td>12014.7</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>54.743</td>
<td>1.490</td>
<td>12014.7</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td>54.743</td>
<td>1.490</td>
<td>12014.7</td>
</tr>
</tbody>
</table>
```
It is also important to recall that one should always inspect the reference weights for each state, as only states which are dominated by reference space configurations can be treated accurately at the MR-EOM level of theory. As a general rule, the reference weights should be larger (or close to) 0.9. In each multiplicity block, the individual state energies and reference weights can be found following convergence of the MRCI procedure, under the heading \textbf{CI-RESULTS} (see section 8.10 for a more detailed discussion).

\subsection*{9.25.2 Approximate Inclusion of Spin-Orbit Coupling Effects in MR-EOM Calculations}

The effects of spin-orbit coupling can approximately be included in MR-EOM calculations using the SOC submodule of the MRCI module, as outlined in section 9.24.2. This can be viewed as a first order approximation to the inclusion of spin-orbit coupling effects in MR-EOM. In a more rigorous formulation, one would have to consider the various similarity transformations of the spin-orbit coupling operator. The details of the SOC submodule of the MRCI module have already been discussed in detail in 9.24.2 and its usage within the MR-EOM formalism is identical to that discussed therein. Let us consider the calculation of spin-orbit coupling effects in the excitation spectrum of the neutral Fe atom considered in the previous section. The input file for this calculation is:

\begin{verbatim}
!MR-EOM DKH-Def2-TZVPP ExtremeSCF DKH

%method frozencore fc_ewin end

%casscf
 nel 8
 norb 6
 mult 5
 nroots 12
 weights[0] = 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
 etol 1e-12
 gtol 1e-12
\end{verbatim}
In contrast with the calculation performed in section 9.25.1, the convergence thresholds have been tightened in all aspects of the calculation (i.e. the use of the `ExtremeSCF` keyword, `etol` and `gtol` (CASSCF energy and orbital gradient convergence tolerance) are set to 1×10^{-12} and the convergence tolerance for the residuals in the MR-EOM amplitude iterations have been set to 1×10^{-12}). We note that with the use of the `ExtremeSCF` keyword, the convergence tolerance on the energy (`Etol`) and residual (`Rtol`) in the MRCI portion of the calculation are also set to 1×10^{-12}. Although it is not absolutely necessary, we have used very strict convergence thresholds in order to preserve the degeneracies of the various multiplets as much as possible.

The output of spin-orbit corrected MR-EOM spectrum appears under the heading **SPIN-ORBIT CORRECTED MRCI ABSORPTION SPECTRUM** (i.e. only the excitation energies for the first 36 states are shown here):

| States | Energy (cm$^{-1}$) | Wavelength (nm) | fosc | T2 (D*2) | |TY| |TZ| |
|--------|-------------------|-----------------|------|----------------|----|-----|-----|-----|
| 0 | 0.0 | 6262179496748.3 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 |
The first 25 values in the table above make up the \(\alpha^5D \) states with \(J \) values from \(J = L + S = 2 + 2 = 4 \) to \(J = L - S = 0 \). The states 25 to 35 constitute the \(J = 5 \) level of the \(\alpha^5F \) multiplet. Also, note that the wavelengths that are printed for the first eight states have no physical meaning (i.e. correspond to zero energy). The large values that appear in the output above should therefore, be disregarded.

It is possible to obtain more accurate results by performing an MR-EOM-T\(|T^\dagger|SX\)D-h-v calculation and including the 1h1p excitations. It is important to note that these calculations are significantly more expensive. As discussed above, to run an MR-EOM-T\(|T^\dagger|SX\)D-h-v calculation, the keyword \%mrci must appear in the first line of input and in order to activate the 1h1p excitations in each multiplicity block of the MRCI calculation, the \%mrci block takes the form:

\begin{verbatim}
%mr
ewin -6, 10000
MaxIter 200
newblock 5 *
nroots 15
\end{verbatim}
We use `excitations none` to set the default excitation flags to false and then manually set the 1h (`Flags[is]`), 1p (`Flags[sa]`), 1h1p (`Flags[ia]`) and 2h (`Flags[ijss]`) excitation flags to true.

WARNINGS

- Currently, MR-EOM-T|T'|SXD|U-h-v calculations can only be run with the default excitation classes in the final MRCI (i.e. 1h and 1p). Any other input options for the excitation flags will automatically be overwritten and set to the default values.

- Only the inclusion of spin-orbit coupling effects has been tested for MR-EOM calculations. Other features that are available in the MRCI module (e.g. spin-spin coupling, magnetic property calculations, etc.) have not been tested for use within MR-EOM calculations.
9.25.3 A Projection/Singular PT Scheme to Overcome Convergence Issues in the T Amplitude Iterations

In certain cases, there may be nearly singular T_2 amplitudes (often, but not always large in magnitude), which can cause convergence issues in the solution of the T amplitude equations. Hence, it is sometimes necessary to discard some of the amplitudes in order to remedy these convergence problems. The nearly singular T_2 amplitudes are of the form t_{wx}^{ab}, where (w, x) is a pair of active orbitals which corresponds to a small eigenvalue (pair occupation number n_{wx}) of the two-body reduced density matrix (RDM). When nearly singular amplitudes are present, it is possible to employ a singular PT/projection scheme (i.e. Scheme I described in Ref. [141]), using the two-body RDM as the metric matrix, in order to discard these nearly singular amplitudes and replace them with suitable perturbative estimates. As a first example, let’s consider the following calculation on the cyclopentadiene molecule:

```
!MR-EOM def2-SVP VeryTightSCF

% casscf
  nel 4
  norb 4
  nroots 2
  mult 3
end

% mdci
  STol 1e-7
  MaxIter 60
end

% mrci
  newblock 1 *
  nroots 3
  refs cas(4,4) end
end
  newblock 3 *
  nroots 3
  refs cas(4,4) end
end

* xyz 0 1
  H  -0.879859  0.000000  1.874608
  H   0.879859  0.000000  1.874608
  H   0.000000  2.211693  0.612518
  H   0.000000 -2.211693  0.612518
  H   0.000000  1.349811 -1.886050
  H   0.000000 -1.349811 -1.886050
  C    0.000000  0.000000  1.215652
  C    0.000000 -1.177731  0.285415
```
The T amplitude iterations do not converge after 60 iterations and show no signs of convergence (i.e. final largest residual of 0.000458135 and oscillatory behaviour over a significant portion of the iterations). If we inspect the largest T amplitudes,

\[
\begin{array}{ccc}
19-> 24 & 19-> 24 & 0.043128 \\
19-> 23 & 19-> 23 & 0.031123 \\
11-> 25 & 11-> 25 & 0.028458 \\
19-> 41 & 19-> 41 & 0.027950 \\
11-> 47 & 11-> 47 & 0.027026 \\
19-> 22 & 19-> 22 & 0.025188 \\
15-> 26 & 15-> 26 & 0.022084 \\
19-> 21 & 19-> 21 & 0.022038 \\
11-> 47 & 11-> 25 & 0.022033 \\
11-> 25 & 11-> 47 & 0.022033 \\
19-> 29 & 19-> 24 & 0.021769 \\
19-> 24 & 19-> 29 & 0.021769 \\
19-> 36 & 19-> 36 & 0.020987 \\
17-> 38 & 17-> 38 & 0.019743 \\
19-> 41 & 16-> 36 & 0.019107 \\
18-> 40 & 18-> 40 & 0.017949 \\
\end{array}
\]

one can see that there are no unusually large amplitudes. If we turn on the singular PT/projection scheme by adding the line `DoSingularPT true` to the `%mdci` block:

```
%mdci
STol 1e-7
MaxIter 60
DoSingularPT true
end
```

and rerun the calculation, we find that the T amplitude iterations now successfully converge in 23 iterations. If we look at the largest T amplitudes:

\[
\begin{array}{ccc}
11-> 25 & 11-> 25 & 0.028440 \\
11-> 47 & 11-> 47 & 0.027027 \\
15-> 26 & 15-> 26 & 0.022069 \\
11-> 47 & 11-> 25 & 0.022031 \\
\end{array}
\]
the majority of the amplitudes corresponding to the active pair \((w,x) = (19,19)\) no longer appear in the list (i.e. they are nearly singular amplitudes which have been projected out). The only one that does appear in the list, corresponds to a projected perturbative estimate (e.g. \(19\rightarrow 41\ 19\rightarrow 41\ 0.020463\)).

By default, when the singular PT/projection scheme is active, the amplitudes \(t_{ab}^{w,x}\) for which the pair occupation numbers satisfy \(n_{w,x} < 0.01\) (i.e. \textit{SingularPTThresh} =0.01), are replaced by perturbative amplitudes in the procedure. However, in some cases, it might be necessary to increase the \textit{SingularPTThresh} threshold beyond the default value in order to achieve convergence. One such example is the ferrocene molecule. Consider the following calculation:

```
!MR-EOM def2-SVP

%casscf
  nel 6
  norb 5
  mult 1,3
  nroots 5,6
end

%mdci
  DoSingularPT true
  MaxIter 50
end

%mrci
  newblock 1 *
  nroots 18
  refs cas(6,5) end
end
  newblock 3 *
  nroots 10
  refs cas(6,5) end
end
```
The T amplitude iterations do not converge after 50 iterations, even though the singular PT/projection scheme is activated. If we increase SingularPTThresh to 0.05 by adding the line SingularPTThresh 0.05 to the %mdci block:

```
%mdci
  DoSingularPT true
  SingularPTThresh 0.05
  MaxIter 50
end
```

the T amplitude iterations successfully converge in 25 iterations.

In conclusion, it occasionally happens that the T amplitude iterations do not converge. In these cases, the singular PT/projection scheme can be activated (DoSingularPT true) to overcome these convergence difficulties. Sometimes, like in the case of ferrocene, it is necessary to adjust the threshold for the singular PT/projection procedure (SingularPTThresh) in order to achieve convergence. If the procedure still fails with larger values of the threshold, then it might be necessary to revisit the definition of the state-averaged CAS.
9.25.4 An Orbital Selection Scheme for More Efficient Calculations of Excitation Spectra with MR-EOM

As described in Ref. [145], the MR-EOM implementation in ORCA can make use of a sophisticated scheme to discard inactive and virtual orbitals, which are not important for the description of the excited states of interest. The selection of inactive core orbitals is based on the eigenvalues of the core orbital selection density

\[
D_{i'j'} = D_{i'j'}^t + \frac{\text{Tr}(D^t)}{\text{Tr}(D^t) + \text{Tr}(D^w)} \left(D_{i'j'}^t + D_{i'j'}^w \right),
\]

in which

\[
D_{i'j'}^t = \sum_{w,a,b} t_{aw}^{(1)} (2 t_{bw}^{(1)} - t_{wb}^{(1)}) ,
\]

\[
D_{i'j'}^s = \sum_{k,w,a} s_{aw}^{(1)} \left(2 s_{bk}^{(1)} - s_{kb}^{(1)} \right) + s_{ki'}^{(1)} \left(2 s_{kj'}^{(1)} - s_{jk'}^{(1)} \right) ,
\]

\[
D_{i'j'}^u = \sum_{k',w,x} u_{wx}^{(1)} \left(2 u_{k'x}^{(1)} - u_{k'x}^{(1)} \right) ,
\]

are respectively, the contributions from the first order \(t_{aw}^{(1)} \), \(s_{aw}^{(1)} \) and \(u_{wx}^{(1)} \) amplitudes (i.e. note that all amplitudes have at least one active label). Similarly, the selection of virtual orbitals is based upon the eigenvalues of the virtual orbital selection density

\[
\rho_{ab} = \rho_{ab} + \frac{\text{Tr}(\rho^s)}{\text{Tr}(\rho^s)} \rho_{ab}^s ,
\]

in which, the contribution \(\rho' \), from the first order \(T_2 \) amplitudes, is given by

\[
\rho_{ab}' = \sum_{k,w,c} t_{aw}^{(1)} (2 t_{bk}^{(1)} - t_{bk}^{(1)}) + \sum_{i',w,c} t_{i'w}^{(1)} (2 t_{i'w}^{(1)} - t_{i'w}^{(1)}) ,
\]

and the contribution \(\rho^s \), from the first order \(S_2 \) amplitudes, is given by

\[
\rho_{ab}^s = \sum_{i',k,w} s_{i'k}^{(1)} \left(2 s_{i'k}^{(1)} - s_{i'k}^{(1)} \right) + \sum_{i',w,z} s_{i'z}^{(1)} \left(2 s_{i'z}^{(1)} - s_{i'z}^{(1)} \right) .
\]

Diagonalization of the core orbital selection density \(D_{i'j'} \) and the virtual orbital selection density \(\rho_{ab} \) then yields two respective sets of eigenvalues \(\{ \lambda_{i'} \} \) and \(\{ \lambda_a \} \). We have found it useful to compute the ratios,

\[
R_{\text{core}} = \frac{\sum_{i'=0}^{n_{\text{core excluded}}} \lambda_{i'} - \sum_{i'=0}^{n_{\text{core}}} \lambda_{i'}}{\sum_{i'=0}^{n_{\text{core}}} \lambda_{i'}} \times 100\% ,
\]

\[
R_{\text{virt}} = \frac{\sum_{a=0}^{n_{\text{virt excluded}}} \lambda_a - \sum_{a=0}^{n_{\text{virt}}} \lambda_a}{\sum_{a=0}^{n_{\text{virt}}} \lambda_a} \times 100\% ,
\]
of the sum of the excluded eigenvalues to the sum over all eigenvalues. The orbital selection in the core and virtual subspaces is then based upon the values of these ratios, as will be discussed below.

The orbital selection procedure is activated by adding the keyword `OrbitalSelection` to the first line of input, e.g.

```
! MR-EOM def2-TZVPP VeryTightSCF OrbitalSelection
```

There are two threshold parameters `CoreThresh` and `VirtualThresh`, which are used to determine which inactive core and virtual orbitals are to be discarded in the orbital selection procedure, respectively. Namely, all inactive core orbitals for which \(R_{\text{core}} < \text{CoreThresh} \) (i.e. \(R_{\text{core}} \) as defined in Eq. 9.307) are discarded and all virtual orbitals satisfying the condition \(R_{\text{virt}} < \text{VirtualThresh} \) (i.e. \(R_{\text{virt}} \) as defined in Eq. 9.308) are discarded. The default values of these thresholds are `CoreThresh = 0.0` (no core orbital selection) and `VirtualThresh = 1.0`. However, the values of these parameters can easily be changed by redefining them in the `%mdci` block:

```
%mdci
  CoreThresh 1.0
  VirtualThresh 1.0
end
```

Let us consider the calculation of the previous section (9.25.3) on ferrocene, with the orbital selection procedure activated (using the default thresholds):

```
!MR-EOM def2-SVP OrbitalSelection
%
casscf
  nel 6
  norb 5
  mult 1,3
  nroots 5,6
end

%mdci
  DoSingularPT true
  SingularPTThresh 0.05
  MaxIter 50
end

%mrci
  newblock 1 *
  nroots 18
  refs cas(6,5) end
end
newblock 3 *
```
The details of the orbital selection procedure are printed under the heading **ORBITAL SELECTION**:

ORBITAL SELECTION

T1 is NOT used in the construction of the orbital selection densities

Factor (in percent) for inactive (core) orbital selection	...	0.000000000
Factor (in percent) for virtual orbital selection	...	1.000000000
Inactive orbitals before selection:	15 ... 44 (30 MO's/60 electrons)	
Virtual orbitals before selection:	50 ... 220 (171 MO's)	
Inactive orbitals after selection:	15 ... 44 (30 MO's/60 electrons)	
Virtual orbitals after selection:	50 ... 126 (77 MO's)	

TIMINGS FOR THE ORBITAL SELECTION PROCEDURE

Total Time for Orbital Selection | ... | 98.492 sec
Comparing the number of virtual orbitals before the orbital selection procedure (171) with the number that are left after orbital selection (77), we see that more than half have been discarded (94). The canonical calculation (without orbital selection) takes 149373 seconds to run and yields the following excitation energies:

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>l/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>65.110</td>
<td>1.772</td>
<td>14289.9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>65.110</td>
<td>1.772</td>
<td>14289.9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>70.413</td>
<td>1.916</td>
<td>15454.0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>70.413</td>
<td>1.916</td>
<td>15454.0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td>95.979</td>
<td>2.612</td>
<td>21065.0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-1</td>
<td>5</td>
<td>1</td>
<td>95.979</td>
<td>2.612</td>
<td>21065.0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>105.382</td>
<td>2.865</td>
<td>23111.1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>105.382</td>
<td>2.865</td>
<td>23111.1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>107.034</td>
<td>2.913</td>
<td>23491.4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>107.034</td>
<td>2.913</td>
<td>23491.4</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>160.595</td>
<td>4.370</td>
<td>35246.6</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-1</td>
<td>6</td>
<td>0</td>
<td>160.596</td>
<td>4.370</td>
<td>35246.6</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>-1</td>
<td>6</td>
<td>1</td>
<td>164.694</td>
<td>4.482</td>
<td>36146.1</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>-1</td>
<td>7</td>
<td>1</td>
<td>165.379</td>
<td>4.500</td>
<td>36296.6</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>-1</td>
<td>8</td>
<td>1</td>
<td>165.379</td>
<td>4.500</td>
<td>36296.6</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>-1</td>
<td>9</td>
<td>1</td>
<td>171.464</td>
<td>4.666</td>
<td>37632.1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>0</td>
<td>208.587</td>
<td>5.676</td>
<td>45779.6</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-1</td>
<td>8</td>
<td>0</td>
<td>208.587</td>
<td>5.676</td>
<td>45779.6</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-1</td>
<td>9</td>
<td>0</td>
<td>213.093</td>
<td>5.799</td>
<td>46768.6</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td>213.093</td>
<td>5.799</td>
<td>46768.6</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-1</td>
<td>11</td>
<td>0</td>
<td>216.225</td>
<td>5.884</td>
<td>47456.0</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-1</td>
<td>12</td>
<td>0</td>
<td>220.230</td>
<td>5.993</td>
<td>48334.9</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-1</td>
<td>13</td>
<td>0</td>
<td>220.230</td>
<td>5.993</td>
<td>48334.9</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>-1</td>
<td>14</td>
<td>0</td>
<td>224.583</td>
<td>6.111</td>
<td>49290.3</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-1</td>
<td>15</td>
<td>0</td>
<td>224.583</td>
<td>6.111</td>
<td>49290.3</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-1</td>
<td>16</td>
<td>0</td>
<td>237.914</td>
<td>6.474</td>
<td>52216.0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>-1</td>
<td>17</td>
<td>0</td>
<td>237.914</td>
<td>6.474</td>
<td>52216.0</td>
</tr>
</tbody>
</table>

In contrast, the calculation with the orbital selection procedure activated runs in 28977 seconds (a factor of 5 speedup) and produces the following excitation energies:

<table>
<thead>
<tr>
<th>State</th>
<th>Mult</th>
<th>Irrep</th>
<th>Root</th>
<th>Block</th>
<th>mEh</th>
<th>eV</th>
<th>l/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>65.110</td>
<td>1.772</td>
<td>14289.9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>65.110</td>
<td>1.772</td>
<td>14289.9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>70.413</td>
<td>1.916</td>
<td>15454.0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>70.413</td>
<td>1.916</td>
<td>15454.0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td>95.979</td>
<td>2.612</td>
<td>21065.0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-1</td>
<td>5</td>
<td>1</td>
<td>95.979</td>
<td>2.612</td>
<td>21065.0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>105.382</td>
<td>2.865</td>
<td>23111.1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>105.382</td>
<td>2.865</td>
<td>23111.1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>107.034</td>
<td>2.913</td>
<td>23491.4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>107.034</td>
<td>2.913</td>
<td>23491.4</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>160.595</td>
<td>4.370</td>
<td>35246.6</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-1</td>
<td>6</td>
<td>0</td>
<td>160.596</td>
<td>4.370</td>
<td>35246.6</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>-1</td>
<td>6</td>
<td>1</td>
<td>164.694</td>
<td>4.482</td>
<td>36146.1</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>-1</td>
<td>7</td>
<td>1</td>
<td>165.379</td>
<td>4.500</td>
<td>36296.6</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>-1</td>
<td>8</td>
<td>1</td>
<td>165.379</td>
<td>4.500</td>
<td>36296.6</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>-1</td>
<td>9</td>
<td>1</td>
<td>171.464</td>
<td>4.666</td>
<td>37632.1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>0</td>
<td>208.587</td>
<td>5.676</td>
<td>45779.6</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-1</td>
<td>8</td>
<td>0</td>
<td>208.587</td>
<td>5.676</td>
<td>45779.6</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-1</td>
<td>9</td>
<td>0</td>
<td>213.093</td>
<td>5.799</td>
<td>46768.6</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td>213.093</td>
<td>5.799</td>
<td>46768.6</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-1</td>
<td>11</td>
<td>0</td>
<td>216.225</td>
<td>5.884</td>
<td>47456.0</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>-1</td>
<td>12</td>
<td>0</td>
<td>220.230</td>
<td>5.993</td>
<td>48334.9</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>-1</td>
<td>13</td>
<td>0</td>
<td>220.230</td>
<td>5.993</td>
<td>48334.9</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>-1</td>
<td>14</td>
<td>0</td>
<td>224.583</td>
<td>6.111</td>
<td>49290.3</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>-1</td>
<td>15</td>
<td>0</td>
<td>224.583</td>
<td>6.111</td>
<td>49290.3</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-1</td>
<td>16</td>
<td>0</td>
<td>237.914</td>
<td>6.474</td>
<td>52216.0</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>-1</td>
<td>17</td>
<td>0</td>
<td>237.914</td>
<td>6.474</td>
<td>52216.0</td>
</tr>
</tbody>
</table>
We note that the excitation energies in the orbital selection procedure agree very nicely with those of the canonical calculation. However, the total energies are significantly different, as we currently have not implemented a procedure to correct them. Hence, the following warning is very important.

WARNING

- The orbital selection procedure should only be used for the calculation of excitation energies. Total energies computed with the orbital selection procedure have not been corrected and can differ greatly from the canonical results.

Before leaving the discussion of the orbital selection procedure, we note that there is also a keyword `PrintOrbSelect`, which can be added to the `%mdci` block in order to print the eigenvalues of the inactive core orbital selection and virtual orbital selection densities and the corresponding values of R_{core} and R_{virt} defined in Eqs. 9.307 and 9.308, respectively. This is useful if one wants to manually select the orbitals to discard in the orbital selection procedure by adjusting the values of `CoreThresh` and `VirtualThresh`. We note that the program terminates after printing. In the case of the calculation on ferrocene, if we modify the `%mdci` block to read
we find the following information in the ORBITAL SELECTION section of the output (only the first 50 values for the virtual orbital selection density are shown here):

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Eigenvalue</th>
<th>R_core</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00026936</td>
<td>0.419318</td>
</tr>
<tr>
<td>1</td>
<td>0.00027080</td>
<td>0.840883</td>
</tr>
<tr>
<td>2</td>
<td>0.00038739</td>
<td>1.443947</td>
</tr>
<tr>
<td>3</td>
<td>0.00038739</td>
<td>2.047011</td>
</tr>
<tr>
<td>4</td>
<td>0.00040299</td>
<td>2.674355</td>
</tr>
<tr>
<td>5</td>
<td>0.00040299</td>
<td>3.301700</td>
</tr>
<tr>
<td>6</td>
<td>0.00077636</td>
<td>4.510285</td>
</tr>
<tr>
<td>7</td>
<td>0.00086085</td>
<td>5.850394</td>
</tr>
<tr>
<td>8</td>
<td>0.00086085</td>
<td>7.190503</td>
</tr>
<tr>
<td>9</td>
<td>0.00091850</td>
<td>8.620358</td>
</tr>
<tr>
<td>10</td>
<td>0.00091850</td>
<td>10.050213</td>
</tr>
<tr>
<td>11</td>
<td>0.00112826</td>
<td>11.886598</td>
</tr>
<tr>
<td>12</td>
<td>0.00115561</td>
<td>13.695563</td>
</tr>
<tr>
<td>13</td>
<td>0.00137961</td>
<td>15.753236</td>
</tr>
<tr>
<td>14</td>
<td>0.00137961</td>
<td>17.900998</td>
</tr>
<tr>
<td>15</td>
<td>0.00139093</td>
<td>20.066210</td>
</tr>
<tr>
<td>16</td>
<td>0.00139093</td>
<td>22.231512</td>
</tr>
<tr>
<td>17</td>
<td>0.00143349</td>
<td>24.463072</td>
</tr>
<tr>
<td>18</td>
<td>0.00143350</td>
<td>26.694633</td>
</tr>
<tr>
<td>19</td>
<td>0.00148539</td>
<td>29.006985</td>
</tr>
<tr>
<td>20</td>
<td>0.00148539</td>
<td>31.319338</td>
</tr>
<tr>
<td>21</td>
<td>0.00173415</td>
<td>34.018940</td>
</tr>
<tr>
<td>22</td>
<td>0.00224131</td>
<td>37.598654</td>
</tr>
<tr>
<td>23</td>
<td>0.00224132</td>
<td>40.997171</td>
</tr>
<tr>
<td>24</td>
<td>0.00533017</td>
<td>49.294785</td>
</tr>
<tr>
<td>25</td>
<td>0.00533019</td>
<td>57.592429</td>
</tr>
<tr>
<td>26</td>
<td>0.00658679</td>
<td>67.846267</td>
</tr>
<tr>
<td>27</td>
<td>0.00662833</td>
<td>78.152314</td>
</tr>
<tr>
<td>28</td>
<td>0.00701719</td>
<td>89.076149</td>
</tr>
<tr>
<td>29</td>
<td>0.00701719</td>
<td>100.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Eigenvalue</th>
<th>R_virt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00000119</td>
<td>0.0000450</td>
</tr>
<tr>
<td>1</td>
<td>0.00000119</td>
<td>0.0000899</td>
</tr>
<tr>
<td>2</td>
<td>0.00000134</td>
<td>0.001404</td>
</tr>
<tr>
<td>3</td>
<td>0.00000134</td>
<td>0.001909</td>
</tr>
<tr>
<td>4</td>
<td>0.00000136</td>
<td>0.002423</td>
</tr>
<tr>
<td>5</td>
<td>0.00000177</td>
<td>0.003691</td>
</tr>
</tbody>
</table>
In conclusion, the orbital selection scheme provides a more efficient way to calculate accurate excitation spectra within the framework of MR-EOM. It can be used to extend the applicability of this approach to larger systems and we expect it to be much more effective in larger systems where the chromophore is localized to a small part of the molecule. We reiterate that it is currently limited to the calculation of excitation energies and should not be used if one is interested in total energies.
9.25.5 Nearly Size Consistent Results with MR-EOM by Employing an MR-CEPA(0) Shift in the Final Diagonalization Procedure

One drawback of the MR-EOM methodology is that it is not size-extensive (or size-consistent). The size-extensivity errors arise due to the final uncontracted MR-CI diagonalization step. Namely, they result from the components of the eigenvectors of the transformed Hamiltonian, which lie outside of the CASSCF reference space (e.g. 1h, 1p, etc. configurations). As more of the excitation classes are included through the successive similarity transformations of the Hamiltonian, the size of the final diagonalization manifold is greatly decreased resulting in much smaller size-extensivity errors upon going from MR-EOM-T|T|T|SXD|U-h-v to MR-EOM-T|T|SXD|U-h-v. To illustrate this, let us consider the O$_2$—O$_2$ dimer where the O$_2$ molecules are separated by a large distance. For the O$_2$ monomer, we employ a minimal active space consisting of 2 electrons distributed amongst the two π^* orbitals and we only consider the ground $^3\Sigma^-$ state (no state-averaging). In the MR-EOM calculations, we also calculate the higher lying $^1\Delta_g$ and $^1\Sigma^+_g$ singlet states. For example, the input file for the MR-EOM-T|T|T|SXD|U-h-v calculation is given by:

```
!MR-EOM AUG-CC-PVTZ EXTREMESCF
  %casscf
  nel 2
  norb 2
  nroots 1
  mult 3
  end

  %mdci
  MaxIter 300
  STol 1e-12
  end

  %mrci
  newblock 1 *
  nroots 3
  refs cas(2,2) end
  end
  newblock 3 *
  nroots 1
  refs cas(2,2) end
  end

  * xyz 0 3
  0  0.00000000  -0.00000000  -0.60500000
  0  -0.00000000   0.00000000   0.60500000
  *
```

In the case of the dimer, we take the reference state as the coupled quintet state which is formed as the
product $^3\Sigma_g^+ \otimes ^3\Sigma_g^+$ of the monomer states. We note that at large separation, in the non-interacting limit, the dimer state energies can be decomposed as the sum of monomer state energies. There are various possibilities, taking into account the degeneracies of the various states:

1. a singlet, a triplet and a quintet with energy $E(^3\Sigma_g^- + ^3\Sigma_g^-)$,
2. four triplets with energy $E(^3\Sigma_g^- + ^1\Delta_g)$,
3. two triplets with energy $E(^3\Sigma_g^- + ^1\Sigma_g^+)$,
4. four singlets with energy $E (^1\Delta_g + ^1\Delta_g)$,
5. four singlets with energy $E (^1\Delta_g + ^1\Sigma_g^+)$,
6. a singlet with energy $E(^1\Sigma_g^+ + ^1\Sigma_g^+)$.

Hence, in the final diagonalization step of the MR-EOM calculation, we must ask for 10 singlets, 7 triplets and 1 quintet. The input file for the MR-EOM-T|T|SXD|U-h-v calculation on the dimer is given by:

```plaintext
!MR-EOM AUG-CC-PVTZ EXTREMESCF

%casscf
   nel 4
   norb 4
   nroots 1
   mult 5
   etol 1e-13
   gtol 1e-13
end

%mdci
   MaxIter 300
   STol 1e-12
end

%mrci
   newblock 1 *
   nroots 10
   refs cas(4,4) end
   end
   newblock 3 *
   nroots 7
   refs cas(4,4) end
   end
   newblock 5 *
   nroots 1
   refs cas(4,4) end
   end
end
```
In Table 9.17, we have compiled the results of the size consistency test, taking the difference of the dimer state energies (at large separation) and the sum of the monomer state energies (in mEₘ). It is evident that as more excitation classes are included in the similarity transformed Hamiltonian and the size of the final diagonalization manifold is decreased, the size-consistency errors decrease. Of particular note are the results for the MR-EOM-T|T†|SXD-h-v approach (only includes 1h and 1p configurations in the final diagonalization manifold), for which the largest deviation is 1.25×10^{-2} mEₘ. The much larger deviations for the MR-EOM-T|T†|SXD-h-v approach clearly demonstrate the large effect that the 2h excitations have on the size-consistency errors.

Table 9.17: Test for size consistency in MR-EOM: Differences in energy (in mEₘ) between the O₂—O₂ dimer energies (at large separation) and the sum of the monomer energies for the ground state and various excited states. The results were obtained in an aug-cc-pVTZ basis using minimal active spaces.

| | T|T†-h-v | T|T†|SXD-h-v (with 1h1p) | T|T†|SXD-h-v | T|T†|SXD|U-h-v |
|------------------|--------|--------------------------------|----------------|----------------|
| $\Delta E(3\Sigma_g^- + 3\Sigma_g^-)$ | 12.74 | 2.77 | 1.11 | 1.00 \times 10^{-5} |
| $\Delta E(3\Sigma_g^- + 1\Delta_g)$ | 14.20 | 3.84 | 1.85 | 1.54 \times 10^{-4} |
| $\Delta E(3\Sigma_g^- + 1\Sigma_g^+)$ | 17.21 | 5.52 | 2.83 | 4.13 \times 10^{-4} |
| $\Delta E(1\Delta_g + 1\Delta_g)$ | 15.69 | 3.10 | 2.31 | 5.26 \times 10^{-3} |
| $\Delta E(1\Delta_g + 1\Sigma_g^+)$ | 18.83 | 7.52 | 4.76 | 5.89 \times 10^{-3} |
| $\Delta E(1\Sigma_g^+ + 1\Sigma_g^+)$| 22.34 | 10.75 | 7.31 | 1.25 \times 10^{-2} |

In order to reduce the size-consistency errors, one can make use of the MR-CEPA(0) shift in the final diagonalization step. This MR-CEPA(0) shift can easily be activated by adding the line

citype mrcepa_0

to the beginning of the %mrci block. The results of the size-consistency test with the use of the MR-CEPA(0) shift are tabulated in Table 9.18. For each of the methods, we see a marked improvement over the results of Table 9.17, which do not make use of the MR-CEPA(0) shift. The greatest improvement occurs in the MR-EOM-T|T†|SXD-h-v and the MR-EOM-T|T†|SXD|U-h-v results. Namely, the errors in the former case are on the order of nano Hartrees, while the errors in the MR-EOM-T|T†|SXD|U-h-v results are not detectable (sub nano Hartree), as the energy is only printed with nine decimal places. It is interesting to note that upon adding the 1h1p configurations to the diagonalization manifold in the MR-EOM-T|T†|SXD-h-v calculations (i.e. with 1h1p), the size-consistency errors increase greatly. Hence, it appears that the use of
the MR-CEPA(0) shift is most effective at reducing the size-consistency errors resulting from the presence of the 1h, 1p and 2h configurations in the final diagonalization manifold. In any case, one can easily take advantage of this approach to obtain nearly size-consistent results with both the MR-EOM-T|T|SXD-h-v and MR-EOM-T|T|SXD|U-h-v methods.

Table 9.18: Test for size consistency in MR-EOM, using the MR-CEPA(0) shift: Differences in energy (in mEh) between the O$_2$—O$_2$ dimer energies (at large separation) and the sum of the monomer energies for the ground state and various excited states. The results were obtained in an aug-cc-pVTZ basis using minimal active spaces and the MR-CEPA(0) shift was applied in the final diagonalization in each case.

| | T|T|SXD-h-v (with 1h1p) | T|T|SXD-h-v | T|T|SXD|U-h-v |
|----------------|-----------------------------------|--------------|------------|------------------|
| $\Delta E(3\Sigma_g^- + 3\Sigma_g^-)$ | 0.275 \times 10$^{-3}$ | 0.01 | 2.00 \times 10$^{-6}$ | 0.00 |
| $\Delta E(3\Sigma_g^- + 1\Delta_g)$ | 0.06 | 0.07 | 0.00 | 0.00 |
| $\Delta E(3\Sigma_g^- + 1\Sigma_g^+)$ | 0.14 | 0.15 | 4.00 \times 10$^{-6}$ | 0.00 |
| $\Delta E(1\Delta_g + 1\Sigma_g^+)$ | 0.21 | 0.22 | 1.00 \times 10$^{-6}$ | 0.00 |
| $\Delta E(1\Delta_g + 1\Sigma_g^+)$ | 0.42 | 0.44 | 5.00 \times 10$^{-6}$ | 0.00 |
| $\Delta E(1\Sigma_g^+ + 1\Sigma_g^+)$ | 0.82 | 0.87 | 9.00 \times 10$^{-6}$ | 0.00 |

9.26 Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the orca_asa Program

In this section various aspects of the simulation and fit of optical spectra, including absorption, fluorescence, and resonance Raman are considered. This part of the ORCA is fairly autonomous and can also be used in a data analysis context, not only in a “quantum chemistry” mode. The program is called orca_asa, where ASA stands for “Advanced Spectral Analysis”. The program was entirely designed by Dr. Taras Petrenko.

The general philosophy is as follows: An ORCA run produces the necessary data to be fed into the orca_asa program and writes an initial input file. This input file may be used to directly run orca_asa in order to predict an absorption, fluorescence or resonance Raman spectrum. Alternatively, the input file may be edited to change the parameters used in the simulations. Last – but certainly not least – the orca_asa program can be used to perform a fit of the model parameters relative to experimental data.

All examples below are taken from the paper:

Which must be cited if you perform any work with the orca_asa program!
9.26.1 General Description of the Program

The program input comprises the following information: (1) model and specification of the model parameters characterizing the electronic structure of a molecule, as well as lineshape factors; (2) spectral ranges and resolution for simulations; (3) specification of vibrational transitions for rR excitation profile and spectra generation; (4) certain algorithm-selecting options depending on the model; (5) fitting options.

All optional parameters (1)-(3) are given in the %sim block, and fitting options are in the %fit block. The model parameters are specified within various blocks that will be described below. The program orca.asa is interfaced to ORCA and inherits its input style. The input for orca.asa run can be also generated upon ORCA run.

The current implementation features so called “simple”, “independent mode, displaced harmonic oscillator” (IMDHO), and “independent mode, displaced harmonic oscillator with frequency alteration” (IMDHOFA) models.

9.26.2.1 Example: Simple Mode

This model represents the simplest approach which is conventionally used in analysis of absorption spectra. It neglects vibrational structure of electronic transitions and approximates each individual electronic band by a standard lineshape, typically a Gaussian, Lorentzian or mixed (Voigt) function. This model can only make sense if vibrational progressions are not resolved in electronic spectra. Upon this approximation the intensity of absorption spectrum depends on the energy of the incident photon \(E_L \), the electronic transition energy \(E_T \), the transition electric dipole moment \(M \), evaluated at the ground-state equilibrium geometry). Lineshape factors are specified by homogeneous linewidth \(\Gamma \) and standard deviation parameter \(\sigma \) corresponding to Gaussian distribution of transition energies. The following example illustrates a simple input for simulation of absorption bandshapes using various intensity and lineshape parameters.
example001.inp
#
Input file to generate absorption spectrum consisting of 3 bands with different lineshape factors:
#
1. Lorentzian centered at 18000cm**-1 (damping factor Gamma= 100 cm**-1)
2. Gaussian centered at 20000cm**-1
(standard deviation Sigma= 100 cm**-1)
3. Mixed Gaussian-Lorentzian band representing Voigt profile
centered at 21000 cm**-1

%sim

Model Simple

Spectral range for absorption simulation:
AbsRange 17000.0, 23000.0

Number of points to simulate absorption spectrum:
NAbsPoints 2000

end

#--
Transition Gamma Sigma Transition Dipole Moment (atomic unit)
Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz
#--
$el_states

3 # number of electronic states

1 18000.0 100.00 0.0 1.0 0.0 0.0
2 20000.0 0.00 100.0 1.0 0.0 0.0
3 22000.0 50.00 50.0 1.0 0.0 0.0

The parameters of the final electronic states reached by the respective transitions are specified in the $el_states block. The spectral range and resolution used in the calculation are defined by the AbsRange and NAbsPoints keywords in %sim block. The calculation of the absorption spectrum is automatically invoked if NAbsPoints>1. After the orca.asa run you will find in your directory file example001.abs.dat containing absorption spectrum in simple two-column ASCII format suitable to be plotted with any spreadsheet program. Absorption spectra corresponding to individual electronic transitions are stored in file example001.abs.as.dat (the suffix “as” stands for “All States”). The output of the program run also contains information about oscillator strengths and full-width-half-maximum (FWHM) parameters corresponding to each electronic band:

<table>
<thead>
<tr>
<th>State</th>
<th>EV (cm**-1)</th>
<th>fosc</th>
<th>Stokes shift (cm**-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>18000.00</td>
<td>0.054676</td>
<td>0.00</td>
</tr>
<tr>
<td>2:</td>
<td>20000.00</td>
<td>0.060751</td>
<td>0.00</td>
</tr>
<tr>
<td>3:</td>
<td>22000.00</td>
<td>0.066826</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Figure 9.29: Absorption spectrum generated after orca ASA run on file example001.inp. Three bands have different lineshape parameters. Note that although all transitions are characterized by the same transition electric dipole moment their intensities are scaled proportionally to the transition energies.

<table>
<thead>
<tr>
<th>State</th>
<th>Gamma</th>
<th>Sigma</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>100.00</td>
<td>0.00</td>
<td>200.00</td>
</tr>
<tr>
<td>2:</td>
<td>0.00</td>
<td>100.00</td>
<td>235.48</td>
</tr>
<tr>
<td>3:</td>
<td>50.00</td>
<td>50.00</td>
<td>180.07</td>
</tr>
</tbody>
</table>

Note that although all three types of lineshape functions are symmetric this is not true for the overall shapes of individual absorption bands since the extinction coefficient (absorption cross-section) is also proportional to the incident photon energy. Therefore, if the linewidth is larger than 10% of the peak energy the asymmetry of the electronic band can be quite noticeable.

9.26.2.2 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO Model

The IMDHO model is the simplest approach that successfully allows for the prediction of vibrational structure in electronic spectra as well as rR intensities for a large variety of real systems. This model assumes:

1. harmonic ground- and excited-state potential energy surfaces;
2. origin shift of the excited-state potential energy surface relative to the ground-state one;
3. no vibrational frequency alteration or normal mode rotation occurs in the excited state;
4. no coordinate dependence of the electronic transition dipole moment.
In addition to the parameters that enter the “Simple model” defined above it requires some information about the vibrational degrees of freedom. The required information consists of the ground-state vibrational frequencies \(\{ \omega_{gm} \} \) and (dimensionless) origin shifts \(\{ \Delta_{mi} \} \), where \(i \) and \(m \) refer to electronic states and normal modes respectively. \(\Delta \) is expressed in terms of dimensionless normal coordinates. Accordingly, for the IMDHO model one has to specify the following blocks.

- The **$el_states** block contains the parameters \(E_T, \Gamma, \sigma, M \) for each electronic state. By default \(E_T \) is assumed to be adiabatic minima separation energy. Alternatively, it can be redefined to denote for the vertical transition energy. This is achieved by specifying the keyword **EnInput=EV** in the **$sim** block.

- A **$vib_freq_gs** block specifies ground-state vibrational frequencies.

- A **$sdnc** block contains parameters \(\{ \Delta_{mi} \} \) in matrix form such that the \(i \)-th column represents the dimensionless displacements along all normal modes for the \(i \)-th excited-state PES.

The file **example002.inp** provides the input for simulation of absorption and fluorescence spectra of a system characterized by significant displacements of the excited-state origin along 5 normal coordinates.

```plaintext
# example002.inp
#
# Input file for simulation of vibrational structure
# in absorption and fluorescence spectra assuming
# origin shift of excited PES along 5 normal coordinates.
# The simulated spectra closely reproduce the experimental
# optical bandshapes for the tetracene molecule.
#
%sim
  Model IMDHO

  # spectral range for absorption simulation (cm^{-1})
  AbsRange 20000.0, 27000.0
  NAbsPoints 2000  # number of points in absorption spectrum

  # spectral range for simulation of fluorescence (cm^{-1})
  FlRange 22000.0, 16000.0
  NFlPoints 2000  # number of points in fluorescence spectrum

  # the following options require the spectra to be normalized
  # so that their maxima are equal to 1.0
  AbsScaleMode Rel
  FlScaleMode Rel  # default for fluorescence

  # for absorption spectrum the default option is AbsScaleMode= Ext
  # which stands for extinction coefficient

end

#-----------------------------------------------
# Transition  Gamma  Sigma  Transition Dipole Moment (atomic unit)
# Energy (cm^{-1})  (cm^{-1}) (cm^{-1})  Mx  My  Mz
#-----------------------------------------------

$el\_states
  1
```
The calculation of absorption and fluorescence spectra is automatically invoked if the parameters $N\text{AbsPoints}>1$ and $N\text{FlPoints}>1$. The input file also contains the optional block ss which specifies the Stokes shift λ for each electronic transition. This parameter is equal to the energy separation between the 0-0 vibrational peaks in the absorption and fluorescence spectra as shown in Figure 9.30. In general λ accounts for solvent induced effects as well as unresolved vibrational structure corresponding to low-frequency modes that are not specified in the input. Note that we have specified parameters $\text{AbsScaleMode}=\text{Rel}$ and $\text{FlScaleMode}=\text{Rel}$ in %sim block in order to ensure that the simulated spectra are normalized to unity. The calculated absorption and fluorescence spectra are stored in example002.abs.dat and example002.fl.dat files, respectively.

9.26.2.3 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOF A Model

IMDHOFA (Independent Mode Displaced Harmonic Oscillators with Frequency Alteration) is based on the same assumptions as the IMDHO model except for vibrational frequency alteration in excited state can take place. The file example003.inp features almost the same input parameters as example002.inp. The IMDHOFA model is invoked by the keyword $\text{Model}=\text{IMDHOFA}$ in the %sim block. Additionally, one has to provide the obligatory block svib_freq.es. It contains the excited-state vibrational frequencies $\{\omega_{emi}\}$ in

<table>
<thead>
<tr>
<th>1</th>
<th>21140.0</th>
<th>50.00</th>
<th>100.0</th>
<th>1.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
</table>

Block specifying Stokes Shift parameter for each electronic state
This information is optional
ss
1 # number of excited states
1 300.0 # the Stokes shift for the 1st electronic transition

Block providing the values of VIBrational FREQuencies
for 5 Ground-State normal modes.
Obligatory for IMDHO and IMDHOFA models.
vib_freq_gs
5
1 310.0
2 1193.0
3 1386.0
4 1500.0
5 1530.0

Block specifying origin Shift of the excite-state PES
along each normal mode in terms of the ground-state
Dimensionless Normal Coordinates
Obligatory for IMDHO and IMDHOFA models.
sdnc
5 1
1 0.698
2 −0.574
3 0.932
4 −0.692
5 0.561
Figure 9.30: Absorption and fluorescence spectra generated after orca_asa run on the file example002.inp. If the homogeneous broadening is set to be $\Gamma = 10 \text{cm}^{-1}$ one can resolve underlying vibrational structure and identify various fundamental and combination transitions.

matrix form such that the i-th column represents the vibrational frequencies of all normal modes for the i-th excited-state PES.

```
# Block providing the values of VIBrational FREQuencies
# for 5 Excited-State normal modes.
# Obligatory for IMDHOFA model.
$vib_freq_es
5 1  # number of modes and number of excited states
  1   410.0
  2   1293.0
  3   1400.0
  4   1600.0
  5   1730.0
```
Figure 9.31: Absorption and fluorescence spectra generated after orca_asa run on the file example003.inp. Also, the high-resolution spectra corresponding to homogeneous broadening $\Gamma = 10 \text{ cm}^{-1}$ are shown.

9.26.2.4 Example: Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in Absorption and Fluorescence Spectra within the IMDHO Model

For the IMDHO model the orca_asa is capable to model absorption and emission spectra in the finite-temperature approximation. While the keyword Model = IMDHO assumes the zero-temperature approximation, the value of Model = IMDHOT invokes the calculation of the spectra for the finite temperature which is specified by the parameter TK in the block %sim:

```plaintext
# example004.inp
#
%
%
%sim
Model IMDHOT
TK 300 # temperature (in Kelvin)

# spectral range for absorption simulation (cm**-1)
AbsRange 18000.0, 35000.0
NAbsPoints 5000 # number of points in absorption spectrum

# spectral range for simulation of fluorescence (cm**-1)
FlRange 22000.0, 10000.0
NFlPoints 5000 # number of points in fluorescence spectrum

# the following options require the spectra to be normalized
# so that their maxima are equal to 1.0
AbsScaleMode Rel
FlScaleMode Rel # default for fluorescence
end
```
This example illustrates a typical situation in large molecules which feature a number of low frequency modes with significant values of dimensionless displacements for a given excited-state PES. In the case of high density of vibrational states with frequencies below or comparable to the intrinsic value of FWHM (determined by Γ and σ) the vibrational progression is unresolved, whereby the spectra become very diffuse and show large separation between the maxima of absorption and emission spectra (Figure 9.31). Besides, upon the condition $\hbar \nu \ll kT$ the effective bandwidths and positions of maxima in the spectra can be strongly subject to temperature effects.
Figure 9.32: Absorption and fluorescence spectra for T=0 K (blue) and T=300 K (red) generated after orca.asa run on the file example004.inp. Black lines show spectra corresponding to the case where all low-frequency modes were excluded from the calculation.

The effective Stokes shift and linewidth parameters which are evaluated in the simple self-consistent procedure are given in the output of the orca.asa run:

<table>
<thead>
<tr>
<th>State</th>
<th>E0 (cm⁻¹)</th>
<th>EV (cm⁻¹)</th>
<th>fosc</th>
<th>Stokes shift (cm⁻¹)</th>
<th>Effective Stokes shift (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21140.00</td>
<td>24535.85</td>
<td>0.074529</td>
<td>300.00</td>
<td>7091.70</td>
</tr>
</tbody>
</table>

BROADENING PARAMETERS (cm⁻¹)

<table>
<thead>
<tr>
<th>State</th>
<th>Intrinsic</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sigma</td>
<td>FWHM</td>
</tr>
<tr>
<td></td>
<td>Gamma</td>
<td>Sigma</td>
</tr>
<tr>
<td>1</td>
<td>50.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Note that the evaluation of the effective parameters is rather approximate and these values can noticeable deviate from those which can be directly deduced from the calculated spectra. However, such an information usually provides the proper order of magnitude of the effective vibronic broadening and Stokes shift. As indicated in the program output above, the effective bandshape has predominantly a Gaussian character which varies with the temperature so that σ = 1125 cm⁻¹ (T = 0 K) and σ = 1414 cm⁻¹ (T = 300 K). Indeed, as shown in Figure 9.33 the absorption spectrum at T = 300 K can be well fitted using Gaussian lineshape with σ = 1388 cm⁻¹ (FWHM= 3270 cm⁻¹). One can see that at higher temperatures the deviation between the spectrum and its Gauss fit becomes even smaller.

In molecules the normal distribution of the electronic transition energies in the ensemble would give rise to a Gaussian bandshape of the absorption band. However, the corresponding standard deviation is expected to be of the order of 100 cm⁻¹, whereby a typical Gaussian bandwidth of the order of 1000 cm⁻¹ appears to
result from unresolved vibronic progression. In general, this statement is supported by quantum chemical calculation of the model parameters. In principle the effective bandwidth parameters can also be used for characterization and assignment of individual electronic bands.

Figure 9.33: Absorption spectrum (blue) for $T = 300$ K generated after orca.asa run on the file example004.inp. Red line represents the Gauss-fit of the calculated spectrum.

9.26.2.5 Example: Modelling of Absorption and Resonance Raman Spectra for the $1^{-1}A_g \rightarrow 1^{-1}B_u$ Transition in trans-1,3,5-Hexatriene

The hexatriene molecule is characterized by 9 totally-symmetric normal modes which dominate vibrational structure in absorption and are active in rR spectra corresponding to the strongly dipole-allowed $1^{-1} A_g \rightarrow 1^{-1} B_u$ transition around 40000 cm$^{-1}$. Except for some peculiarities related to the neglect of normal mode rotations in the excited state the optical spectra are quite satisfactorily described by the IMDHO model.

The following input exemplifies simulation of absorption spectrum and rR spectra for an arbitrary predefined number of excitation energies.

```plaintext
# example005.inp
#
# input for simulation of absorption and resonance Raman spectra
# using experimental values of transition energy and displacement
# parameters corresponding to the strongly allowed $1^{-1}A_g \rightarrow 1^{-1}B_u$ transition
# in trans-1,3,5-hexatriene
#
%sim
Model IMDHO
AbsRange 38000.0, 48000.0
NAbsPoints 2000
AbsScaleMode Rel

# resonance Raman intensities will be calculated
# for all vibrational states with excitation number
# up to RamanOrder:
```
RamanOrder 4

excitation energies (cm**-1) for which rR spectra will be calculated:
\[\text{RRSE 39500, 39800, 41400} \]

full width half maximum of Raman bands in rR spectra (cm**-1):
\[\text{RRS_FWHM 10} \]

RSRange \[0, 5000 \] # spectral range for simulation of rR spectra (cm**-1)
NRRSPoints \[5000 \] # number of points to simulate rR spectra (cm**-1)
end

$el_states
1
1 39800.0 150.00 0.0 1.0 0.0 0.0

$vib_freq_gs
9
1 354.0
2 444.0
3 934.0
4 1192.0
5 1290.0
6 1305.0
7 1403.0
8 1581.0
9 1635.0

$sdnc
9
1
1 0.55
2 0.23
3 0.23
4 0.82
5 0.485
6 0.60
7 0.685
8 0.38
9 1.32

After the orca_asa run the following files will be created:

- **example005abs.dat** contains the simulated absorption spectrum. It is shown in Figure 9.34.

- **example005.o4.rrs.39500.dat, example005.o4.rrs.39800.dat** and **example005.o4.rrs.41400.dat** contain the simulated rR spectra for excitation energies at 39500, 39800 and 41400 cm\(^{-1}\), respectively. The suffix “o4” stands for the order of Raman scattering specified in the input by keyword RamanOrder = 4. The rR spectra are shown in Figure 9.35.

- **example005.o4.rrs.39500.stk, example005.o4.rrs.39800.stk** and **example005.o4.rrs.41400.stk** provide Raman shifts and intensities for each vibrational transition. Corresponding vibrational states
are specified by the quantum numbers of excited modes.

Figure 9.34: Absorption spectrum corresponding to $1^{-1} A_g \rightarrow 1^{-1} B_u$ transition in trans-1,3,5-hexatriene generated after orca_asa run on the file example005.inp.

Figure 9.35: Resonance Raman spectra for 3 different excitation energies which fall in resonance with $1^{-1} A_g \rightarrow 1^{-1} B_u$ transition in trans-1,3,5-hexatriene.

NOTE

- By default the program provides rR spectra on an arbitrary scale since only relative rR intensities
within a single rR spectrum are of major concern in most practical cases. However, one can put rR spectra corresponding to different excitation energies on the same intensity scale by providing the keyword RSISM=ASR in %sim block (RSISM – Raman Spectra Intensity Scaling Mode; ASR – All Spectra Relative). By default RSISM=SSR (SSR – Single Spectrum Relative) for which each rR spectrum is normalized so that the most intense band in it has intensity 1.0. The relative intensities of bands in rR spectra measured for different excitation energies can be compared if they are appropriately normalized relative to the intensity of a reference signal (e.g. Raman band of the solvent). We also keep in mind the possibility to extend our methodology in order to provide the absolute measure of rR intensities in terms of the full or differential cross-sections.

- Within the harmonic model, for a single electronic state neither relative rR intensities nor absorption bandshapes in the case of AbsScaleMode=Rel do depend on the values of the electronic transition dipole moment (unless it is precisely zero).

In the example above resonance Raman spectra have been generated for all vibrational transitions with total excitation number up to the value specified by the parameter RamanOrder. Its is also possible to make explicit specification of vibrational states corresponding to various fundamental, overtone and combination bands via the $rr_vib states block. In such a case rR spectra involving only these vibrational transitions will be generated separately.

```
$rr_vib_states 5 # total number of vibrational transitions
1    modes 1
        quanta 1; # final vibrational state for the fundamental band corresponding to mode 1
2    modes 9
        quanta 1; # final vibrational state for the fundamental band corresponding to mode 9
3    modes 3, 4
        quanta 1, 1; # final vibrational state for the combination band involving single
        # excitations in modes 3 and 4
4    modes 5
        quanta 1; # final vibrational state for the second overtone band corresponding to
        # mode 5
5    modes 1, 5, 9
        quanta 1,2, 1; # final vibrational state for the combination band involving single
        # excitations in modes 1 and 2, and double excitation in mode 5
```

Each vibrational transition is specified via the subblock which has the following structure:

```
k
    modes m1,m2,...,mn
    quanta q1,q2,...,qn;
```

This means that the \(k \)-th transition is characterized by excitation numbers \(q_i \) for modes \(m_i \) so that corresponding Raman shift is equal to \(\nu = \sum q_i \nu_i \), where \(\nu_i \) is vibrational frequency of the mode \(m_i \).

After the orca.asa run the following files will be created in addition:
• `example005.us.rrs.39500.dat, example005.us.rrs.39800.dat` and `example005.us.rrs.41400.dat` contain the simulated Raman spectra involving only vibrational transitions specified in the `$rr_vib_states` block, for excitations energies at 39500, 39800 and 41400 cm$^{-1}$, respectively. The suffix “us” stands for “User specified vibrational States”.

• `example005.us.rrs.39500.stk, example005.us.rrs.39800.stk` and `example005.us.rrs.41400.stk` provide Raman shifts and intensities for each vibrational transition specified in the `$rr_vib_states` block.

9.26.2.6 Example: Modelling of Absorption Spectrum and Resonance Raman Profiles for the $1^1A_g \rightarrow 1^1B_u$ Transition in trans-1,3,5-Hexatriene

The following example illustrates an input for simulation of absorption bandshape and resonance Raman profiles (RRP):

```
# example006.inp
#
# input for simulation of absorption and resonance Raman profiles
#
# using experimental values of transition energy and displacement
# parameters corresponding to the strongly allowed $1^1A_g \rightarrow 1^1B_u$ transition
#
# in trans-1,3,5-hexatriene

%sim

Model IMDHO

AbsRange 38000.0, 48000.0
NAbsPoints 2000
AbsScaleMode Rel

RRPRange 38000.0, 48000.0 # spectral range for simulation of
# rR profiles (cm**-1)

NRRPPoints 2000 # number of points for simulation of rR profiles
CAR 0.8

RamanOrder 2

end

$el_states

1
1 39800.0 150.00 0.0 1.0 0.0 0.0

$vib_freq_gs

9
1 354.0000000
```
The keyword \texttt{RamanOrder}=2 will invoke generation of rR profiles for all vibrational transitions with total excitation number up to 2 in the range of excitation energies specified by the keywords \texttt{RRPRange} and \texttt{NRRPPoints}. Likewise, rR profiles for the vibrational states given in the \texttt{rr_vib_states} block will be generated separately. Since in most cases only relative rR intensities are important, and one would be interested to compare absorption bandshape and shapes of individual rR profiles, the keyword \texttt{CAR} = 0.8 is used to scale rR profiles for all vibrational transitions by a common factor in such a way that the ratio of the maximum of all rR intensities and the maximum of absorption band is equal to 0.8.

After the \texttt{orca_asa} run the following files will be created:

- \texttt{example006.abs.dat} contains the simulated absorption spectrum (Figure 9.36).
- \texttt{example006.o1.rrp.dat} and \texttt{example006.o2.rrp.dat} contain rR profiles for vibrational transitions with total excitation numbers 1 and 2, respectively. RR profiles for all fundamental bands (from the
9.26 The orca_asa Program

file example006.o1.rpt.dat) are shown in Figure 9.36.

- example006.o1.info and example006.o1.info contain specification of vibrational transitions with total excitation numbers 1 and 2, respectively, as well as corresponding Raman shifts.

- example006.us.rrp.1.dat--example006.us.rrp.5.dat contain rR profiles for vibrational transitions 1–5 specified in the $rr_vib states block.

Figure 9.36: Absorption spectrum and resonance Raman profiles of fundamental bands corresponding to $1^- 1^- A_g \rightarrow 1^- 1^- B_u$ transition in trans-1,3,5-hexatriene.

9.26.3 Fitting of Experimental Spectra

9.26.3.1 Example: Gauss-Fit of Absorption Spectrum

An absorption spectrum basically consists of a number of absorption bands. Each absorption band corresponds to a transition of the ground electronic state to an excited electronic state. In molecules such transitions are usually considerably broadened. In many cases there will be overlapping bands and one would need to deconvolute the broad absorption envelope into contributions from individual transitions. Within the “Simple model” the orca_asa program enables fit of an absorption spectrum with a sum of standard lineshape functions (Gaussian, Lorentzian) or more general Voigt functions. In most cases, one simply performs a “Gauss-Fit”. That is, it is assumed that the shape of each individual band is that of a Gaussian function. Then one applies as many (or as few) Gaussians as are necessary for an accurate representation of the absorption envelope. In order to explain the fitting procedures within the “Simple model” let us consider an experimental absorption spectrum in Figure 9.37:
As shown in Figure 9.37 one can identify roughly 7 electronic bands. The initial estimates of transition energies corresponding to the maxima and shoulders in the absorption spectrum (indicated by bars in Figure 9.37) and rather approximate values of inhomogeneous broadening and transition dipole moment components are specified in the $\texttt{Sel.states}$ block of the input file for the spectral fitting:

```plaintext
# example007.inp
#
# Input file for fitting of experimental absorption spectrum
#
%
%sim
  model Simple
end

%fit
  Fit true  # Global flag to turn on the fit
  AbsFit true  # Flag to include absorption into the fit
  method Simplex
  WeightsAdjust true
  AbsRange 0.0, 100000.0  # absorption spectral range to be included in the fit;
      # in the present case all experimental points
      # will be included
  AbsName "absexp.dat"  # name of the file containing experimental
  # absorption spectrum in a simple two-column
  # ASCII format
  ExpAbsScaleMode Ext  # This keyword indicates that the experimental
```
absorption intensity is given in terms of
the extinction coefficient. This is important
for the proper fitting of transition dipole
moments and oscillator strengths

NMaxFunc 10000 # maximum number of function evaluations in simplex
algorithm

MWADRelTol 1e-5 # Relative Tolerance of the Mean Weighted Absolute
Difference (MWAD) function which specifies the
convergence criterion

E0Step 500.00 # initial step for the transition energies
in the simplex fitting

TMStep 0.5 # initial step for the transition dipole moments
in the simplex fitting

E0SDStep 500.0 # initial step for the inhomogeneous linewidth (Sigma)
in the simplex fitting

end

! Parameters specified in the $el_states block
are used as initial guess in the fit

#---
Transition Gamma Sigma Transition Dipole Moment (atomic unit)
Energy (cm**-1) (cm**-1) (cm**-1) Nx My Nz
#---

$el_states
7
1 11270 0.0 1000.00 1.0000 0.0000 0.0000
2 15100 0.0 1000.00 1.0000 0.0000 0.0000
3 20230 0.0 1000.00 1.0000 0.0000 0.0000
4 27500 0.0 1000.00 1.0000 0.0000 0.0000
5 31550 0.0 1000.00 1.0000 0.0000 0.0000
6 37070 0.0 1000.00 1.0000 0.0000 0.0000
7 39800 0.0 1000.00 1.0000 0.0000 0.0000

the integer values specified in $el_states_c block indicate parameters
in the $el_states block to be varied
$el_states_c
7
1 1 0 1 1 0 0
2 2 0 2 2 0 0
3 3 0 3 3 0 0
4 4 0 4 4 0 0
5 5 0 5 5 0 0
6 6 0 6 6 0 0
7 7 0 7 7 0 0
The functionality of the constraint block `el_states_c` should be understood as follows: 1) 0 flag indicates that the corresponding parameter in the `el_state` block will not be varied in the fitting; 2) if the number corresponding to a certain parameter coincides with the number of the corresponding electronic state this parameter will be varied independently. Thus, the block `el_states_c` in the input indicates that all transition energies, inhomogeneous linewidths and x-components of the transition electric dipole moment will be varied independently, while homogeneous linewidths, y- and z-components of the transition dipole moment will be fixed to their initial values.

The following considerations are important:

- Since in conventional absorption spectroscopy one deals with the orientationally averaged absorption cross-section, the signal intensity is proportional to the square of the transition electric dipole moment $|M|^2$. Thus, the intensities do not depend on the values of the individual components of M as long as $|M|^2 = \text{const}$. Therefore, we have allowed to vary only M_x components. Otherwise there can be problems in convergence of the fitting algorithm.

- The sum of the weights of experimental points which enter the mean absolute difference function employed in the minimization is always kept equal to the number of experimental points. In the case of equidistant experimental photon energies all weights are assumed to be equal. However, in experimental electronic spectra the density of spectral points can increase significantly upon going from high- to low-energy spectral regions, which is due to the fact that experimental absorption spectra are initially acquired on the wavelength scale. In such a case the quality of the fit can be noticeably biased towards low-energy spectral region. Therefore, it is advisable to adjust relative weights of experimental points according to their density which is controlled by the keyword `WeightsAdjust` in the `%fit` block. Although this parameter is not crucial for the present example, in general, it will provide a more balanced fit.

- The parameters `E0Step`, `TMStep`, `E0SDStep` in the `%fit` block specify the initial dimension of the simplex in the space of E_T, M, σ and should roughly correspond to the expected uncertainty of initial guess on these parameters in the `el_states` block relative to their actual values. The quality of the fit can noticeably deteriorate if the parameters specifying initial steps are too low or too high.

The fit run of `orca.asa` on file `example007.inp` will converge upon approximately 3600 function evaluations (for `MWADRelTol=1e-5`). The results of the fit will be stored in file `example007.001.inp` which has the same structure as the input file `example007.inp`. Thus, if the fit is not satisfactory and/or it is not fully converged it can be refined in a subsequent `orca.asa` run upon which file `example007.002.inp` will be created, and so on. Some model parameters in intermediate files can be additionally modified and/or some constraints can be lifted or imposed if so desired. The output file `example007.001.inp` will contain fitted model parameters stored in the `el_states` block:

```
$el\_states
7
  1 11368.24  0.00  732.50  1.6290  0.0000  0.0000
  2 15262.33  0.00  495.17 -0.2815  0.0000  0.0000
  3 19500.08  0.00 1023.39  0.2300  0.0000  0.0000
  4 26969.01  0.00 1832.30  1.4089  0.0000  0.0000
  5 31580.41  0.00 1440.87  1.8610  0.0000  0.0000
  6 35769.07  0.00 1804.02  1.5525  0.0000  0.0000
  7 39975.11  0.00 1909.38  2.4745  0.0000  0.0000
```
The overall quality of the fit is determined by the parameter MWAD which upon convergence reaches the value of ≈0.009 (MWAD stands for Mean Weighted Absolute Difference).

After the orca_asa run files absexp.fit.dat and absexp.fit.as.dat will be created. Both files contain the experimental and fitted spectra which are shown in Figure 9.38. In addition, the file absexp.fit.as.dat will contain individual contributions to the absorption spectrum corresponding to different excited states.

![Figure 9.38: Comparison of the experimental (black curve) and fitted (red) absorption spectra corresponding to the fit run of orca_asa on the file example007.inp. Blue curves represent individual contributions to the absorption spectrum from each state.](image)

Since there is a noticeable discrepancy between the fitted and experimental spectra around 13000 cm$^{-1}$ (Figure 9.38) it is worthwhile to refine the fit after adding parameters for a new state in the file example007.001.inp:

```
$el_states
8
  1 11368.24  0.00  732.50  1.6290  0.0000  0.0000
  ... ... ... ... ... ... ... ... ... ... ... ... ...
  8 13280.00  0.00 1000.00  1.000  0.0000  0.0000
$el_states_c
8
  1 1 0 1 1 0 0
  ... ... ... ... ... ... ... ... ... ... ... ... ...
  8 8 0 8 8 0 0
```

Actually, the character of the discrepancy in the present case is very similar to that in Figure 9.35 (section 9.26.2.4) where a vibronically broadened absorption spectrum was fitted with a Gaussian lineshape. Thus, the poor fit in the region around 1300 cm$^{-1}$ is most likely due to the essentially asymmetric character of the vibronic broadening rather than to the presence of another electronic band.
As shown in Figure 9.39 the refined fit leads to much better agreement between the experimental and fitted absorption spectra (MWAD=0.0045).

Figure 9.39: Comparison of the experimental (black) and fitted (red) absorption spectra corresponding to the fit run of orca_asa on the file example007.001.inp. Blue curves represent individual contributions to the absorption spectrum from each state.

Due to some peculiarities of the simplex algorithm for function minimization, you can still refine the fit by rerunning orca_asa on the file example007.002.inp! This leads to an even lower value of the parameter MWAD= 0.0038, and therefore to better agreement of experimental and fitted spectra (even though the previous run has been claimed to be converged).

It is also possible to perform a fit using the same value of inhomogeneous linewidth for all electronic states. For this purpose one needs to choose as a guess the same linewidth parameters in the sel_states block:

```
$sel\_states
8
1 11118.58 0.00 1900.0 1.0687 0.9999 0.9999
2 13673.38 0.00 1900.0 -0.5530 0.9999 0.9999
3 21267.40 0.00 1900.0 0.3675 0.9999 0.9999
4 27024.71 0.00 1900.0 1.4041 0.9999 0.9999
5 31414.74 0.00 1900.0 1.7279 0.9999 0.9999
6 35180.77 0.00 1900.0 1.6246 0.9999 0.9999
7 39985.52 0.00 1900.0 2.5708 0.9999 0.9999
8 11665.01 0.00 1900.0 1.2332 0.9999 0.9999
```

In addition the constraint block should be modified as follows:

```
$sel\_states\_c
8
1 1 0 1 1 0 0
2 2 0 1 2 0 0
3 3 0 1 3 0 0
```
The constraint parameters for the inhomogeneous broadening were chosen to be 1, which means that formally \(\sigma_1 \) corresponding to the first state is varied independently while the linewidths \(\{\sigma_i\} \) for other bands are varied in such a way that the ratios \(\sigma_i/\sigma_1 \) are kept fixed to their initial values, whereby the same linewidth parameter will be used for all states.

One can see (Figure 9.40) that the assumption of equal linewidths for all electronic bands leads to a rather pronounced deterioration of the quality of the fit in the low-energy spectral range (MWAD=0.017). Apparently, this discrepancy can be fixed assuming more electronic states at higher energies.

NOTE

- The homogeneous linewidth parameters can also be included in the fit in a similar way. However, one can see that in most cases they appear to be much smaller than corresponding Gaussian linewidth parameters.

- Gauss-fit of absorption spectra is conventionally performed assuming the same linewidth parameters for all bands. However, since a large portion of Gaussian broadening is mainly due to the unresolved vibronic structure in the spectra which can significantly vary depending on the nature of transition, the assumption of unequal Gaussian bandwidths seems to be a physical one.
9.26.3.2 Example: Fit of Absorption and Resonance Raman Spectra for $1^{-1}A_g \rightarrow 1^{-1}B_u$
Transition in trans-1,3,5-Hexatriene

Below we provide an example of the fit of the lineshape parameters and $\{\Delta m\}$ corresponding to the strongly dipole-allowed $1^{-1}A_g \rightarrow 1^{-1}B_u$ transition in hexatriene. It is known that the most intense bands in rR spectra correspond to the most vibronically active in absorption spectrum. For the IMDHO model this correlation is determined by the values of $\{\Delta m\}$. Thus, the larger Δ, the larger is the rR intensity of a given mode and the more pronounced is the progression in the absorption spectrum corresponding to this mode. In principle, if all vibrational transitions in absorption are well resolved it is possible to determine $\{\Delta m\}$ by a fit of the absorption spectrum alone. In practice this task is ambiguous due to the limited resolution of the experimental absorption spectra. The observation of a rR spectrum enables the identification of the vibrational modes that are responsible for the progression in the absorption spectrum, as well as a quantitative analysis in terms of $\{\Delta m\}$. The file example006.inp provides a brute-force example on how to approach the fit employing the minimal possible experimental information: 1) An absorption spectrum; 2) relative rR intensities of fundamental bands for a given excitation energy. The rR spectrum upon the excitation in resonance with the 0-0 vibronic band at 39809 cm$^{-1}$ is shown in Figure 9.29.

![Figure 9.41: Experimental Resonance Raman spectrum corresponding to $1^{-1}A_g \rightarrow 1^{-1}B_u$ transition in trans-1,3,5-hexatriene.](image)

The experimental rR spectrum has enabled the identification of seven vibrational modes that give rise to the most intense resonance Raman bands. Therefore, they are expected to have the largest excited-state displacements and the most pronounced effect on the vibrational structure of the absorption spectrum. Their vibrational frequencies have been entered as input for the fit as shown below:

```plaintext
# example006.inp
#
# Input for fit of absorption and resonance Raman spectra
# corresponding to the strongly allowed $1^{-1}A_g \rightarrow 1^{-1}B_u$ transition
# in trans-1,3,5-hexatriene.
```
Parameters to be varied:
1) adiabatic minima transition energy
2) homogeneous linewidth (Gamma)
3) dimensionless normal coordinate displacements of the
excited-state origin
#
%sim
 Model IMDHO
end

%fit

 Fit true # boolean parameter to switch on the fit

 # boolean parameter to include experimental absorption
 # spectrum in the fit:
 AbsFit true

 # boolean parameter to include experimental rR spectra
 # specified in $rrs_exp block in the fit:
 RRSFit true

 AbsExpName "hex-abs.dat" # name of the file with experimental absorption
 # spectrum

 # the following value of keyword ExpAbsScaleMode
 # indicates that only the shape of absorption band
 # but not its total intensity will be accounted in the fit:
 ExpAbsScaleMode Rel

 # the weight of absorption relative to the total weight of
 # rR intensities in the difference function to be minimized:
 CWAR 5.0

 NMaxFunc 1000 # maximum number of function evaluations in simplex
 # algorithm

 MWADRelTol 1e-4 # Relative Tolerance of the Mean Weighted Absolute
 # Difference (MWAD) function which specifies the
 # convergence criterion

 SDNCStep 1.0

end

The values specified in $el_states block serve as initial guess in the fit
$el_states
1
 1 40000.0 200.00 0.0 1.0 0.0 0.0

the integer values specified in $el_states_c block indicate parameters
in $el_states block to be varied
$el_states_c
7 totally symmetric vibrations which give rise to the most intense bands in the rR spectra are included into analysis.
Experimental values of vibration frequencies are given:
vib_freq_gs

7
1 354.0
2 444.0
3 934.0
4 1192.0
5 1290.0
6 1403.0
7 1635.0

Initial guess for the values of dimensionless normal coordinate displacements of the excited-state origin
$sdnc$

7 1

1 0.0
2 0.0
3 0.0
4 0.0
5 0.0
6 0.0
7 0.0

the integer values specified in $sdnc_c block indicate parameters
in $sdnc block to be varied
$sdnc_c$

7 1

1 1
2 2
3 3
4 4
5 5
6 6
7 7

specification of vibrational transitions and their intensities
in experimental rR spectra:
rrs_exp

1 # number of rR spectra
1 1 # start of the block specifying the 1st rR spectrum
Ex 39809.0 # excitation energy for the first rR spectrum
NTr 7 # number of vibrational transitions for which intensities are provided
1
int 10.0 1.0
modes 1
quanta 1;
2
The input of rR intensities for an arbitrary number of excitation energies follows the keyword `$rrs_exp` block:

```
$rrs_exp
1 # number of rR spectra
1 1
```

The first “1” in the last line denotes the number of the rR spectrum for which specification starts below. If the second number is the same as the number of the spectrum, then it means that only relative intensities for the first rR spectrum are meaningful in the fit. If several spectra are given in the input then the second number may have a different value, e.g.:

```
$rrs_exp
3 # number of rR spectra
1 2 ...
```

This input is to be interpreted as indicating that 3 rR spectra are provided and the relative intensities for the first spectrum are given on the same scale as the second one that will be accounted for in the fit. The value of the excitation energies and the number of vibrational transitions specified are indispensable within the blocks specifying intensities for each rR spectrum.

Following the number of vibrational transitions given by the keyword `NTr` one has to specify each vibrational transition and its intensity. Thus, in the present case there are seven subblocks with the following structure:
This means that the k-th transition has intensity I and weight W in the mean absolute difference function that is used for the minimization (W is an optional parameter). The following 2 lines specify the vibrational transitions by providing excitation numbers q_i for modes m_i so that the corresponding Raman shift is equal to $\nu = \sum_{q_i \nu_i}$, where ν_i is vibrational frequency of the mode m_i.

The parameters that are to be varied are specified within the constraint blocks $\$el_states_c$ and $\$sdnc_c$. Both blocks have the same structure and number of parameters as $\$el_states$ and $\$sdnc$, respectively. A parameter from the $\$el_states$ block is supposed to be independently varied if its counterpart from the $\$el_states_c$ block is equal to the number of the electronic state. Likewise, a parameter from the $\$sdnc$ block is supposed to be independently varied if its counterpart from the $\$sdnc_c$ block is equal to the number of the normal mode. Model parameters that are set to 0 in the corresponding constraint blocks are not varied in the fit. The values of the following parameters may be important for the quality of the fit:

- **CWAR** in the `%fit` block specifies the weight of absorption relative to the weight of rR intensities in the difference function to be minimized. If this parameter was not specified the fit would be almost insensitive to the rR intensities in the input, since typically the number of experimental absorption points is much larger than the number of rR transitions in the input. In most cases the value of CWAR in the range 1.0–5.0 is a good choice since the error in the measured experimental intensity is expected to be much smaller for absorption than for resonance Raman.

- **SDNCStep** in the `%fit` block specifies the initial dimension of the simplex in the space of $\{\Delta_m\}$ and should roughly correspond to the expected uncertainty of initial guess on $\{\Delta_m\}$ in the $\$sdnc$ block compared to their actual values. You can notice in the present example that if this parameter is too large (>2.0) or too small (<0.4) the quality of the fit may significantly deteriorate.

- Although the default initial dimensions of the simplex have reasonable values for different types of parameters it may turn out to be helpful in some cases to modify the default values:

```
FREQGStep 10.0 # ground-state vibrational frequencies
FREQEStep 10.0 # excited-state vibrational frequencies
EStep 300.0 # transition energies
SSStep 20.0 # Stokes shift
TMStep 0.5 # electronic transition dipole moment
GammaStep 50.0 # homogeneous linewidth
E$\&$DSStep 50.0 # inhomogeneous linewidth
SDNCStep 1.0 # origin shift along dimensionless normal coordinate
```

The fit run of `orca.asa` on the file `example008.inp` will converge upon approximately 700 function evaluations (for MWADRelTol=1e-4). The results of the fit will be stored in file `example008.001.inp` which has the same structure as the input file `example008.inp`. Thus, if the fit is not satisfactory and/or it is not fully converged it can be refined in subsequent `orca.asa` run upon which file `example008.002.inp` will be created, and so on. Some model parameters in intermediate files can be be additionally modified and/or some constraints can be lifted if so desired. The output file `example008.001.inp` will contain fitted displacement parameters $\{\Delta_m\}$ stored in the $\$sdnc$ block:
In the present example, these parameters are actually in very close agreement with those published for the hexatriene molecule!

The overall quality of the fit is determined by the parameter MWAD which upon convergence reaches the value of ≈ 0.027. The fitted rR intensities are presented in the commented lines next to the experimental rR intensities in file `example008.001.inp`:

The file `hex-abs.fit.dat` will contain the experimental and fitted absorption spectra in ASCII format which can be plotted in order to visualize the quality of absorption fit (Figure 9.42).
Figure 9.42: Experimental (black) and fitted (red) absorption spectrum corresponding to $1^{-1}A_g \rightarrow 1^{-1}B_u$ transition in 1,3,5 trans-hexatriene.

NOTE

- The more experimental rR intensities are included in the analysis the more reliable is the fit. In principle it is possible to obtain fully consistent results even if only a limited number of vibrational transitions is provided. However, in such a case it is desirable to include into analysis at least a single Raman transition involving the mode for which Δ is to be determined.

- The quality of the fit can be improved if the IMDHOFA model is invoked and excited-state vibrational frequencies are allowed to vary.

- Due to the initial guess and dimension of the simplex, as well as some peculiarities of the simplex algorithm for function minimization, you can still refine the fit by rerunning orca.asa on file example008.001.inp that may lead to an even lower value of the parameter $MWAD = 0.621$, and therefore to better agreement of experimental and fitted spectra (even though the previous run has been claimed to be converged).

- In this respect it appears to be wise to perform the fit in 3 steps:

 1. Fit the preresonance region below the 0-0 vibronic band with a single Lorentzian band, from which the adiabatic transition energy E_0, and homogeneous linewidth Γ are obtained. The range for fit of the absorption spectrum can be specified by the AbsRange keyword in the %fit block.

 2. Fix E_0 and Γ, and optimize $\{\Delta_m\}$ fitting the entire spectral range and rR intensities.

 3. Lift constraints on E_0 and Γ, and reoptimize simultaneously all parameters.
9.26.3.3 Example: Single-Mode Fit of Absorption and Fluorescence Spectra for $1^{-1}A_g \rightarrow 1^{-1}B_{2u}$ Transition in Tetracene

In this section we provide an example and discuss the most important aspects of joint fit of fluorescence and absorption spectra. Figure 9.43 displays the experimental emission and absorption spectra corresponding to $1^{-1}A_g \rightarrow 1^{-1}B_{2u}$ transition in tetracene.

![Deconvoluted absorption (red) and fluorescence (blue) spectra of tetracene in cyclohexane upon the assumption of a single vibronically active mode. The black solid lines represent experimental spectra.](image)

Both spectra show pronounced effective vibrational progressions that are dominated by 3 and 5 peaks, respectively. As can be shown on the basis of quantum chemical calculations this progression has essentially multimode character. However, the experimental spectra can be well fitted under the assumption of a single vibronically active mode. The input has the following structure:

```plaintext
# example009.inp
#
# Parameters to be varied:
# 1) adiabatic minima transition energy
# 2) homogeneous and inhomogeneous linewidths
# 3) normal mode frequency and corresponding dimensionless displacement of the excited-state origin
#
%sim
   Model IMDHO
   EnInput E0 # we assume adiabatic minima separation energies
end

%fit
   Fit true  # global flag to turn on the fit
   AbsFit true  # flag to include absorption spectrum into the fit
```
FlFit true # flag to include fluorescence spectrum into the fit
WeightsAdjust true
AbsRange 19900.0, 28000.0 # spectral range for absorption
 # which will be included into the fit
FlRange 17800.0, 22300.0 # spectral range for absorption
 # which will be considered in the fit
AbsName "absexp.dat" # name of the file containing experimental
 # absorption spectrum in a simple two-column
 # ASCII format
FlName "flexp.dat" # name of the file with experimental fluorescence spectrum
ExpAbsScaleMode Rel # flags indicating that only relative shapes of the
ExpFlScaleMode Rel # absorption and fluorescence bands will be fitted.

CWAf 1.000 # important parameter to have a balanced relative quality of fit
 # of fluorescence and absorption
NMaxFunc 100000 # maximum number of function evaluations in simplex
 # algorithm
MWADRelTol= 0.0001 # Relative Tolerance of the Mean Weighted Absolute
 # Difference (MWAD) function which specifies the
 # convergence criterion
TMStep 0.5 # initial step for the transition dipole moments
 # in the simplex fitting
E0SDStep 500.0 # initial step for the inhomogeneous linewidth (Sigma)
FREQGStep 100.00 # initial step for the vibrational frequencies
E0Step 10000.0 # initial step for the transition energies
SSStep 10.0 # initial step for the Stokes shift
GammaStep 100 # initial step for the homogeneous linewidth
SDNCStep 0.5 # initial step for the displacement parameter

end

Sel_states
 2
 1 21100.00 100.00 100.00 1.0000 0.0000 0.0000
 2 24000.00 100.00 1000.00 1.0000 0.0000 0.0000

Sel_states_c
 2
 1 1 1 1 0 0 0
 2 2 2 2 2 0 0
The parameter **CWAF=1.0** in the %fit block specifies the weight of absorption relative to the weight of fluorescence in the difference function to be minimized. If this parameter was not specified the quality of the fit would be biased towards the spectrum with a larger number of experimental points. In some typical situations where the error in the measured experimental intensity is expected to be smaller for absorption than for emission it is desirable to choose the value of **CWAF** to be more than 1.0.

In order to account for a broad featureless background signal in the absorption spectrum above 24000 cm$^{-1}$, the second band was included into the analysis and approximated with a Voigt lineshape which means also that the corresponding frequency in the vib_freq_gs block and displacement parameter in the sdnc block are fixed to zero in the fit. Thus, the sel states block contains an initial guess on the transition energies, transition electric dipole moments and linewidth parameters for 2 states:
The initial value of the adiabatic minima separation energy for the first state was approximated by the energy corresponding to the first vibronic peak in the absorption spectrum (21100 cm⁻¹). The transition energies and linewidth parameters are varied independently as indicated in the `$el_states_c` block. Since we allow to fit only bandshapes, but not the overall intensities of the spectra, only relative absolute values of the transition electric dipole moments of two bands are important. Therefore it is reasonable to fix all components of the transition moment for the first state and vary only M_z component for the second one:

```
$el\_states\_c
2
1 1 1 1 0 0 0
2 2 2 2 2 0 0
```

Since we assume the absorption by both states and emission only from the first one, it is necessary to include Boolean arrays `$abs_bool` and `$fl_bool` which specify states which will be included in the treatment of the absorption and fluorescence spectra, respectively:

```
$abs\_bool
2
1 1 # 1 indicates that the corresponding state will be included in the calculation of absorption
2 1 # absorption

$fl\_bool
2
1 1
2 0 # 0 indicates that the corresponding state will be excluded from the calculation of emission spectrum
```

We need also to vary the value of vibrational frequency of the mode which determines separation of vibrational peaks in the spectra. This is done via the constraint block `$vib_freq_gs_c$`:

```
$vib\_freq\_gs\_c
1
1 1
```

Note that it is meaningless to include into the treatment the Stokes shift for the second state which give rise to the background signal in the absorption since the corresponding emission is not present. Therefore λ for the second state is fixed to zero as indicated in the `ss` block and its constraint counterpart `ss_c`:
The fit run of orca_asa on file example009.inp will converge upon approximately 700 function evaluations (for MWADRelTol=1e-4). The file example009.001.inp will contain the fitted effective values of the vibrational frequency and dimensionless displacement: $\omega = 1404 \text{ cm}^{-1}$, $\Delta = 1.35$. One can notice that the fit is rather poor in the low- and high-energy edges of the absorption and fluorescence spectra, respectively (Figure 9.43). The source of this discrepancy is the single-mode approximation which was employed here. The quality of the fit can be significantly improved assuming several modes with non-zero displacement parameters. Note that in such a case the proper guess on the number of active modes and corresponding dimensionless displacements can be deduced from quantum chemical calculations.

9.26.4 Quantum-Chemically Assisted Simulations and Fits of Optical Bandshapes and Resonance Raman Intensities

In this section we finally connect the spectra simulation algorithms to actual quantum chemical calculations and outline a detailed approach for the analysis of absorption, fluorescence and resonance Raman spectra within the IMDHO model. Our procedure becomes highly efficient and nearly automatic if analytical excited state derivatives with respect to nuclear displacements are available. However, this availability is not mandatory and hence, spectral predictions may as well be achieved by means of normal mode scan calculations for high-level electronic structure methods for which analytic gradients have not been implemented.

9.26.4.1 Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and Resonance Raman Spectra for $1^{-1}A_g \rightarrow 1^{-1}B_u$ Transition in trans-1,3,5-Hexatriene

The following input file for an ORCA run invokes the calculation of the excited-state origin displacements along all normal modes by means of energy and excited state gradient calculations at the ground-state equilibrium geometry. The method is valid for the IMDHO model for which the excited-state energy gradient along a given normal mode and corresponding origin shift are related in a very simple way.
In the ORCA run the TDDFT excited state gradient calculations are performed on top of a TDDFT calculation. Note, that the numbers of the excited-states which have to be included into analysis and input file for spectral simulations must be specified after the States keyword in the %rr block. They should also be consistent with the required number of roots in the %tddft block. The 1-1B\textsubscript{u} excited state appears to be the first root in the TDDFT calculation. Therefore, NRoots=1 in the %tddft block, and States=1 in the %rr block. One should also provide the name of the file containing the nuclear Hessian matrix via the HessName keyword in the %rr block. Here we used the .hess file obtained in a frequency calculation at the BHLYP/SV(P) level of theory.

After the ORCA calculation you will find in your directory a file called example010.asa.inp that is appropriate to be used together with the orca.asa program as defined in the preceding sections.
%sim

model IMDHO
method Heller
AbsRange 5000.0, 100000.0
NAbsPoints 0

FlRange 5000.0, 100000.0
NFLPoints 0

RRPRange 5000.0, 100000.0
NRRPPoints 0

RRSRange 0.0, 4000.0
NRRSSPoints 4000

RRS_FWHM 10.0

AbsScaleMode Ext
FlScaleMode Rel
RamanOrder 0

EnInput E0

CAR 0.890

end

%fit

Fit false
AbsFit false
FlFit false
RRPFit false
RRSFit false
method Simplex
WeightsAdjust true

AbsRange 0.0, 10000000.0
FlRange 0.0, 10000000.0
RRPRange 0.0, 10000000.0
RRSRange 0.0, 10000000.0
AbsName ""
FlName ""

ExpFlScaleMode Rel
ExpAbsScaleMode Rel

CWAR -1.000
CWAF -1.000

NMaxFunc 100
MWADRelTol= 1.000000e-004

SFRRPSimStep= 1.000000e+002
SFRRSSimStep 1.000000e+002
FREQGStep 1.000000e+001
This input file can be used to construct theoretical absorption and rR spectra. In order to compare experimental and theoretical rR spectra, it is necessary to use in both cases excitation energies that are approximately in resonance with the same vibrational transitions in the absorption spectrum. Therefore, in the case of the absorption spectrum with resolved or partially resolved vibrational structure it is necessary to modify the transition energies in the %el states such that they coincide with the experimentally observed 0-0 vibrational peaks. It is also desirable to roughly adjust homogeneous and, possibly, inhomogeneous linewidth parameters such that the experimental and calculated absorption spectra show similar slopes in the preresonance region (below the 0-0 transition). Then the assignment of experimental rR spectra can be done on the basis of comparison.
with the theoretical rR spectra calculated for the corresponding experimental excitation energies. For the sake of consistency and simplicity it is better to use those excitation energies which fall into the preresonance region and/or are in resonance with the 0-0 transition. In the case of diffuse absorption spectra (i.e. those not showing resolved vibrational structure) it is also necessary to adjust the theoretical transition energies and linewidth parameters such that experimental and calculated positions of absorption maxima roughly coincide, and corresponding slopes below the maxima have a similar behavior. According to above mentioned considerations one needs to modify the %el_states block in the file example010.asa.inp:

```
$el_states
1
1 39808.0 150.00 0.00 1.0725 3.3770 -0.0000
```

The calculated absorption spectrum obtained by providing AbsScaleMode = Rel, AbsRange = 39000, 49000 and NAbsPoints = 2000 is shown in Figure 9.44. Upon comparison with the experimental spectrum one can notice that the BHLYP functional gives relatively small discrepancies with somewhat lower intensity in the low-frequency edge and larger intensity on the high-energy side of the spectrum. Besides, there is a noticeable mismatch in the separation between individual vibronic peaks which is due to overestimation of vibrational frequencies by the BHLYP functional (typically by ≈ 10%).

You can arbitrarily vary various normal coordinate displacements in %sdnc block within 10–30% of their values in order to observe modifications of the calculated spectrum. This will tell you how these parameters influence the spectrum and probably it will be possible to obtain better initial guesses for the fit. In the present example you will find that reduction of the absolute value of the displacement parameter corresponding to the ninth mode by ≈ 10%, and reduction of vibrational frequencies by ≈ 10% can noticeably improve the spectral envelope. Such a quick analysis suggests that experimentally observed peaks in the absorption spectrum represent different vibrational transitions corresponding to a single electronically excited state rather than to different electronic excitations. This conclusion will be confirmed upon establishing the fact that the absorption and rR spectra can be successfully fitted based on the assumption of a single electronic transition.

In order to calculate the rR spectrum for experimental excitation energies you need to specify its value through RRSE keyword in %sim block as well as possibly to modify the parameters related to the spectral range and linewidth of rR bands which are suitable for comparison with the experimental rR spectrum:

```
# excitation energies (cm^{-1}) for which rR spectra will be calculated:
RRSE 39000

# full width half maximum of Raman bands in rR spectra (cm^{-1}):
RRS_FWHM 20

RSRange 0, 4000 # spectral range for simulation of rR spectra (cm^{-1})
NRRSPoints 4000 # number of points to simulate rR spectra (cm^{-1})

# resonance Raman intensities will be calculated
# for all vibrational states with excitation number
# up to RamanOrder:
RamanOrder 3
```
The calculated rR spectrum is shown in Figure 9.44. In the input we have invoked the calculation of rR intensities for the transitions with up to 3 vibrational quanta in the final vibrational state (RamanOrder = 3). Make sure that the rR intensity pattern in the given spectral range does not change noticeably upon further increase of this parameter. Typically, the larger are the normal coordinate displacements the greater order of Raman scattering is required in the calculation to account for all the most intense transitions in the rR spectrum. The inclusion of vibrational transitions beyond the fundamentals is a particular feature of the orca.asa program.

Comparison of the calculated and experimental rR spectra (Figure 9.44) mainly shows discrepancies in the values of the Raman shifts that are mainly related to the low accuracy of the vibrational frequencies obtained at the BHLYP level (typically overestimated by $\approx 10\%$). However, the intensity patterns of the calculated and experimental rR spectra show very nice agreement with experiment that is already sufficient to assign the experimental peaks to individual vibrational transitions. This can be done upon examination of file example010.asa.o3.rss.39808.stk which provides intensity, Raman shift, and specification for each vibrational transition. It is actually one of the most consistent procedures that enables one to identify different fundamental, overtone and combination bands in the experimentally observed rR spectrum. Such an assignment is a necessary prerequisite for the fit. The current example is relatively straightforward since the spectral region 1–1700 cm$^{-1}$ is actually dominated by fundamental bands while the most intense overtone and combination transitions occur at higher frequencies. However, in many cases even the low-frequency spectral range is characterized by significant contributions from overtone and combination bands that sometimes are even more intense than fundamental transitions! Thus, quantum chemical calculations can greatly facilitate...
the assignment of experimental rR bands.

After having performed the assignment it is advisable to discard those modes from the analysis that are not involved in any of the experimentally observed fundamental, overtone, or combination rR bands with noticeable intensities. In the present example these are the modes 6, 8, 10–12 from the input file given above. For these modes it is implied that the fitted displacement parameters are zero. You will find that the calculated displacement values are rather small indeed. Also it is advisable to change the ground-state vibrational frequencies in the $\texttt{vib.freq.gs}$ block to their experimental values.

Below is the modified input file for the fit run:

```plaintext
# example010-01.asa.inp
#
# ASA input
#
%sim
    model IMDHO
    method Heller
end

%fit
    Fit true
    AbsFit true
    RRSFit true
    AbsExpName "hex-abs.dat"
    ExpAbsScaleMode Rel
    CWAR 5.0
    NMaxFunc 1000
    SDNCStep 0.5
end

$el_states
1
1 39808.0  150.00  0.00  -0.8533  -3.3690  -0.0000

$el_states_c
1
1 1 1 0 0 0 0 0

$vib_freq_gs
7
1  354.0
2  444.0
3  934.0
4  1192.0
5  1290.0
6  1403.0
7  1635.0
```
$sdnc
 7 1
 1
 1 -0.594359
 2 0.369227
 3 -0.132430
 4 -0.727616
 5 0.406841
 6 0.177617
 7 -1.412258

$sdnc_c
 7 1
 1
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7

$rrs_exp
 1
 1
Ex 39809.0
NTr 11
 1
 int 10.0 1.0
 modes 1
 quanta 1;
 2
 int 5.0 1.0
 modes 2
 quanta 1;
 3
 int 1.5 1.0
 modes 3
 quanta 1;
 4
 int 21.0 1.0
 modes 4
 quanta 1;
 5
 int 7.5 1.0
 modes 5
 quanta 1;
 6
 int 2.0 1.0
 modes 6
 quanta 1;
 7
 int 46.0 1.0
 modes 7
In addition to the experimental intensities of fundamental bands the input file also contains the information about some overtone and combination transitions. Note that it is not really necessary to include all of them into the fit, in particular if some of the rR bands are strongly overlapping with each other.

Fitted normal coordinate displacements of the excited-state origin show nice agreement with the published values:

```
$sdnc
7 1
 1    -0.638244
 2     0.455355
 3    -0.229126
 4    -0.854357
 5     0.501219
 6     0.197679
 7   -1.292997
```

NOTE

- It is not really important to employ the BLYP/SVP(P) method in the frequency calculations in order to obtain the \texttt{.hess} file (this was merely done to be consistent with the TDDFT/BLYP/SVP(P) method for the excited-state model parameters calculation). The frequency calculations can for example be carried out at the BP86/TZVP or RI-SCS-MP2/TZVP level of theory. This will provide displacements pattern very similar to that of the BLYP/SVP(P) method, but much more accurate vibrational frequencies which will further facilitate the assignment of rR spectra (Figure 9.44). However, such a procedure can be inconsistent if the two methods give noticeably different normal mode compositions and/or vibrational frequencies. From our experience it can lead to significant overestimation of the excited-state displacements for some low-frequency modes.
It is known that predicted dimensionless normal coordinate displacements critically depend on the fraction of the “exact” Hartree-Fock exchange (EEX) included in hybrid functionals. In general no universal amount of EEX exists that provides a uniformly good description for all systems and states. Typically, for a given molecule either the BHLYP/TZVP (50% of EEX) or B3LYP/TZVP (20% of EEX) methods yields simulated spectra that compare very well with those from experiment if vibrational frequencies are appropriately scaled.

9.26.4.2 Important Notes about Proper Comparison of Experimental and Quantum Chemically Calculated Resonance Raman Spectra

In order to compare experimental and theoretical rR spectra, it is necessary to use in both cases excitation energies that are approximately in resonance with the same vibrational transitions in the absorption spectrum. Therefore, in the case of diffuse absorption spectra (i.e. those not showing resolved vibrational structure) one needs to adjust the transition energies and linewidth parameters in the `el_states` block such that the envelopes of the experimental and theoretical spectra roughly coincide, and then to employ experimental values of excitation energies to construct theoretical rR spectra. Typically in the case of diffuse absorption spectra rR profiles are rather smooth. Therefore, even though excitation energies are not in resonance with the same vibrational transition in the absorption spectrum, the rR spectra are not expected to vary significantly in the case of such mismatch.

In the case of the absorption spectrum with resolved or partially resolved vibrational structure it is necessary to modify the transition energies in the `el_states` block such that the calculated and experimentally observed 0-0 vibrational peaks coincide, and modify linewidth parameters so that the low-energy slopes in the calculated and experimental spectra have a similar behavior.

Consider a single-mode model system for which “experimental” and calculated absorption spectra are shown in Figure 9.45.

Comparison of the calculated and experimental spectra shows that some adjustment of the linewidth parameters is necessary before construction of theoretical rR spectra. One can directly compare calculated and experimental rR spectra upon the excitation at 16200 cm$^{-1}$ which is in resonance with the 0-0 vibronic band. However, it is not consistent to use experimental values of the excitation energy in the calculation of rR spectrum which is in resonance with one of the other vibronic bands since the separation between vibrational peaks in the experimental and calculated spectra is different whereby positions of the peaks in both spectra do not coincide. Instead one should use the excitation energy which corresponds to the same vibronic peak in the calculated absorption spectrum as in the experimental one. Alternatively, one can adjust theoretical value of vibrational frequency such that positions of corresponding vibronic peaks in the spectra coincide, and then use experimental values of excitation energies for the calculation of rR spectra.

9.26.4.3 Example: Normal Mode Scan Calculations of Model Parameters for 1-1$A_g \rightarrow 1-1B_u$ Transition in trans-1,3,5-Hexatriene

If excited state gradients are not available (which is the case for many of the electronic structure methods supported by ORCA), you have to resort to a more laborious procedure – single point calculations at
Figure 9.45: Experimental and theoretical absorption spectra for a single-mode model system. The calculated spectrum is adjusted such that the position of 0-0 peak coincide with the experimental one.

geometries that are displaced along the various normal modes of the system. This roughly corresponds to taking numerical derivatives – however, once this extra effort is invested more information can be obtained from the calculation than what would be possible from an analytic derivative calculation.

The present example illustrates the application of normal mode scan calculations for the evaluation of excited state harmonic parameters that are necessary to simulate optical spectra within the IMDHO model. This method can be applied with any method like CIS, CASSCF, MRCI or TD-DFT.

The reference wavefunctions for the multireference calculations reported below are of the state-averaged CASSCF (SA-CASSCF) type. The complete active space CAS(6,6) includes all 6 valence shell π-orbitals. The average is taken over the first four states which was found necessary in order to include the ground state and the strongly allowed 1-1B_u state.

```
# example011.inp
#
# CASSCF normal mode scan calculations
#

# first do single point RHF calculation
! RHF TZVP TightSCF

* xyz 0 1
   C -6.002759  0.680006  0.000000
   H -6.966741  1.204366  0.000000
```
perform SA-CASSCF calculation upon appropriate rotation of MOs

new_job

! RHF TZVP TightSCF

```
%scf
  rotate \{23,27,90\} end
end

%casscf
  nel 6
  norb 6
  mult 1
  nroots 4
end
```

* xyz 0 1

C 1.187413 1.500920 0.000000
H 2.146702 0.969304 0.000000
C 1.187413 2.850514 0.000000
H 0.254386 3.420500 0.000000
H 2.116263 3.422544 0.000000
C 0.002759 -0.680006 0.000000
H 0.966741 -1.204366 0.000000
C -1.187413 -1.500920 0.000000
H -2.146702 -0.969304 0.000000
C -1.187413 -2.850514 0.000000
H -0.254386 -3.420500 0.000000
H -2.116263 -3.422544 0.000000

*

do normal mode scan calculations
to map CASSCF ground and excited-state PESs

new_job

! RHF TZVP TightSCF NMScan

```
%casscf
  nel 6
  norb 6
```

*
The orca.asa Program

```
mult 1
nroots 4
end

%rr
HessName "hexatriene_bp86.hess"
NMList 10,11,18,24,26,28,29,31,32
NSteps 6
FreqAlter true
EnStep 0.0001
State 3
end

* xyz 0 1
C -0.002759 0.680006 0.000000
H -0.966741 1.204366 0.000000
C 1.187413 1.500920 0.000000
H 2.146702 0.969304 0.000000
C 1.187413 2.850514 0.000000
H 0.254386 3.420500 0.000000
H 2.116263 3.422544 0.000000
C 0.002759 -0.680006 0.000000
H 0.966741 -1.204366 0.000000
C -1.187413 -1.500920 0.000000
H -2.146702 -0.969304 0.000000
C -1.187413 -2.850514 0.000000
H -0.254386 -3.420500 0.000000
H -2.116263 -3.422544 0.000000
*
```

The file containing the hessian matrix ("hexatriene_bp86.hess") was obtained from the BP86/TZVP frequency calculations. The keyword `NMList` provides the list of the normal modes to be scanned. These should be only the totally symmetric vibrations, since only they can be significant for absorption and resonance Raman spectra within the constraints of the IMDHO model. The `FreqAlter` flag indicates whether frequency alterations are assumed in the post-scan potential surface fit. The Parameter `EnStep` is used to select the appropriate step during the scan calculations. The value is chosen such that the average energy change (in Eh) in both directions is not less than this parameter.
9.27 Ab initio Molecular Dynamics Simulations

Recently, it was decided to include an ab initio molecular dynamics (AIMD) module in ORCA19. As a plethora of different electron structure methods with analytical gradients is already implemented, all these methods are now available also for MD simulations, offering a wide range of accuracy/performance tradeoffs.

This is the first version of ORCA which contains the MD module, and the code is not yet mature. Only a small subset of features one would typically expect in such a module is currently implemented. In future releases, many new features and methods will (hopefully) be added to this part of the program. However, we will do our best to keep a strict backward compatibility, such that the sample inputs from this section will remain valid in all future releases.

9.27.1 Input Format

The molecular dynamics module is activated by specifying “\texttt{MD}” in the simple input line. The actual MD input which describes the simulation follows in the “\texttt{%md}” section at some later position in the input file. The contents of this section will subsequently be referred to as “MD input”.

```
! MD PBE def2-SVP
%md
  timestep 0.5 fs
  initvel 350 k
  thermostat berendsen 350 k timecon 10 fs
  dump position stride 1 file "trajectory.xyz"
  run 200
end
* xyz 0 1
O   -4.54021  0.78439  0.09307
H   -3.64059  0.38224 -0.01432
H   -4.63463  1.39665 -0.67880
*
```

Please note that the MD input is not processed by ORCA’s main parser, but by a dedicated parser in the MD module. Therefore, the MD input is not required to obey the general ORCA syntax rules. The syntax will be described in the following.

In contrast to general ORCA input, the MD input is not based on keywords, but on commands, which are executed consecutively on a line-by-line basis starting at the top (like, e. g., in a shell script). This means that identical commands with different arguments may be given, coming into effect when the interpreter reaches the corresponding line. This enables to perform multiple simulations (e. g., pre-equilibration and production run) within a single input file:

19Strictly speaking, these simulations are Born–Oppenheimer molecular dynamics simulations (BOMD), because they approximately solve the time-independent Schrödinger equation to compute gradients and then move the atoms according to these gradients.
Ab initio Molecular Dynamics Simulations

At some point in the future, it is planned to add variable definitions, loops, and conditional branching to the MD input. This will enable even larger flexibility (e.g., to run a simulation until a certain quantity has converged).

Like in standard ORCA input, comments in the MD input are initiated by a “#” sign and span to the end of the current line. Commands can be started both at the beginning of a line and after a command. The only place where a “#” is not treated as start of a comment is inside of a string literal (e.g., in file names).

Some more MD input syntax rules:

- The MD input is generally not case-sensitive. The only exception are file names on platforms with case-sensitive file systems (Linux).
- Empty lines are allowed.
- Commands and options are separated by space or tabulator characters. Any combination of these characters may be used as separator.
- Both DOS and UNIX line break style is acceptable.
- Multiple commands in the same line are not allowed.
- A command with a long argument list may not span over multiple lines (maybe this will be relaxed in the future).

Technically speaking, ORCA will then be a turing-complete script interpreter, such that any computational problem can be solved with ORCA :-)

20 This will enable even larger flexibility (e.g., to run a simulation until a certain quantity has converged).
Commands

As already noted above, the central item of the MD input is a command. Each input line contains (at most) one command, and these commands are executed in the given order. A command typically takes one or more arguments, which are given behind the command name, separated by whitespaces or tabulator characters. The order of the arguments for a command is fixed (see command list in section 9.27.2). Commands may have optional arguments, which are always specified at the end of the argument list, after the last non-optional argument. If there exist multiple optional arguments for a command, not all of them need to be specified; however, they need to be specified in the correct order and without gaps:

```
%md
  command arg1 arg2 arg3       # fine
  command arg1 arg2 arg3 optarg1 # fine
  command arg1 arg2 arg3 optarg1 optarg2 # fine
  command arg1 arg2 arg3 optarg2  # will not work
end
```

Apart from arguments and optional arguments, commands can also have modifiers. These can be considered as “sub-commands”, which modify a given command, and may possess their own argument lists. Modifiers generally follow after all non-optional and optional arguments, and they may not possess optional arguments on their own. If a command has multiple modifiers, the order in which they are given is not important.

In the following input example, “mod1” and “mod2” are modifiers of “command”. “mod1” takes one argument, “mod2” does not take arguments:

```
%md
  command arg1                  # fine
  command arg1 optarg1          # fine
  command arg1 mod1 modarg1 mod2 # fine
  command arg1 mod2             # fine
  command arg1 mod2 mod1 modarg1 # fine
  command arg1 optarg1 mod1 modarg1 mod2 # fine
end
```
To make this abstract definition a little more illustrative, please consider again one line from the input sample at the beginning of this section:

```plaintext
%md
dump position stride 1 file "trajectory.xyz"
end
```

Here, “dump” is the command, which takes one non-optional argument to specify which quantity shall be dumped - in this case, “position”. The “dump” command has two modifiers, namely “stride” and “file”. The former takes one integer argument, the latter a string argument. Swapping the two modifiers (together with their respective arguments, of course) would not change the behavior.

Physical Units

In many cases, it is required to specify quantities which bear a physical unit in an input file (e.g., temperature, time step lengths, ...). For many quantities, there are different units in widespread use, which always leads to some confusion (just consider the “kcal vs kJ” case). ORCA handles this problem by defining default units for each quantity and requiring that all quantities are given in their default unit. ORCA’s default units are the atomic units, which are heavily used in the quantum chemistry community, but not so much in the molecular dynamics community. As an *ab initio* molecular dynamics module exists in the small overlap region of both communities, some “unit conflicts” might arise. To prevent those from the beginning, it is allowed to specify units of personal choice within ORCA’s MD input.

Luckily, this is as simple and convenient as it sounds. The parser of the MD module checks if a unit is given after a numeric constant, and automatically converts the constant to the internal default unit. If no explicit unit is given, the default unit is assumed. Please note that the default units within the MD module are not necessarily atomic units (see table below).

```plaintext
%md
timestep 1.0 fs
timestep 41.3 au # identical
timestep 1.0 # identical, as default time unit in MD module is fs
end
```

In the following, all units which are currently known to the MD module’s parser are listed, sorted by physical quantities. The default unit for each quantity is printed in **bold letters**. Additive constant and factor are applied to convert a unit into the default unit. The additive constant is applied before the factor. A “−” sign means that the constant/factor is not applied. More units will be probably added in the future.
<table>
<thead>
<tr>
<th>Unit Symbol</th>
<th>Additive constant</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angstrom</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bohr</td>
<td>-</td>
<td>0.5291</td>
</tr>
<tr>
<td>Time Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ps</td>
<td>-</td>
<td>1000</td>
</tr>
<tr>
<td>au</td>
<td>-</td>
<td>0.02419</td>
</tr>
<tr>
<td>Temperature Units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelvin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Celsius</td>
<td>273.15</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>273.15</td>
<td>-</td>
</tr>
</tbody>
</table>

9.27.2 Command List

In the following, a list of all commands currently known to the MD module will be given. The description of each command starts with a small box which contains the command's name and a table of arguments and modifiers. The last-but-one column in the table specifies the type of each argument. Possible types are “integer”, “real”, “string”, and “keyword”. In the latter case, the last column contains a list of allowed keyword values in \{ braces \}. If the type is “real” and is a physical quantity with unit, the quantity is given in the last column in [square brackets]. This table is followed by a text description of the command.

timestep

<table>
<thead>
<tr>
<th>Mandatory Arguments:</th>
<th>dt</th>
<th>real</th>
<th>[time]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Arguments:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifiers:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sets the simulation time step used to integrate the equations of motion for all following runs to dt. If your system contains hydrogen atoms, a time step not above 0.5 fs is recommended. If only heavier atoms are present, a larger time step may be chosen.

If this command is not invoked before a “run” call, a default time step of 0.5 fs will be set before starting the run.

initvel

<table>
<thead>
<tr>
<th>Mandatory Arguments:</th>
<th>temp</th>
<th>real</th>
<th>[temperature]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Arguments:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifiers:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initializes the velocities of the atoms by random numbers based on a Maxwell–Boltzmann distribution, such that the initial temperature matches $temp$ (see also section 9.27.3.2). Please note that this overwrites all velocities, so do not call this command when your system is already equilibrated (*e. g.*, to change temperature – use a thermostat instead).

The total linear momentum of the initial configuration is automatically removed, such that the system
will not start to drift away when the simulation begins. This only concerns the initial configuration. Total linear momentum might build up during the simulation due to numeric effects.

If this command is not invoked before a “run” call, the atom velocities will be initialized to zero before starting the run.

<table>
<thead>
<tr>
<th>thermostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Arguments:</td>
</tr>
<tr>
<td>Optional Arguments:</td>
</tr>
<tr>
<td>Modifiers:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Changes the atom thermostat settings for subsequent simulation runs. type sets the thermostat type. Currently, only the Berendsen thermostat is implemented. Use none as type to disable the thermostat.

The temperature argument sets the target temperature to which the system is thermostated. If this argument is omitted, the temperature from the last call to the initvel command is used (if no such call was invoked before, the simulation is aborted).

The timecon modifier sets the coupling strength of the thermostat (large time constants correspond to weak coupling). The default value is 10 fs, which is a relatively strong coupling. Values in the range of $10 \ldots 100$ fs are reasonable (see also section 9.27.3.3).

The massive modifier activates massive thermostating, which means that each degree of freedom is assigned to an independent thermostat. This is useful for pre-equilibration runs (helps to reach energy equipartition) and should not be used during production runs, as it heavily distorts the dynamics.

Please note that a Berendsen thermostat will show no effect if the system’s temperature is 0 K, as it works by multiplying the velocities with a factor.

<table>
<thead>
<tr>
<th>dump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Arguments:</td>
</tr>
<tr>
<td>Optional Arguments:</td>
</tr>
<tr>
<td>Modifiers:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Specifies how to write the output trajectory of the simulation. The quantity argument can be one of the keywords position, velocity, and force.

The stride modifier specifies to write only every n-th time step to the output file (default is $n = 1$).

The format modifier sets the format of the output file. Currently, only the xyz format is implemented, which is also the default format.

The file modifier gives the output file name.

Use the none modifier to disable writing this quantity to an output file.

The default is to write a position trajectory with stride 1 and format xyz to a file named “proj-posstrj.xyz”, where “proj” is the base name of the ORCA project. If you want to create no output trajectory at all, use “dump position none”.
printlevel

<table>
<thead>
<tr>
<th>Mandatory Arguments:</th>
<th>value</th>
<th>keyword</th>
<th>{ low, medium, high, debug }</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Arguments:</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Modifiers:</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Controls the amount of information which is printed to the screen during the simulation. `debug` should be used only in rare cases, because it might slow the simulation down heavily. The default value is `medium`.

scflog

<table>
<thead>
<tr>
<th>Mandatory Arguments:</th>
<th>value</th>
<th>keyword</th>
<th>{ discard, last, append, each }</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Arguments:</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Modifiers:</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Controls how/if the detailed output from the electron structure calculation (i.e., integrals, scf, gradient, ...) will be written to log files. `discard` completely discards the output. `last` only keeps the last output for each program call (useful to read error message if simulation aborts). `append` redirects all the output into one single log file, appending each step at the end of the file. `each` writes the output for each step and each program to different log files, which have the step number in their file names.

To print the detailed output of the electron structure calculation to the screen instead, see the `printlevel` command.

The default value is `append`.

run

<table>
<thead>
<tr>
<th>Mandatory Arguments:</th>
<th>n</th>
<th>integer</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Arguments:</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Modifiers:</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Performs a simulation run over \(n \) time steps with the current settings, applying the Velocity Verlet algorithm to solve the equations of motion (see section 9.27.3.1). You might want to call commands like `timestep`, `initvel`, `thermostat`, and `dump` before.

If no call to `initvel` occurred before this command, the atom velocities are initialized to zero.

If no call to `timestep` occurred before this command, a default time step of 0.5 fs is set.

9.27.3 Scientific Background

In this section, some of the methods and algorithms used within ORCA’s MD module are described in some more depth, with a focus on the scientific background.
9.27.3.1 Time Integration and Equations of Motion

The central concept of molecular dynamics simulations is to solve Newton’s equations of motion (at least as long as the atom cores are treated classically). These read

\[\ddot{x}_i(t) = \frac{F_i}(m_i), \quad i = 1 \ldots N, \quad (9.309) \]

where \(x_i(t) \) denotes the position of the \(i \)-th degree of freedom at time \(t \), \(m \) the corresponding mass, and \(F_i \) the force acting upon this degree of freedom. As the force may depend on all positions, this is a coupled system of \(N \) ordinary differential equations (ODEs). In the general case, it is not possible to obtain an analytical solution of this system, and therefore numerical solution methods are applied. These are almost always based on discretizing the time variable and approximately solving the system by taking finite time steps.

Of all different methods to numerically solve coupled systems of ODEs, the *symplectic integration schemes* for Hamiltonian systems attained special attention in the field of molecular dynamics. They possess a very good conservation of energy. In contrast to many other methods, they show a reasonable behavior when investigating the long-term evolution of chaotic Hamiltonian systems (like, e.g., MD simulations). Three popular such symplectic integration schemes are the Leapfrog algorithm, the Verlet method, and the Velocity Verlet integrator. Despite their different names, they are very similar. It can be easily seen that the Verlet and Velocity Verlet methods are algebraically equivalent (by eliminating the velocities from the Velocity Verlet algorithm), and it can be shown that, eventually, all three methods are identical.\(^{21}\) All three methods are explicit integration methods with a global error of order 2, and therefore one order better than the semi-implicit Euler method, which is also a symplectic integration scheme. As the Velocity Verlet algorithm is the only of these three methods which yields velocities and positions at the same point in time, many popular molecular dynamics packages (CP2k, CPMD, LAMMPS) use this scheme. For the same reasons, the ORCA MD module uses the Velocity Verlet algorithm as time integration method.

The general equations of the Velocity Verlet scheme read

\[\ddot{x}(t + \Delta t) = \ddot{x}(t) + \ddot{v}(t) \Delta t + \frac{1}{2} \ddot{a}(t) \Delta t^2, \quad (9.310) \]

\[\ddot{v}(t + \Delta t) = \ddot{v}(t) + \ddot{a}(t) + \ddot{a}(t + \Delta t) \Delta t. \quad (9.311) \]

By inserting

\[\ddot{a}_i(t) = \frac{F_i(t)}{m_i}, \quad i = 1 \ldots N, \quad (9.312) \]

one arrives at the two-step method

\[\ddot{x}_i(t + \Delta t) = \ddot{x}_i(t) + \ddot{v}_i(t) \Delta t + \frac{F_i(t)}{2m_i} \Delta t^2, \quad i = 1 \ldots N, \quad (9.313) \]

\[\ddot{v}_i(t + \Delta t) = \ddot{v}_i(t) + \frac{F_i(t) + F_i(t + \Delta t)}{2m_i} \Delta t, \quad i = 1 \ldots N, \quad (9.314) \]

which is implemented in ORCA’s MD module.

9.27.3.2 Velocity Initialization

In the beginning of a MD simulation, it is often the case that only the initial positions of the atoms are known, but not the velocities. As MD simulations are performed at some finite temperature, it is a good idea to initialize the velocities in a way such that the desired simulation temperature is already present in the beginning. In statistical mechanics, it is often assumed that the velocity distribution of atoms is given by a Maxwell–Boltzmann distribution (which is strictly only the case in idealized gases). Therefore, it is a reasonable choice to initialize the atom’s velocities according to the Maxwell–Boltzmann equation in the beginning of a MD simulation. The goal is to find an initial velocity distribution in which each degree of freedom possesses a similar amount of energy, such that the equipartition theorem is approximately fulfilled.

The scalar Maxwell–Boltzmann velocity distribution (leaving out the normalization factor) at temperature \(T \) is given by

\[
f(v) = v^2 \exp \left(-\frac{mv^2}{2k_B T} \right).
\]

To initialize the particle’s velocities such that this distribution function is fulfilled, one starts with a series of normal-distributed random numbers with mean 0 and variance 1, denoted by \(\mathcal{N}(0, 1) \). The cartesian velocity components for each atom are then computed by

\[
v_{i,\alpha} := \sqrt{\frac{k_B T}{m_i}} \mathcal{N}(0, 1), \quad \alpha \in \{x, y, z\}, \quad i = 1 \ldots N.
\]

As the C++98 standard does not offer a platform-independent way of obtaining normal-distributed random numbers, these are internally computed from uniformly distributed random numbers by applying the Box–Muller transform: Assuming that \(u_1 \) and \(u_2 \) are two uniformly distributed random numbers from the interval \([0, 1]\), the equations

\[
z_1 := \sqrt{-2 \log(u_1)} \cos(2\pi u_2),
\]

\[
z_2 := \sqrt{-2 \log(u_1)} \sin(2\pi u_2)
\]

yield two new random numbers \(z_1 \) and \(z_2 \) which obey a normal distribution with mean 0 and variance 1.

After the velocities have been initialized, the total linear momentum of the system will probably have some finite value other than zero. As the linear momentum is (approximately) conserved within a molecular dynamics simulation, this would result in the system drifting away into one direction during the course of the simulation, which is probably not desired. Therefore, the total momentum is explicitly set to zero after the Maxwell–Boltzmann initialization:

\[
\vec{P}_{\text{tot}} := \sum_{i=1}^{N} m_i \vec{v}_{i,\text{old}},
\]

\[
\vec{v}_{i,\text{new}} := \vec{v}_{i,\text{old}} - \frac{\vec{P}_{\text{tot}}}{m_i N}, \quad i = 1 \ldots N.
\]
This, of course, might change the initial temperature. Therefore, a final step is performed, in which all velocity vectors are multiplied with a factor that is determined such that the initial temperature exactly matches the target value.

9.27.3.3 Thermostats

After the initial velocities have been initialized to some finite temperature, it might be assumed that one can simply start the time integration of the dynamical system (equivalent to the \textit{NVE ensemble}), and the starting temperature would be approximately preserved. In a real system, however, there are (at least) two reasons why the temperature will strongly deviate from the initial value already after a few steps. First, the initial velocity distribution only considers the kinetic energy of the particles, but some amount of energy will be exchanged with the potential energy contribution (e.g., bond stretching) immediately, altering the temperature. Secondly, the numerical errors introduced due to the finite time step (and in case of \textit{ab initio} MD, also due to the approximate forces) will lead to a drift in energy and therefore in temperature. To counter these effects, it is often desirable to have a temperature control during the course of the simulation (which then runs in the \textit{NVT ensemble}), which is called a thermostat.

There exist many different kinds of thermostats, ranging from simple expressions up to highly complex dynamical systems on their own. But all of them share a common issue: If the thermostat is coupled only weakly to the system, the temperature will change anyway. However, if the thermostat is coupled more strongly to the system (i.e., intervenes stronger), then the dynamics of the simulation will change, no longer resembling the undisturbed original dynamics which one wants to investigate. Therefore, it is always a tradeoff between temperature stability and disturbed dynamics to decide how strong a thermostat should be coupled to the system.

At the moment, only the simple Berendsen thermostat is implemented in the \textsc{Orca} MD module. More thermostats (e.g., the widely used Nosé–Hoover thermostat) will follow in a future release.

Berendsen Thermostat

The Berendsen thermostat is similar to the simple velocity rescaling scheme, but enhanced by a time constant τ to control the coupling strength. Let T_0 be the desired target temperature and T the current temperature of the system. Then the temperature gradient caused by the thermostat can be expressed as

$$\frac{dT}{dt} = \frac{T_0 - T}{\tau}.$$ \hfill (9.321)

Considering the fact that discrete time steps Δt are used, the correction factor for the velocities in each time step is determined by

$$f := \sqrt{1 + \frac{\Delta t(T_0 - T)}{T \tau}}.$$ \hfill (9.322)

The new velocities are then easily obtained as

$$\vec{v}_{i,\text{new}} := f \cdot \vec{v}_{i,\text{old}}, \quad i = 1 \ldots N.$$ \hfill (9.323)
Let’s consider some special cases. If \(\tau = \Delta t \), the whole temperature deviation from \(T_0 \) is corrected immediately, such that the temperature is always exactly kept at the target value. This is identical to simple velocity rescaling (without any time constant), which is known to work poorly for most systems (a single harmonic oscillator would, e. g., simply explode). With a larger time constant \(\tau > \Delta T \), the coupling strength is reduced, leading to reasonable results. Typically, a value of \(\tau \) in the range of \(20 \ldots 200 \cdot \Delta T \) will be applied. For \(\tau \to \infty \), the coupling strength goes to zero, such that the thermostat is no longer active. Values of \(\tau < \Delta T \) are not allowed.

From the formula, it becomes clear that a Berendsen thermostat will have no effect if the system has a temperature of 0 K (or in the “massive” case: if the considered degree of freedom has 0 K), because it is based on multiplying the velocities by a factor to modify the temperature. Therefore, this type of thermostat can’t be used to heat a system up starting from 0 K.

9.28 Implicit Solvation Models

Implicit solvation models play an important role in quantum chemistry. Without resorting to placing multiple solvation shells of solvent molecules implicit solvent models are able to mimic the effect of a specific solvent on the solute.

The implicit solvent models implemented in ORCA are

- C-PCM [396] : The Conductor-like Continuum Polarization Model
- SMD [397] : The Solvation Model based on Density

The keywords to control these solvent models have been kept very similar to each other, so it is easy to switch between the three.

9.28.1 The Conductor-like Polarizable Continuum Model (C-PCM)

The conductor-like polarizable continuum model (C-PCM) is an implementation of the conductor-like apparent surface charge methods. In these models the solute is placed in a cavity of roughly molecular shape. The solvent reaction field is described by apparent polarization charges on the cavity surface, which are in turn determined by the solute. The cavity in ORCA is constructed using the GEPOL [398–400] algorithm, either as solvent-excluding surface, or solvent-accessible surface. The ORCA C-PCM implementation closely follows the C-PCM [396] paper. The molecular Hamiltonian is perturbed by the solvent:

\[
\hat{H} = \hat{H}^0 + \hat{V}
\]

where \(\hat{H}^0 \) is the Hamiltonian of the isolated molecule, whereas \(\hat{V} \) describes the solute – solvent interactions. The SCF procedure leads to the variational minimization of the free energy of the solute, \(G \):

\[
G = \langle \Psi | \hat{H}^0 | \Psi \rangle + \frac{1}{2} \langle \Psi | \hat{V} | \Psi \rangle
\]
Using the conductor-like boundary condition the electrostatic potential can be determined by

\[V(\vec{r}) + \sum_{i}^{\text{tesserae}} V_{q_i}(\vec{r}) = 0 \]
\[\text{(9.326)} \]

where \(V \) and \(V_{q_i} \) are the electrostatic potential due to the solute and to the polarization charges and \(\vec{r} \) is a point on the cavity surface. The vector of polarization charge can then be determined by

\[\mathbf{AQ} = -\mathbf{V} \]
\[\text{(9.327)} \]

where the vector \(\mathbf{V} \) contains the electrostatic potential due to the solute on the tesserae. The elements of the matrix \(\mathbf{A} \) are

\[A_{ii} = 1.07 \sqrt{\frac{4\pi}{S_i}} \]
\[\text{(9.328)} \]

\[A_{ij} = \frac{1}{|\vec{r}_i - \vec{r}_j|} \]
\[\text{(9.329)} \]

in which \(S_i \) is the area of tessera \(i \). If the conductor-like screening model is used to represent a model with a dielectric constant \(\varepsilon \), the actual charges become

\[q = \frac{\varepsilon - 1}{\varepsilon} Q \]
\[\text{(9.330)} \]

The free energy of solvation can be approximately calculated as [401]

\[\Delta G_S = (E + \Delta G_{CD}) - E^0 \]
\[\text{(9.331)} \]

where \(E^0 \) is the total energy of the molecule in vacuum and \(\Delta G_{CD} \) is the nonelectrostatic contribution (dispersion and cavity formation terms). It can be calculated as [401]

\[\Delta G_{CD} = 1.321 + 0.0067639A \]
\[\text{(9.332)} \]

where \(A \) is the cavity surface area.

The C-PCM model can be used via

\[\text{! CPCM(solvent)} \]

where solvent can be one of
<table>
<thead>
<tr>
<th>Solvent Name</th>
<th>Dielectric Constant</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>80.4</td>
<td>1.33</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>36.6</td>
<td>1.344</td>
</tr>
<tr>
<td>Acetone</td>
<td>20.7</td>
<td>1.359</td>
</tr>
<tr>
<td>Ammonia</td>
<td>22.4</td>
<td>1.33</td>
</tr>
<tr>
<td>Ethanol</td>
<td>24.3</td>
<td>1.361</td>
</tr>
<tr>
<td>Methanol</td>
<td>32.63</td>
<td>1.329</td>
</tr>
<tr>
<td>CH2Cl2</td>
<td>9.08</td>
<td>1.424</td>
</tr>
<tr>
<td>CCl4</td>
<td>2.24</td>
<td>1.466</td>
</tr>
<tr>
<td>DMF</td>
<td>38.3</td>
<td>1.430</td>
</tr>
<tr>
<td>DMSO</td>
<td>47.2</td>
<td>1.479</td>
</tr>
<tr>
<td>Pyridine</td>
<td>12.5</td>
<td>1.510</td>
</tr>
<tr>
<td>THF</td>
<td>7.25</td>
<td>1.407</td>
</tr>
<tr>
<td>Chloroform</td>
<td>4.9</td>
<td>1.45</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.89</td>
<td>1.375</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.4</td>
<td>1.497</td>
</tr>
</tbody>
</table>

The parameters can be more accurately defined using the `%cpcm` block input. The available options are as follows:

```
%cpcm epsilon 80.0 # Dielectric constant
refrac 1.0 # Refractive index
rsolv 1.3 # Solvent probe radius
rmin 0.5 # Minimal GEPOL sphere radius
fepstype cpcm # Epsilon function type: cpcm, cosmo
surfacetype gepol_ses # GEPOL surface: gepol_ses, gepol_sas
ndiv 5 # Maximum depth for recursive sphere generation
radius[N] 1.3 # Atomic radius for atomic number N in Angstrom
end
```

9.28.2 The Conductor-like Screening Solvation Model (COSMO)

The COSMO solvation model has been removed from ORCA v4.0.0 !!!

Please use the C-PCM solvation model in combination with the COSMO epsilon function if required!

As a short form to use the C-PCM model with the COSMO epsilon function, you can specify the solvent via `!CPCMC(solvent)`.

9.28.3 The SMD Solvation Model

The SMD solvation model has been proposed by the Cramer and Truhlar groups [397], and is based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. In the model the full solute electron density is used without defining partial atomic charges and
the solvent is not represented explicitly but rather as a dielectric medium with the surface tension at the solute–solvent boundary. SMD is a universal solvation model, in the sense that it is applicable to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known. In particular, these descriptors are the dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters. Neglecting the concentration contribution, the model separates the observable solvation free energy into two main components,

\[\Delta G_S = \Delta G_{\text{ENP}} + \Delta G_{\text{CDS}}. \]

(9.333)

In ORCA, the first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the electrostatic interaction using the Conductor-like Screening Model (COSMO). However, the radii are set to “intrinsic atomic Coulomb radii”. The second component, called the cavity-dispersion solvent-structure (CDS) term, is the contribution resulting from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The CDS contribution to the free energy of solvation is given by

\[\Delta G_{\text{CDS}} = \sum_{k} \sigma_k A_k(R, R_{Z_k} + r_s) + \sigma^{[M]} \sum_{k} A_k(R, R_{Z_k} + r_s), \]

(9.334)

where \(\sigma_k \) and \(\sigma^{[M]} \) are the atomic surface tension of atom \(k \) and the molecular surface tension, respectively, and \(A_k \) is the solvent accessible surface area (SASA). The SASA depends on the geometry \(R \), the set \(R_{Z_k} \) of all atomic van der Waals radii, and the solvent radius \(r_s \), which is added to each of the atomic van der Waals radii. In the program Bondi radii are used for CDS contribution.

More details can be found in the original paper of Marenich et al. [397], which should be cited in publications using results of SMD calculations.

For the calculation of the CDS contributions to the energy and gradient ORCA calls the external tool otool_smd. This external tool is based on the GESOL code, [402] which is redistributed with permission of C. J. Cramer and D. G. Truhlar.

SMD can be employed in single point calculations and geometry optimizations, using single-determinant SCF (HF and DFT) and CASSCF methods. In post-SCF methods the result is corrected in the reference wave function. To use SMD the user must simply specify smd true in the \%cpcm block and provide the name of the solvent. This automatically sets a number of default SMD parameters (see the table below for a list of parametrized solvents included in the SMD library). If required, the user can also manually specify the solvent descriptors used in an SMD calculation.

```
!CPCM(water)
%cpcm smd true  # turn on SMD
  solvent "water"  # specify the name of solvent from the list
  soln            # index of refraction at optical frequencies at 293 K
  soln25         # index of refraction at optical frequencies at 298 K
  sola           # Abraham’s hydrogen bond acidity
  solb           # Abraham’s hydrogen bond basicity
  solg           # relative macroscopic surface tension
```
Solc # aromaticity, fraction of non-hydrogenic solvent atoms
 # that are aromatic carbon atoms
Solh # electonegative halogenicity, fraction of non-hydrogenic
 # solvent atoms that are F, Cl, or Br

Before SCF start, the program prints the SMD information.

CPCM SOLVATION MODEL

CPCM parameters:
Epsilon ... 80.4000
Refrac ... 1.3300
Rsvl ... 1.3600
Surface type ... GEPOP SES
Epsilon function type ... CPCM
Solvent: ... WATER

SMD-CDS solvent descriptors:
Soln ... 1.3328
So1n25 ... 1.3323
Sola ... 0.0000
Solb ... 0.0000
Solg ... 0.0000
Solc ... 0.0000
Solh ... 0.0000

Radii:
Radius for N used is 3.5716 Bohr (= 1.8900 Ang.)
Calculating surface ... done! (0.0s)
GEPOP surface points ... 98
GEPOP Volume ... 279.2288
GEPOP Surface-area ... 211.1858

After the SCF is converged, the output file shows the SMD contribution to the total energy.

* SUCCESS *
* SCF CONVERGED AFTER 14 CYCLES

Old exchange energy = -22.029826261 Eh
New exchange energy = -22.029833040 Eh
Exchange energy change after final integration = -0.000006779 Eh
Total energy after final integration = -1664.968094721 Eh
Final COS-X integration done in = 258.813 sec
1.76169954764045 -2.99192151761839 5.55983672704991
1.969944632444464E-003 0.167822602012468 1.173801645083608E-002
Total Energy after outlying charge correction = -1664.968881930 Eh

SMD CDS free energy correction energy : -1.58900 Kcal/mol
Total Energy after SMD CDS correction = -1664.970626953 Eh

TOTAL SCF ENERGY

Total Energy : -1664.97062695 Eh -45306.15408 eV
CPCM(ediel) : -0.00985444 Eh -0.26815 eV
SMD CDS (Gcds) : -0.00253223 Eh -0.06891 eV

At present there are 179 solvents in the SMD library:

<table>
<thead>
<tr>
<th>solvent</th>
<th>short name</th>
<th>solvent</th>
<th>short name</th>
<th>solvent</th>
<th>short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>91</td>
<td>CYCLOCETANE</td>
<td>107</td>
<td>N-DECANE</td>
</tr>
<tr>
<td>2</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>92</td>
<td>CYCLOPENTANOL</td>
<td>108</td>
<td>CIS,1,2-DIMETHYLCYCLOHEXANE</td>
</tr>
<tr>
<td>3</td>
<td>1,2,4-TRIMETHYLbenzene</td>
<td>93</td>
<td>CYCLOPENTANE</td>
<td>109</td>
<td>DIMETHYL DISULFIDE</td>
</tr>
<tr>
<td>4</td>
<td>1,2-DIBROMOETHANE</td>
<td>94</td>
<td>DECALIN (CIS/TRANS MIXTURE)</td>
<td>110</td>
<td>N,N-DIMETHYLACETAMIDE</td>
</tr>
<tr>
<td>5</td>
<td>1,2-DICHLOROETHANE</td>
<td>95</td>
<td>CIS-DECALIN</td>
<td>111</td>
<td>N,N-DIMETHYLMORPHAMIDE</td>
</tr>
<tr>
<td>6</td>
<td>1,2-ETHANEDIOL</td>
<td>96</td>
<td>N-DECANE</td>
<td>112</td>
<td>DIMETHYL SULFOXIDE</td>
</tr>
<tr>
<td>7</td>
<td>1,4-DIOXANE</td>
<td>97</td>
<td>DIIBROMOMETHANE</td>
<td>113</td>
<td>DIPHENYL ETHYLETHYR</td>
</tr>
<tr>
<td>8</td>
<td>1-BROMO-2-METHYLPROPANE</td>
<td>98</td>
<td>DIBUTYL ETHER</td>
<td>114</td>
<td>N,N-DIMETHYLFORMAMIDE</td>
</tr>
<tr>
<td>9</td>
<td>1-BROMOOGCTANE</td>
<td>99</td>
<td>O-DICHLOROBENZENE</td>
<td>115</td>
<td>N-DODECANE</td>
</tr>
<tr>
<td>10</td>
<td>1-BROMOPENTANE</td>
<td>100</td>
<td>E-1,2-DICHLOROETHENE</td>
<td>116</td>
<td>ETHANETHIOL</td>
</tr>
<tr>
<td>11</td>
<td>1-BROMOPROPADE</td>
<td>101</td>
<td>Z-1,2-DICHLOROETHENE</td>
<td>117</td>
<td>ETHANOL</td>
</tr>
<tr>
<td>12</td>
<td>1-BUTANOL</td>
<td>102</td>
<td>DICHLOROMETHANE</td>
<td>118</td>
<td>ETHYL ETHANOATE</td>
</tr>
<tr>
<td>13</td>
<td>1-CHLOROHEXANE</td>
<td>103</td>
<td>DIETHYL ETHER</td>
<td>119</td>
<td>ETHYL METHANOATE</td>
</tr>
<tr>
<td>14</td>
<td>1-CHLOROPENTANE</td>
<td>104</td>
<td>DIETHYL SULFIDE</td>
<td>120</td>
<td>ETHYL PHENYL ETHER</td>
</tr>
<tr>
<td>15</td>
<td>1-CHLOROPROPANE</td>
<td>105</td>
<td>DIETHYLAMINE</td>
<td>121</td>
<td>ETHYL BENZENES</td>
</tr>
<tr>
<td>16</td>
<td>1-DECANOL</td>
<td>106</td>
<td>DIODOETHANE</td>
<td>122</td>
<td>FLUOROBENZENE</td>
</tr>
<tr>
<td>17</td>
<td>1-FLUOROCOCTANE</td>
<td>107</td>
<td>DISOPROPYL ETHER</td>
<td>123</td>
<td>FLUOROMETHANE</td>
</tr>
<tr>
<td>18</td>
<td>1-HEPTANOL</td>
<td>108</td>
<td>CIS,1,2-DIMETHYLCYCLOHEXANE</td>
<td>124</td>
<td>HEXANOIC ACID</td>
</tr>
<tr>
<td>19</td>
<td>1-HEXANOL</td>
<td>109</td>
<td>DIMETHYL DISULFIDE</td>
<td>125</td>
<td>METHYLDIMETHYLACETONE</td>
</tr>
<tr>
<td>20</td>
<td>1-HEXENE</td>
<td>110</td>
<td>N,N-DIMETHYLACETAMIDE</td>
<td>126</td>
<td>N-NONANOL</td>
</tr>
<tr>
<td>21</td>
<td>1-HXyne</td>
<td>111</td>
<td>N,N-DIMETHYLFORMAMIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1-IODOBUTANE</td>
<td>112</td>
<td>DIMETHYL SULFOXIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1-IODOHEXODECANE</td>
<td>113</td>
<td>DIPHENYLETHYR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1-IODOPENTANE</td>
<td>114</td>
<td>DIPROPYLAMINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1-IODOPROPANE</td>
<td>115</td>
<td>N-DODECANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1-NITROPROPANE</td>
<td>116</td>
<td>ETHANETHIOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1-NONANOL</td>
<td>117</td>
<td>ETHANOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1-OCTANOL</td>
<td>118</td>
<td>ETHYL ETHANOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1-PENTANOL</td>
<td>119</td>
<td>ETHYL METHANOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1-PENTENE</td>
<td>120</td>
<td>ETHYL PHENYL ETHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1-PENTANOL</td>
<td>121</td>
<td>ETHYL BENZENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2,2,2-TRIFLUOROETHANOL</td>
<td>122</td>
<td>FLUOROBENZENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2,2,4-TRIMETHYLPENTANE</td>
<td>123</td>
<td>FORMAMIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2,4-DIMETHYLPHENTANE</td>
<td>124</td>
<td>FORMIC ACID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2,4-DIMETHYLPYRIDINE</td>
<td>125</td>
<td>N-HEPTANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2,6-DIMETHYLPHENIDINE</td>
<td>126</td>
<td>N-NONANOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>2-BROMOPROPANE</td>
<td>127</td>
<td>N-HEXANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2-BUTANOL</td>
<td>128</td>
<td>HEXANOIC ACID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2-CHLOROBUTANE</td>
<td>129</td>
<td>IODOBENZENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2-HEXANONE</td>
<td>130</td>
<td>IODOETHANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2-HXANE</td>
<td>131</td>
<td>IODOMETHANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2-METHYXYETHANOL</td>
<td>132</td>
<td>ISOXYLINTOLENINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2-METHYL-1-PROPANOL</td>
<td>133</td>
<td>F-ISOXYLINTOLENINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2-METHYL-2-PROPANO</td>
<td>134</td>
<td>METHYLENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2-METHYLPENTANE</td>
<td>135</td>
<td>METHANOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2-METHYLPHENIDINE</td>
<td>136</td>
<td>METHYL BENZOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2-NITROPROPANE</td>
<td>137</td>
<td>METHYL BUTANOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2-OCTANONE</td>
<td>138</td>
<td>METHYL ETHANOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>2-PENTANONE</td>
<td>139</td>
<td>METHYL METHANOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2-PROPANOL</td>
<td>140</td>
<td>METHYL PROPANOATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>2-PROPEN-1-OL</td>
<td>141</td>
<td>N-METHYLANILINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>2-PENTANOLE</td>
<td>142</td>
<td>METHYL CYCLOHEXANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>3-METHYLPYRIDE</td>
<td>143</td>
<td>N-METHYLFORMAMIDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3-PENTANONE</td>
<td>144</td>
<td>NITROBENZENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>4-HEPTANONE</td>
<td>145</td>
<td>NITROETHANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4-METHYL-2-PENTANONE</td>
<td>146</td>
<td>NITROMETHANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>4-METHYLPHYRIDINE</td>
<td>147</td>
<td>O-NITROTOLUENE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>5-NONANONE</td>
<td>148</td>
<td>N-NONAN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.29 Calculation of Properties

9.29.1 Electric Properties

For the calculation of first order (electric dipole and quadrupole moments) and second order (polarizabilities) electric properties, the \%elprop module was implemented. The second order properties can be calculated through the solution of the CP-SCF equations. Details are shown below:

\%
elprop
Dipole true
Quadrupole true
Polar
1 # analytic calculation
2 # numeric differentiation of dipole
moments
3 # fully numeric second derivatives
Solver CG # CG(conjugate gradient)
other options: DIIS or POPEL(default)
MaxDIIS 5 # max. dimension of DIIS method
Shift 0.2 # level shift used in DIIS solver
Tol 1e-8 # Convergence of the CP-SCF equations
(norm of the residual)
MaxIter 64 # max. number of iterations in CPSCF
PrintLevel 2

59 ACETIC ACID	149 N-OCTANE
60 ACETONE	150 N-PENTADECANE
61 ACETONITRILE	151 PENTANAL
62 ACETOPHENOQUE	152 N-PENTANE
63 ANILINE	153 PENTANOIC ACID
64 ANISOLE	154 PENTYL ETHANOATE
65 BENZALDEHYDE	155 PENTYLAMINE
66 BENZENE	156 PERFLUOROBENZENE
67 BENZONITRILE	157 PROPANAL
68 BENZYL ALCOHOL	158 PROPA NOIC ACID
69 BROMOBENZENE	159 PROPANONITRILE
70 BROMOETHANE	160 PROPYL ETHANOATE
71 BROMOFORM	161 PROPYLAMINE
72 BUTANAL	162 PYRIDINE
73 BUTANOIC ACID	163 TETRACHLOROETHENE
74 BUTANONE	164 TETRAHYDROFURAN
75 BUTANONITRILE	165 TETRAHYDROTHIOPHENE-S,S-DIOXIDE
76 BUTYL ETHANOATE	
77 BUTYLAMINE	167 THIOPHENE
78 N-BUTYLBENZENE	168 THIOPHENOL
79 SEC-BUTYLBENZENE	169 TOLUENE
80 TERT-BUTYLBENZENE	170 TRANS-DECLIN
81 CARBON DISULFIDE	171 TRIBUTYLPHOSPHATE
82 CARBON TETRACHLORIDE	172 TRICHLOROETHENE
83 CHLOROBENZENE	173 TRITHYLAMINE
84 CHLOROFORM	174 N-UNDECANE
85 A-CHLOROTOLUENE	175 WATER
86 O-CHLOROTOLUENE	176 XYLENE (MIXTURE)
87 M-CRESOL	177 M-XYLENE
88 O-CRESOL	178 O-XYLENE
89 CYCLOHEXANE	179 p-XYLENE
90 CYCLOHEXANONE	

ACETIC ACID
ACETONITRILE
N-OCTANE
N-PENTADECANE
PENTANAL
PENTANE
PENTANOIC ACID
PENTYL ETHANOATE
PENTYLAMINE
PERFLUOROBENZENE
PROPANAL
PROPA NOIC ACID
PROPANONITRILE
PROPYL ETHANOATE
PROPYLAMINE
PYRIDINE
TETRACHLOROETHENE
TETRAHYDROFURAN
TETRAHYDROTHIOPHENE-S,S-DIOXIDE
TETRALIN
THIOPHENE
THIOPHENOL
TOLUENE
TRANS-DECLIN
TRIBUTYLPHOSPHATE
TRICHLOROETHENE
TRITHYLAMINE
N-UNDECANE
WATER
XYLENE (MIXTURE)
M-XYLENE
O-XYLENE
p-XYLENE
The most efficient and accurate way to calculate the polarizability analytically is to use the coupled-perturbed SCF method. The most time consuming and least accurate way is the numerical second derivative of the total energy. Note that the numerical differentiation requires: (a) tightly or even very tightly converged SCF calculations and (b) carefully chosen field increments. If the field increment is too large then the truncation error will be large and the values will be unreliable. On the other hand, if the field increment is too small the numerical error associated with the finite difference differentiation will get unacceptably large up to the point where the whole calculation becomes useless.

9.29.2 The Spin-Orbit Coupling Operator

Several variants of spin-orbit coupling operators can be used for property calculations [403]. They are based on effective potential and mean-field approaches, and have various parameters that can be selected via the %rel block.

```plaintext
%rel
# ---------------------------------------------------
# SPIN ORBIT COUPLING OPERATORS
# ---------------------------------------------------
SOCType 0  # none
1  # effective nuclear charge
2  # mean-field with atomic densities read from
   # disk; similar to SOCType=4
3  # mean-field/effective potential (default)
4  # mean-field with atomic densities generated
   # on the fly; see bellow

# Flags for construction of potential; operative
# only for SOCType 3.
# ---------------------------------------------------
SOCFlags 1,2,3,0  # (default)
# Flag 1 = 0 - do not include 1-electron terms
# = 1 - do include 1-electron terms
# Flag 2 = 0 - do not include Coulomb terms
# = 1 - compute Coulomb terms fully numeric
# = 2 - compute Coulomb term seminumeric
# = 3 - compute Coulomb term with RI approx
# = 4 - compute Coulomb term exactly
```
Flag 3 = 0 - do not include exchange terms
= 1 - do include local X-alpha exchange
the X-Alpha parameter can be chosen via
% rel Xalpha 0.7 (default)
= 2 - same as 1 but with sign reversed
= 3 - exchange via one-center exact
integrals including the spin-other
orbit interaction
= 4 - all exchange terms full analytic
(this is expensive)
Flag 4 = 0 - do not include DFT local correlation
terms
= 1 - do include local DFT correlation (here
this is done with VWN5)
#
SOCMaxCenter 4 # max. number of centers to include in
the integrals (not fully consistently
implemented yet; better leave equal to 4)
#
Simple input equivalents that are described in [403]:
SOMF(1X) = SOCType 3, SOCFlags 1,2,3,0 and SOCMaxCenter 4
RI-SOMF(1X) = SOCType 3, SOCFlags 1,3,3,0 and SOCMaxCenter 4
VEFF-SOC = SOCType 3, SOCFlags 1,3,1,1 and SOCMaxCenter 4
VEFF(-2X)-SOC = SOCType 3, SOCFlags 1,3,2,1 and SOCMaxCenter 4
AMFI = SOCType 3, SOCFlags 1,4,3,0 and SOCMaxCenter 4
AMFI-A = SOCType 4, SOCFlags 1,4,3,0 and SOCMaxCenter 1
(AMFI-like approach that uses pre-calculated
atomic densities as described in [355];
this can be combined with the SOCOff option to
exclude contributions from specific atoms)
#
NOTE: If you choose the RI option you need to specify an auxiliary basis set
even if the underlying SCF calculation does not make use of any form
of RI!
#
For the effective nuclear charge SOC operator
the nuclear charges can be adjusted.
#---
Zeff[26] 0.0 # set the effective nuclear charge
of iron (Z = 26) to zero
#
#---
Neglecting SOC contributions from particular
atoms
#---
SOCOff 0,5 # turn off the SOC for atoms 0 and 5
this makes sense if the SOC operator
has only one center contributions
The Breit-Pauli spin-orbit coupling operator is given by:

\[\hat{H}_{\text{SOC}} = \hat{H}_{\text{SOC}}^{(1)} + \hat{H}_{\text{SOC}}^{(2)} \]

(9.335)

with the one- and two-electron contributions

\[\hat{H}_{\text{SOC}}^{(1)} = \frac{\alpha^2}{2} \sum_i \sum_A Z_A \frac{(r_i - R_A \times p_i)}{|r_i - R_A|^3} \hat{s}_i = \frac{\alpha^2}{2} \sum_i \sum_A Z_A r_{iA}^{-3} \hat{l}_{iA} \hat{s}_i \]

(9.336)

\[\hat{H}_{\text{SOC}}^{(2)} = -\frac{\alpha^2}{2} \sum_i \sum_{j \neq i} \frac{(r_i - r_j \times p_i)}{|r_i - r_j|^3} (\hat{s}_i + 2\hat{s}_j) \]

(9.337)

\[\approx -\frac{\alpha^2}{2} \sum_i \sum_{j \neq i} \hat{l}_{ij} r_{ij}^{-3} (\hat{s}_i + 2\hat{s}_j) \]

(9.338)

This operator would be hard to handle exactly; therefore it is common to introduce mean field and/or effective potential approaches in which the operator is written as an effective one-electron operator:

\[\hat{H}_{\text{SOC}} \approx \sum_i \hat{h}_{i}^{(\text{eff})} \hat{s}_i \]

(9.339)

The simplest approximation is to simply use the the one-electron part and regard the nuclear charges as adjustable parameters. Reducing their values from the exact nuclear charge is supposed to account in an average way for the screening of the nuclear charge by the electrons. In our code we use the effective nuclear charges of Koseki et al. This approximation introduces errors which are usually smaller than 10% but sometimes are larger and may approach 20% in some cases. The approximation is best for first row main group elements and the first transition row (2p and 3d elements). For heavier elements it becomes unreliable.

A much better approximation is to take the two-electron terms into account precisely. Without going into details here – the situation is as in Hartree-Fock (or density functional) theory and one gets Coulomb, exchange and correlation terms. The correlation terms (evaluated in a local DFT fashion) are negligible and can be safely neglected. They are optionally included and are not expensive computationally. The Coulomb terms is (after the one-electron term) the second largest contribution and is expensive to evaluate exactly. The situation is such that in the Coulomb-part the spin-other orbit interaction (the second term in the two-electron part) does not contribute and one only has to deal with the spin-own-orbit contribution. The exact evaluation is usually too expensive to evaluate. The RI and seminumeric approximation are much more efficient and introduce only minimal errors (on the order of usually not more than 1 ppm in g-tensor calculations for example) and are therefore recommended. The RI approximation is computationally more efficient. Please note that you have to specify an auxiliary basis set to take advantage of the RI approximation, even if the preceding SCF calculation does not make use of any form of RI. The one-center approximation to
the Coulomb term introduces much larger errors. The fully numeric method is both slower and less accurate and is not recommended.

The exchange term has contributions from both the spin-own-orbit and spin-other-orbit interaction. These are taken both into account in the mean-field approximation which is accessed by Flag 3 = 3. Here a one-center approximation is much better than for the Coulomb term since both the integrals and the density matrix elements are short ranged. Together with the Coulomb term this gives a very accurate SOC operator which is recommended. The DFT-Veff operator suffers from not treating the spin-other-orbit part in the exchange which gives significant errors (also, local DFT underestimates the exchange contributions from the spin-same-orbit interaction by some 10% relative to HF but this is not a major source of error). However, it is interesting to observe that in the precise analytical evaluation of the SOMF operator, the spin-other-orbit interaction is exactly -2 times the spin-own-orbit interaction. Thus, in the DFT framework one gets a much better SOC operator if the sign of the DFT exchange term is simply reversed! This is accessed by Flag 3 = 2.

Altogether the new SOC operators are a significant step forward and are also more accurate than those used in other programs which either neglect some contributions or make more approximations. For compatibility reasons the default is still the old effective nuclear charge model and therefore the SOC operator actually wanted should be directly specified.

9.29.2.1 Exclusion of Atomic Centers

In ORCA it is possible to change the spin-orbit coupling operator in order to exclude contributions from user-defined atoms. This approach can be useful, for example, in quantifying the contribution of the ligands to the zero-field splitting (ZFS); for an application of this method see Ref. [404].

This is illustrated for the calculation of the SOC contribution to the ZFS of the triplet oxygen molecule. Using the input below we start by a normal calculation of the ZFS, including both oxygen atoms. Note that we use here the effective nuclear charge operator. This is required as not all implemented SOC operators are compatible with the decomposition in terms of individual centers contributions.

```plaintext
! def2-TZVP def2-TZVP/c
%cas
    nel 8
    norb 6
    mult 3,1
    nroots 1,3
    rel dosoc true
    end
end
%rel
    SOCTYPE 1
    end
*xyz 0 3
```
The calculated value of the D parameter is approximately 2.574 cm\(^{-1}\). In a second calculation we exclude the contribution from the first oxygen atom. For this we change the \%rel block to the one below.

\[
\begin{verbatim}
%rel
 SOCType 1
 SOCOff 0
end
\end{verbatim}
\]

Now the D parameter is calculated to be approximately 0.643 cm\(^{-1}\), a result that deviates quite significantly from half of the value calculated previously, implying that non-additive effects are important. In addition to the effective nuclear charge operator, the AMFI-A operator described previously can be used. Given that this is based on precalculated atomic densities, it might be preferred for heavier elements where the effective nuclear charge operator becomes unreliable. The method is not limited to CASSCF calculations as described above, and can be used in DFT, MRCI and ROCIS calculations.

9.29.3 The EPR/NMR Module

Starting from release 2.4.30 the module \texttt{orca.eprnmr} replaces the earlier separate modules for calculating g-tensors and hyperfine couplings (\texttt{orca.dftg} and \texttt{orca.hf}). The use of the EPR/NMR module is rather simple. The individual flags are given below.

\[
\begin{verbatim}
%eprnmr
 # Calculate the g-tensor using CP-KS theory
 GTensor 1

 # Calculate the D-tensor
 DTensor so # spin orbit part
 ss # spin-spin part
 ssandso # both parts
 DSOC qro # quasi-restricted method; must be done with the keyword !uno
 pk # Pederson-Khanna method.
 # NOTE: both approximations are only valid for
 # pure functionals (no HF exchange)
 cp # coupled-perturbed method (default)
 cvw # van Wüllen method
 DSS direct # directly use the canonical orbitals for the spin density
 uno # use spin density from UNOs
\end{verbatim}
\]
Detailed Documentation

PrintLevel n # Amount of output (default 2)

For the solution of the CP-SCF equations:
Solver Pople # Pople solver (default)
 CG # conjugate gradient
 DIIS # DIIS type solver
MaxIter 32 # maximum number of iterations
MaxDIIS 12 # max. number of DIIS vectors (only DIIS)
Tol 1e-6 # convergence tolerance
LevelShift 0.2 # levelShift for DIIS (ignored otherwise)

Ori CenterOfMass
 CenterOfNucCharge
 CenterOfElCharge # (default)
OwnNuc # for NMR chemical shifts take
 # the own nucleus as gauge
 # origin; this removes the
 # origin dependence but the
 # basis set convergence may
 # still be very slow
IGLO # IGLO treatment; only rigorous if there
 # is no HF exchange
GIAO # not yet implemented
N # number of the atom to put the origin
X,y,z # explicit position of the origin

For GIAO calculations of the NMR chemical shieldings, to use
in conjunction with the keyword 'NMR' in the first line:

treatment of 1electron integrals in the RHS of the CPSCF equations
giao_1el = giao_1e_analytic # analytical, default
 giao_1e_numeric # numerical - for testing only

treatment of 2electron integrals in the RHS of the CPSCF equations
various options for combination of approximations in coulomb (J) and
exchange (K) part for HF and DFT. RIJK is default, all other should
be used with caution and for testing only.
giao_2el = giao_2el_rijk # RIJK approximation, default
 giao_2el_same_as_scf # use same scheme as in SCF
 giao_2el_analytic # fully analytical, for testing only
 giao_2el_rijonx # RIJ approximation with analytical K
 giao_2el_cosjonx # COSJ approximation with analytical K
 giao_2el_rijcosx # RIJ approximation with COSX approximation
 giao_2el_cosjx # COSJ approximation with COSX approximation
9.29 Calculation of Properties

A little background information might be in order:

9.29.3.1 Hyperfine and Quadrupole Couplings

The hyperfine coupling has three contributions:

(a) The isotropic Fermi contact term that arises from the finite spin density on the nucleus under investigation. It is calculated for nucleus N from:
Here, $\langle S_z \rangle$ is the expectation value of the z-component of the total spin, g_e and g_N are the electron and nuclear g-factors and β_e and β_N are the electron and nuclear magnetons respectively. $\rho(\vec{R}_N)$ is the spin density at the nucleus. The proportionality factor $P_N = g_e g_N \beta_e \beta_N$ is commonly used and has the dimensions MHz bohr3 in ORCA.

(b) The spin dipole part that arises from the magnetic dipole interaction of the magnetic nucleus with the magnetic moment of the electron. It is also calculated as an expectation value over the spin density as:

$$A_{\mu\nu}^{\text{dip}}(N) = P_N \sum_{kl} k \ell p_{kl} \langle \phi_k \mid r_N^{-5} \left(3 r_{N\mu} \vec{r}_{N\nu} - \delta_{\mu\nu} r_N^2 \right) \mid \phi_l \rangle$$

(9.341)

where ρ is the spin-density matrix and r_N is a vector of magnitude r_N that points from the nucleus in question to the electron ($\{\phi\}$ is the set of basis functions).

(c) The second order contribution that arises from spin-orbit coupling. Presently ORCA can calculate all these contributions. The first two are calculated as simple expectation values of the appropriate operators over the self-consistent spin density, but the second order contribution requires the solution of the coupled-perturbed SCF equations and is consequently computationally more demanding. The contribution can be written:

$$A_{\mu\nu}^{\text{orb}}(N) = -\frac{1}{2S} P_N \sum_{kl} \frac{\partial p_{kl}}{\partial I_\mu} \langle \phi_k \mid h_{\nu}^{\text{SOC}} \mid \phi_l \rangle$$

(9.342)

The derivative of the spin density is computed from solving the coupled-perturbed SCF equations with respect to the nucleus-orbit coupling as perturbation. The nucleus-orbit coupling is represented by the operator

$$h_{\nu}^{\text{NOC}}(A) = \sum_i r_{iA}^{-3} l_{i,\nu}^{(A)}$$

(9.343)

where the sum is over electrons and A is the nucleus in question.

The field gradient tensor is closely related to the dipole contribution to the hyperfine coupling. The main differences are that the electron instead of the spin density enters its calculation and that it contains a nuclear contribution due to the surrounding nuclei. It is calculated from

$$V_{\mu\nu}(N) = -\sum_{kl} P_{kl} \langle \phi_k \mid r_N^{-5} \left(3 r_{N\mu} \vec{r}_{N\nu} - \delta_{\mu\nu} r_N^2 \right) \mid \phi_l \rangle$$

$$+ \sum_{A \neq N} Z_A \bar{R}_{AN}^{-5} \left(3 \bar{R}_{AN\mu} \bar{R}_{AN\nu} - \delta_{\mu\nu} R_{AN}^2 \right)$$

(9.344)

with Z_A as the nuclear charge of nucleus A and \bar{R}_{AN} as a vector of magnitude R_{AN} that points from nucleus A to nucleus N. P is the first order density matrix.
• Hyperfine and quadrupole couplings are properties where the standard basis sets that have been
designed for geometry optimization and the like may not be entirely satisfactory (especially for atoms
heavier than Ne). You should probably look into tailoring the basis set according to your needs. While
it is likely that a later release will provide one or two special basis sets for “core-property” calculations
at this time you have to make sure yourself that the basis set has enough flexibility in the core region,
for example by uncontracting core basis functions and adding s-primitives with large exponents (or
using the “decontraction feature”, section 9.3). If you add these tight functions and use DFT make
sure that the numerical integration is still satisfactory. Use the “SpecialGrid” feature to enlarge grids
for individual atoms without increasing the computational effort too drastically.

• For very heavy nuclei you may not get satisfactory results because scalar relativistic effects may become
large. These are available at the ZORA and DKH levels in ORCA if the flag PictureChange is set
to true in the %rel block. The situation is such that for DKH the implementation is only valid for
the field gradient while the ZORA methodology is consistent throughout. The IORA method is also
available but the results will be approximate. In my experience some nice results have been obtained
with ZORA for HFCs and very nice results for EFGs with DKH. In these quasi-relativistic calculations
with DFT one has to be extremely cautious with numerical integration accuracy and values of intacc
of 9.0 and higher have been used for heavier (transition metal) nuclei. Much lower values just produce
noise!

Second order HFCs require the calculation of the spin-orbit coupling contributions which in turn requires the
calculation of the coupled perturbed SCF equations. These effects can be quite significant for heavier nuclei
and should definitely be included for transition metal complexes. The spin-orbit coupling treatment used is
the same as described under 9.29.2.

9.29.3.2 The g-Tensor

The EPR g-tensor is a property that can be calculated as a second derivative of the energy and it is
implemented as such in ORCA for the SCF methods, e.g. HF and DFT. At the SCF level four contributions
arise:

\[g_{\mu \nu}^{(SZ)} = \delta_{\mu \nu} g_e \] (9.345)

\[g_{\mu \nu}^{(RMC)} = -\frac{\alpha^2}{S} \sum_{k,l} P^\alpha_{kl}^{-\beta} \left\langle \phi_k \left| \hat{T} \right| \phi_l \right\rangle \] (9.346)

\[g_{\mu \nu}^{(DSO)} = \frac{1}{2S} \sum_{k,l} P^\alpha_{kl}^{-\beta} \left\langle \phi_k \left| \sum_A \xi (r_A) \left[r_A r_O - r_{A,\mu} r_{O,\nu} \right] \right| \phi_l \right\rangle \] (9.347)

\[g_{\mu \nu}^{(PSO)} = \sum_{k,l} \frac{\partial P^\alpha_{kl}^{-\beta}}{\partial B_{\mu}} \left\langle \phi_k \left| h^{SOC} \right| \phi_l \right\rangle \] (9.348)

Here, \(g_e \) is the free-electron g-value (=2.002319...), \(S \) is the total spin, \(\alpha \) the fine structure constant, \(P^\alpha_{kl}^{-\beta} \) is
the spin density matrix, \(\{ \phi \} \) is the basis set, \(\hat{T} \) is the kinetic energy operator, \(\xi (r_A) \) an approximate radial
operator, h^{SOC} the spatial part of an effective one-electron spin-orbit operator and B_{μ} is a component of the magnetic field. The derivative of the spin-density matrix is calculated from coupled-perturbed SCF theory with respect to a magnetic field perturbation (orbital Zeeman term).

Accuracy. g-tensor calculations at the SCF level are not highly demanding in terms of basis set size. Basis sets that give reliable SCF results (at least valence double-zeta plus polarization) usually also give reliable g-tensor results. For many molecules the Hartree-Fock approximation will give reasonable predictions. In a number of cases, however, it breaks down completely. DFT is more robust in this respect and the number of molecules where it fails is much smaller. Among the density functionals, the hybrid functionals seem to be the most accurate. In my hands PBE0 is perhaps the best although PWP1 and B3LYP are not much worse. The GGA functionals such as BP, PW91, BLYP or PBE are equally good for small radicals but are significantly inferior to their hybrid counterparts for transition metal complexes.

Gauge dependence. Unfortunately, the g-tensor is a gauge dependent property, that is, the results depend on where the origin is chosen within the molecule. Unless fully invariant procedures (such as IGLO or GIAO) are used, this undesirable aspect is always present in the calculations. GIAO will be implemented in later releases but is not yet available in ORCA. However, if the choice of gauge origin is not outrageously poor, the gauge dependence is usually so small that it can be ignored for all practical purposes, especially if large basis sets are used. ORCA gives you considerable freedom in the choice of gauge origin. It can either be the center of mass, the center of nuclear charge, the center of electronic charge (recommended), a special atom or a user-defined point in space. It is wise to check the sensitivity of the results with respect to the choice of origin, especially when small g-shifts on the order of only a few hundred ppm are calculated. The IGLO method should be a much better treatment of the origin dependence but there is presently little experience with it. At least for NMR chemical shifts (in the absence of HF exchange) it is the method of choice.

Spin-orbit coupling operator. In previous versions of the code, the g-tensor module used the parameterization of Koseki et al. [405–407] for the spin-orbit operator. This is expected to be a reasonable approximation for the 2p and 3d elements and less satisfactory for heavier main group or transition metal containing systems. Thus, the main target molecules with the simple operators are radicals made of light atoms and first row transition metal complexes. More accurate SOC operators (at only moderately increased computational cost) have now been implemented and are described in section 9.29.2. With these operators there are fewer restrictions. However, for very heavy elements they will suffer from the shortcomings of the Breit-Pauli approximation and future releases will modify these operators to take into account the ZORA or DKH corrections to the SOC.

9.29.3.3 Zero-Field-Splitting

It is well known that the ZFS consists of a first order term arising from the direct spin-spin interaction [408]:

\[
D_{KL}^{(SS)} = \frac{1}{2S(2S-1)} \alpha^2 \sum_{i \neq j} \frac{r_{ij}^2 \delta_{KL}}{r_{ij}^2} \left\langle 0SS \left| \sum_{i} \hat{s}_i \hat{s}_j - \frac{3}{r_{ij}^2} \left(\hat{s}_x \hat{s}_x - \hat{s}_y \hat{s}_y \right) \right| 0SS \right\rangle
\]

\[(K,L = x,y,z). \text{ Here } \alpha \text{ is the fine structure constant (~1/137 in atomic units), } r_{ij} \text{ is the electronic distance vector with magnitude } r_{ij} \text{ and } \hat{s}_i \text{ is the spin-vector operator for the } i^{\text{th}} \text{ electron. } 0SS \text{ is the exact ground}\]
state eigenfunction of the Born-Oppenheimer Hamiltonian with total spin \(S \) and projection quantum number \(M_S = S \). Since the spin-spin interaction is of first order, it presents no particular difficulties. The more complicated contribution to the \(D \)-tensor arises from the spin-orbit interaction, which gives a second order contribution. Under the assumption that the spin-orbit coupling (SOC) operator can to a good approximation be represented by an effective one-electron operator (\(\hat{H}_{SOC} = \sum_i \hat{h}_{SOC}^i \hat{s}_i \)), ref [162] has derived the following sum-over-states (SOS) equations for the SOC contribution to the ZFS tensor:

- For the \((0) \) contribution:
 \[
 \frac{D_{KL}^{SOC-(0)}}{2} = \frac{1}{S^2} \sum_{b(S_b=S)} \Delta_b^{-1} \left(\sum_i \hat{h}_i^{K;SOC} \hat{s}_{i,0} \right) \left(\sum_i \hat{h}_i^{L;SOC} \hat{s}_{i,0} \right) \langle 0^{SS} | b^{SS} \rangle \langle b^{SS} | 0^{SS} \rangle \tag{9.350}
 \]

- For the \((-1) \) contribution:
 \[
 \frac{D_{KL}^{SOC-(1)}}{S(2S-1)} = \sum_{b(S_b=S-1)} \Delta_b^{-1} \left(\sum_i \hat{h}_i^{K;SOC} \hat{s}_{i,-1} \right) \left(\sum_i \hat{h}_i^{L;SOC} \hat{s}_{i,-1} \right) \langle 0^{SS} | b^{SS} \rangle \langle b^{SS} | 0^{SS} \rangle \tag{9.351}
 \]

- For the \((+1) \) contribution:
 \[
 \frac{D_{KL}^{SOC+(1)}}{(S+1)(2S+1)} = \sum_{b(S_b=S+1)} \Delta_b^{-1} \left(\sum_i \hat{h}_i^{K;SOC} \hat{s}_{i,+1} \right) \left(\sum_i \hat{h}_i^{L;SOC} \hat{s}_{i,+1} \right) \langle 0^{SS} | b^{SS} \rangle \langle b^{SS} | 0^{SS} \rangle \tag{9.352}
 \]

Here the one-electron spin-operator for electron \(i \) has been written in terms of spherical vector operator components \(s_{i,m} \) with \(m = 0, \pm 1 \) and \(\Delta_b = E_b - E_0 \) is the excitation energy to the excited state multiplet \(|b^{SS}\rangle \) (all \(M_S \) components are degenerate at the level of the BO Hamiltonian).

One attractive possibility is to represent the SOC by the spin-orbit mean-field (SOMF) method developed by Hess et al., [409] widely used in the AMFI program by Schimmelpfennig [410] and discussed in detail by Berning et al. [411] as well as in ref. 403. In terms of an (orthonormal) one-electron basis, the matrix elements of the SOMF operator are:

- For the \(K \) component:
 \[
 \hat{h}_{rs}^{K;SOC} = \left(\vec{p} \left| \hat{h}_{rs}^{1el-SOC} \right| \vec{q} \right) + \sum_r P_{r,s} [(pq \left| \hat{g}_{K}^{SOC} \right| rs) - \frac{3}{2} \left(pr \left| \hat{g}_{K}^{SOC} \right| sq \right) - \frac{3}{2} \left(sq \left| \hat{g}_{K}^{SOC} \right| pr \right)] \tag{9.353}
 \]

and:

- For the \(L \) component:
 \[
 \hat{h}_{k}^{1el-SOC} (\vec{r}_i) = \frac{\alpha^2}{2} \sum_i \sum_A Z_A r_{i,A}^{-3} \hat{1}_{i,A,k} \tag{9.354}
 \]

\[
\hat{g}_{k}^{SOC} (\vec{r}_i, \vec{r}_j) = -\frac{\alpha^2}{2} \hat{I}_{ij,k} r_{ij}^{-3} \tag{9.355}
\]

\(\hat{I}_{i,A} = (\hat{r}_i - \hat{R}_A) \times \hat{p}_i \) is the angular momentum of the \(i \)th electron relative to nucleus \(A \). The vector \(\hat{r}_{i,A} = \hat{r}_i - \hat{R}_A \) of magnitude \(r_{i,A} \) is the position of the \(i \)th electron relative to atom \(A \). Likewise, the vector \(\hat{r}_{ij} = \hat{r}_i - \hat{r}_j \) of magnitude \(r_{ij} \) is the position of the \(i \)th electron relative to electron \(j \) and \(\hat{I}_{ij} = (\hat{r}_i - \hat{r}_j) \times \hat{p}_j \) is its angular momentum relative to this electron. \(\vec{P} \) is the charge density matrix of the electron ground state.
\(P_{pq} = \langle 0SS | E^p_{pq} | 0SS \rangle \) with \(E^p_{pq} = a^+_p a_{q\beta} + a^\dagger_{pq} a_{q\alpha} \) where \(a^+_p \) and \(a_{q\alpha} \) are the usual Fermion creation and annihilation operators).

9.29.3.4 General Treatment

The zero-field splitting (ZFS) is typically the leading term in the Spin-Hamiltonian (SH) for transition metal complexes with a total ground state spin \(S > 1/2 \) (for reviews and references see chapter 11). Its net effect is to introduce a splitting of the \(2S + 1 \) \(M_S \) levels (which are exactly degenerate at the level of the Born-Oppenheimer Hamiltonian), even in the absence of an external magnetic field. Thus, an analysis and interpretation of the ZFS is imperative if the information content of the various physical methods that are sensitive to ZFS effects.

In 2007, we have developed a procedure that makes the ZFS calculation compatible with the language of analytic derivatives. Perhaps the most transparent route is to start from the exact solutions of the Born-Oppenheimer Hamiltonian. To this end, we look at the second derivative of the ground state energy (\(E = \langle 0SS | \hat{H} | 0SS \rangle \)) with respect to a spin-dependent one-electron operator of the general form:

\[
\hat{h}^{K:(m)} = x^{(m)}_K \sum_{pq} h^{Kpq} (m) \hat{S}^{(m)}_{pq}
\]

(9.356)

Where \(h^{Kpq} \) is the matrix of the \(K \)’th component of the spatial part of the operator (assumed to be imaginary Hermitian as is the case for the spatial components of the SOC operator) and \(\hat{S}^{(m)}_{pq} \) is the second quantized form of the spin vector operator \((m = 0, \pm 1) \). The quantity \(x^{(m)}_K \) is a formal perturbation parameter. Using the exact eigenfunctions of the BO operator, the first derivative is:

\[
\frac{\partial E}{\partial x^{(m)}_K} \bigg|_{x^{(m)}_K=0} = \sum_{pq} h^{Kpq} P^{(m)}_{pq}
\]

(9.357)

With the components of the spin density:

\[
P^{(m)}_{pq} = \langle 0SS | \hat{S}^{(m)}_{pq} | 0SS \rangle
\]

(9.358)

The second derivative with respect to a second component for \(m' = -m \) is:

\[
\frac{\partial^2 E}{\partial x^{(m)}_K \partial x^{(-m)}_L} \bigg|_{x^{(m)}_K=x^{(-m)}_L=0} = \sum_{pq} h^{Kpq} \frac{\partial P^{(m)}_{pq}}{x^{(-m)}_L}
\]

(9.359)

The derivative of the spin density may be written as:

\[
\frac{\partial P^{(m)}_{pq}}{x^{(-m)}_L} = \langle 0^{SS(-m)}_L | \hat{S}^{(m)}_{pq} | 0^{SS} \rangle + \langle 0^{SS} | \hat{S}^{(m)}_{pq} | 0^{SS(-m)}_L \rangle
\]

(9.360)

Expanding the perturbed wavefunction in terms of the unperturbed states gives to first order:
9.29 Calculation of Properties

\[|0_{L}^{S S(-m)}⟩ = - \sum_{n \neq 0} \Delta_{n}^{-1} |n⟩ \langle n | \hat{h}_{L}^{(-m)} |0_{S S}⟩ \] (9.361)

Where \(|n⟩\) is any of the \(|b^{S'M'}⟩\). Thus, one gets:

\[\frac{\partial^2 E}{\partial x_{K}^{(m)} \partial x_{L}^{(-m)}} = \sum_{pq} h_{pq}^{K} \frac{\partial P_{pq}^{(m)}}{\partial x_{L}^{(-m)}} \] (9.362)

\[= - \sum_{n \neq 0} \Delta_{n}^{-1} \left[\langle 0_{S S} | \hat{h}_{L}^{(-m)} |n⟩ \langle n | \hat{h}_{K}^{(m)} |0_{S S}⟩ + \langle 0_{S S} | \hat{h}_{K}^{(m)} |n⟩ \langle n | \hat{h}_{L}^{(-m)} |0_{S S}⟩ \right] \] (9.363)

The equality holds for exact states. For approximate electronic structure treatments, the analytic derivative approach is more attractive since an infinite sum over states can never be performed in practice and the calculation of analytic derivative is computationally less demanding than the calculation of excited many electron states.

Using eq. 9.362, the components of the SOC-contribution to the D-tensor are reformulated as

\[D_{KL}^{SOC-(-1)} = \frac{1}{S (2S - 1)} \sum_{pq} h_{pq}^{K} \frac{\partial P_{pq}^{(-1)}}{\partial x_{L}^{(-1)}} \] (9.365)

\[D_{KL}^{SOC-(+1)} = \frac{1}{(S + 1) (2S + 1)} \sum_{pq} h_{pq}^{K} \frac{\partial P_{pq}^{(+1)}}{\partial x_{L}^{(+1)}} \] (9.366)

These are general equations that can be applied together with any non-relativistic or scalar relativistic electronic structure method that can be cast in second quantized form. Below, the formalism is applied to the case of a self-consistent field (HF, DFT) reference state.

For DFT or HF ground states, the equations are further developed as follows:

The SCF energy is:

\[E_{SCF} = V_{NN} + \langle \Phi | \hat{P}^{+} | \rangle + \frac{1}{2} \int \int \frac{\rho(r_1) \rho(r_2)}{|r_1 - r_2|} dr_1 dr_2 - \frac{1}{2} a_{N} \sum_{\mu \nu \kappa \tau} P_{\mu \kappa}^{\sigma} P_{\nu \tau}^{\sigma} (\mu \nu | \kappa \tau) + c_{DF} E_{XC} [\rho_\alpha, \rho_\beta] \] (9.367)

Here \(V_{NN}\) is the nuclear repulsion energy and \(h_{\mu \nu}\) is a matrix element of the one-electron operator which contains the kinetic energy and electron-nuclear attraction terms (\(\langle ab \rangle\) denotes the trace of the matrix product \(ab\)). As usual, the molecular spin-orbitals \(\psi_{\mu}^{\sigma}\) are expanded in atom centered basis functions (\(\sigma = \alpha, \beta\)):
With MO coefficients $c_{\mu\nu}^\sigma$. The two-electron integrals are defined as:

$$ (\mu\nu|\kappa\tau) = \int \int \phi_\mu (\mathbf{r}_1) \phi_\nu (\mathbf{r}_1) r_1^{-1} \phi_\kappa (\mathbf{r}_2) \phi_\tau (\mathbf{r}_2) \, d\mathbf{r}_1 d\mathbf{r}_2 $$

(9.369)

The mixing parameter a_X controls the fraction of Hartree-Fock exchange and is of a semi-empirical nature. $E_{\text{XC}}[\rho_\alpha, \rho_\beta]$ represent the exchange-correlation energy. The parameter c_{DF} is an overall scaling factor that allows one to proceed from Hartree-Fock theory ($a_X = 1, c_{\text{DF}} = 0$) to pure DFT ($a_X = 0, c_{\text{DF}} = 1$) to hybrid DFT ($0 < a_X < 1, c_{\text{DF}} = 1$). The orbitals satisfy the spin-unrestricted SCF equations:

$$ P_{\mu\nu}^\sigma = h_{\mu\nu} + \sum_{\kappa\tau} P_{\kappa\tau} (\mu\nu|\kappa\tau) - a_X P_{\kappa\tau}^\sigma (\mu\nu|\kappa\tau) + c_{\text{DF}} (\mu|V_{X}\rho^\sigma_{\text{FC}}|\nu) $$

(9.370)

With $V_{X}\rho^\sigma_{\text{FC}} = \frac{\delta E_{\text{XC}}}{\delta \rho^\sigma (\mathbf{r})}$ and $P_{\mu\nu} = P_{\mu\nu}^\alpha + P_{\mu\nu}^\beta$, being the total electron density. For the SOC perturbation it is customary to regard the basis set as perturbation independent. In a spin-unrestricted treatment, the first derivative is:

$$ \frac{\partial E_{\text{SCF}}}{\partial S_K^{(m)}} = \sum_{i_\alpha} (i_\alpha | hKs_m | i_\alpha) + \sum_{i_\beta} (i_\beta | hKs_m | i_\beta) = 0 $$

(9.371)

For the second derivative, the perturbed orbitals are required. However, in the presence of a spin-dependent perturbation they can no longer be taken as pure spin-up or spin-down orbitals. With respect to the L'th component of the perturbation for spin-component m, the orbitals are expanded as:

$$ \psi^{\alpha,(m)L}_{i_\alpha} (\mathbf{r}) = \sum_{a_\alpha} U_{a_\alpha, i_\alpha}^{(m)L} \psi_{a_\alpha}^\alpha (\mathbf{r}) + \sum_{a_\beta} U_{a_\beta, i_\alpha}^{(m)L} \psi_{a_\beta}^\beta (\mathbf{r}) $$

(9.372)

$$ \psi^{\beta,(m)L}_{i_\beta} (\mathbf{r}) = \sum_{a_\alpha} U_{a_\alpha, i_\beta}^{(m)L} \psi_{a_\alpha}^\alpha (\mathbf{r}) + \sum_{a_\beta} U_{a_\beta, i_\beta}^{(m)L} \psi_{a_\beta}^\beta (\mathbf{r}) $$

(9.373)

Since the matrix elements of the spin-vector operator components are purely real and the spatial part of the SOC operator has purely imaginary matrix elements, it follows that the first order coefficients are purely imaginary. The second derivative of the total SCF energy becomes:

$$ \frac{\partial^2 E_{\text{SCF}}}{\partial S_K^{(m)} \partial S_K^{(m)}} = \sum_{i_\alpha a_\alpha} \left\{ U_{a_\alpha, i_\alpha}^{(m)L*} (a_\alpha | hKs_m | i_\alpha) + U_{a_\alpha, i_\alpha}^{(m)L} (i_\alpha | hKs_m | a_\alpha) \right\} + \sum_{i_\beta a_\beta} \left\{ U_{a_\beta, i_\alpha}^{(m)L*} (a_\beta | hKs_m | i_\alpha) + U_{a_\beta, i_\alpha}^{(m)L} (i_\alpha | hKs_m | a_\beta) \right\} + \sum_{i_\beta a_\beta} \left\{ U_{a_\alpha, i_\beta}^{(m)L*} (a_\alpha | hKs_m | i_\beta) + U_{a_\alpha, i_\beta}^{(m)L} (i_\beta | hKs_m | a_\alpha) \right\} + \sum_{i_\beta a_\beta} \left\{ U_{a_\beta, i_\beta}^{(m)L*} (a_\beta | hKs_m | i_\beta) + U_{a_\beta, i_\beta}^{(m)L} (i_\beta | hKs_m | a_\beta) \right\} $$

(9.374)
Examination of the three cases \(m = 0, \pm 1 \) leads to the following equations for the \(D \)-tensor components:

\[
D^{(0)}_{KL} = -\frac{1}{4S^2} \sum_{\mu\nu} \frac{\partial P^{(0)}_{\mu\nu}}{\partial x_L} \langle \mu | h^{K;SOC} | \nu \rangle
\]
(9.375)

\[
D^{(+1)}_{KL} = \frac{1}{2(S + 1)(2S + 1)} \sum_{\mu\nu} \langle \mu | h^{K;SOC} | \nu \rangle \frac{\partial P^{(-1)}_{\mu\nu}}{\partial x_L^{(+1)}}
\]
(9.376)

\[
D^{(-1)}_{KL} = \frac{1}{2S(2S - 1)} \sum_{\mu\nu} \langle \mu | h^{K;SOC} | \nu \rangle \frac{\partial P^{(+1)}_{\mu\nu}}{\partial x_L^{(-1)}}
\]
(9.377)

Where a special form of the perturbed densities has been chosen. They are given in the atomic orbital basis as:

\[
\frac{\partial P^{(0)}_{\mu\nu}}{\partial x_L^{(0)}} = \sum_{i_a,a_a} U^{(0);L}_{i_a,a_a} c^{\alpha}_{\mu i_a} c^{\alpha}_{\nu a_a} + \sum_{i_b,a_b} U^{(0);L}_{i_b,a_b} c^{\beta}_{\mu i_b} c^{\beta}_{\nu a_b}
\]
(9.378)

\[
\frac{\partial P^{(+1)}_{\mu\nu}}{\partial x_L^{(-1)}} = \sum_{i_a,a_a} U^{(-1);L}_{i_a,a_a} c^{\alpha}_{\mu i_a} c^{\alpha}_{\nu a_a} - \sum_{i_b,a_b} U^{(-1);L}_{i_b,a_b} c^{\beta}_{\mu i_b} c^{\beta}_{\nu a_b}
\]
(9.379)

\[
\frac{\partial P^{(-1)}_{\mu\nu}}{\partial x_L^{(+1)}} = -\sum_{i_a,a_a} U^{(+1);L}_{i_a,a_a} c^{\alpha}_{\mu i_a} c^{\alpha}_{\nu a_a} + \sum_{i_b,a_b} U^{(+1);L}_{i_b,a_b} c^{\beta}_{\mu i_b} c^{\beta}_{\nu a_b}
\]
(9.380)

The special form of the coupled perturbed equations are implemented in ORCA run as follows: The perturbation is of the general form \(h^{K} s_m \). The equations 9.375-9.380 and 9.381-9.386 below have been written in such a way that the spin integration has been performed but that the spin-dependent factors have been dropped from the right-hand sides and included in the prefactors of eqs. 9.375-9.377. The explicit forms of the linear equations to be solved are:

\(m = 0 \):

\[
(\varepsilon^{(0)} - \varepsilon^{(0)}_{i_a}) U^{K(0)}_{a_a,i_a} + a_X \sum_{j_a,b_a} U^{K(m)}_{b_a,j_a} \{(b_a|i_a|a_a,j_a) - (j_a|i_a|a_a,b_a)\} = -(a_a|h^{K}|i_a)
\]
(9.381)

\[
(\varepsilon^{(0)} - \varepsilon^{(0)}_{i_a}) U^{K(0)}_{a_a,i_a} + a_X \sum_{j_a,b_a} U^{K(m)}_{b_a,j_a} \{(b_a|i_a|a_a,j_a) - (j_a|i_a|a_a,b_a)\} = -(a_a|h^{K}|i_a)
\]
(9.382)

\(m = +1 \):

\[
(\varepsilon^{(0)} - \varepsilon^{(0)}_{i_a}) U^{K(+1)}_{a_a,i_a} + a_X \sum_{j_a,b_a} U^{K(+1)}_{b_a,j_a} (b_a|i_a|a_a,j_a) - a_X \sum_{b_a,i_a} U^{K(+1)}_{b_a,j_a} (j_a|i_a|a_a,b_a) = -(a_a|h^{K}|i_a)
\]
(9.383)
\[
\left(\varepsilon_{\alpha \beta}^{(m)} - \varepsilon_{\alpha \beta}^{(0)} \right) U^{K(m+1)}_{\alpha \beta i \lambda} + a_X \sum_{j \beta, b \lambda} U^{K(m+1)}_{b \beta j \beta} (b_{\alpha i \alpha} | a_{\beta b \beta}) - a_X \sum_{b \beta, j \alpha} U^{K(m+1)}_{b \beta j \alpha} (j_{\alpha i \alpha} | a_{\beta b \beta}) = 0 \quad (9.384)
\]

\[m = -1:\]
\[
\left(\varepsilon_{\alpha \beta}^{(m)} - \varepsilon_{\alpha \beta}^{(0)} \right) U^{K(m-1)}_{\alpha \beta i \lambda} + a_X \sum_{j \beta, b \lambda} U^{K(m-1)}_{b \beta j \beta} (b_{\alpha i \alpha} | a_{\beta b \beta}) - a_X \sum_{b \beta, j \alpha} U^{K(m-1)}_{b \beta j \alpha} (j_{\alpha i \alpha} | a_{\beta b \beta}) = - (a_{\beta | h^K | i \alpha}) \quad (9.385)
\]
\[
\left(\varepsilon_{\alpha \beta}^{(m)} - \varepsilon_{\alpha \beta}^{(0)} \right) U^{K(m-1)}_{a \alpha i \beta} + a_X \sum_{j \beta, b \lambda} U^{K(m-1)}_{b \beta j \beta} (b_{\alpha i \alpha} | a_{\beta b \beta}) - a_X \sum_{b \beta, j \alpha} U^{K(m-1)}_{b \beta j \alpha} (j_{\alpha i \alpha} | a_{\beta b \beta}) = 0 \quad (9.386)
\]

Note that these coupled-perturbed (CP) equations contain no contribution from the Coulomb potential or any other local potential such as the exchange-correlation potential in DFT. Hence, in the absence of HF exchange, the equations are trivially solved:

\[
U^{K(0)}_{\alpha \beta i \lambda} = - \frac{(a_{\alpha | h^K | i \lambda})}{\varepsilon_{\alpha \beta}^{(0)} - \varepsilon_{i \lambda}^{(0)}} \quad (9.387)
\]
\[
U^{K(0)}_{\alpha \beta j \beta} = - \frac{(a_{\beta | h^K | i \beta})}{\varepsilon_{\alpha \beta}^{(0)} - \varepsilon_{i \beta}^{(0)}} \quad (9.388)
\]
\[
U^{K(+1)}_{\alpha \beta i \lambda} = - \frac{(a_{\alpha | h^K | i \lambda})}{\varepsilon_{\alpha \beta}^{(0)} - \varepsilon_{i \lambda}^{(0)}} \quad (9.389)
\]
\[
U^{K(+1)}_{\alpha \beta j \beta} = 0 \quad (9.390)
\]
\[
U^{K(-1)}_{\alpha \beta i \lambda} = - \frac{(a_{\beta | h^K | i \lambda})}{\varepsilon_{\alpha \beta}^{(0)} - \varepsilon_{i \lambda}^{(0)}} \quad (9.391)
\]
\[
U^{K(-1)}_{\alpha \beta j \beta} = 0 \quad (9.392)
\]

It is interesting that the “reverse spin flip coefficients” \(U^{K(+1)}_{\alpha \beta i \lambda} \) and \(U^{K(-1)}_{\alpha \beta j \beta} \) are only nonzero in the presence of HF exchange. In a perturbation expansion of the CP equations they arise at second order \((V^2/\Delta \varepsilon^2)\) while the other coefficients are of first order \((V/\Delta \varepsilon)\). Hence, these contributions are of the order of \(\alpha^4\) and one could conceive dropping them from the treatment in order to stay consistently at the level of \(\alpha^2\). These terms were nevertheless kept in the present treatment.

Equations 9.381-9.386 are referred to as CP-SOC (coupled-perturbed spin-orbit coupling) equations. They can be solved by standard techniques and represent the desired analogue of the CP-SCF magnetic response equations solved for the determination of the g-tensor and discussed in detail earlier [202]. It is readily confirmed that in the absence of HF exchange, eqs. 9.387-9.392 inserted into eqs. 9.375-9.380 lead back to a
modified Pederson-Khanna type treatment of the SOC contributions to the D-tensor [184]. In the framework of the formalism developed above, the Pederson-Khanna formula can be re-written in the form:

\[
D_{KL}^{(SOC;PK)} = \frac{1}{4S^2} \sum_{\beta, \alpha} \alpha_{\beta} \beta_{\alpha} \left(\psi_{\beta}^\alpha \left| H_{K;SOC} \right| \psi_{\alpha}^\beta \right) U_{a_\beta a_\alpha}^{L(0)} + \frac{1}{4S^2} \sum_{\beta, \alpha} \alpha_{\beta} \beta_{\alpha} \left(\psi_{\alpha}^\beta \left| H_{K;SOC} \right| \psi_{\beta}^\alpha \right) U_{a_\alpha a_\beta}^{L(0)}
\]

This equation was derived from second-order non-self-consistent perturbation theory without recourse to spin-coupling. For the special case of no Hartree-Fock exchange, the main difference to the treatment presented here is that the correct prefactors from eqs. 9.364-9.366 occur in front of the spin-flip contributions rather than \(\pm 1/(4S^2) \) in eq. 9.393. In the presence of HF exchange it is suggested that the consistent generalization of the PK method are eqs. 9.375-9.377 with the \(\pm 1/(4S^2) \) prefactors and this way the method has been implemented as an option into the ORCA program.

For completeness, the evaluation of the spin-spin term in the SCF case proceeds conveniently through:

\[
D_{KL}^{(SS)} = \frac{g^2}{4} \alpha^2 S(2S - 1) \sum_{\mu \nu \kappa \tau} \left\{ P_{\mu \nu}^{\alpha - \beta} P_{\kappa \tau}^{\alpha - \beta} - P_{\mu \kappa}^{\alpha - \beta} P_{\nu \tau}^{\alpha - \beta} \right\} \langle \mu \nu | r_{12}^{-5} \left\{ 3r_{12,K} r_{12,L} - \delta_{KL} r_{12}^2 \right\} | \kappa \tau \rangle \tag{9.394}
\]

as derived by McWeeny and Mizuno and discussed in some detail by Sinnecker and Neese. [165] In this reference it was found that DFT methods tend to overestimate the spin-spin contribution if the calculations are based on a spin-unrestricted SCF treatment. A much better correlation with experiment was found for open-shell spin restricted calculations. The origin of this effect proved to be difficult to understand but it was shown in ref. [181] that in the case of small spin-contamination, the results of ROKS calculations and of those that are obtained on the basis of the spin-unrestricted natural orbital (UNO) determinant are virtually indistinguishable. It is therefore optionally possible in the ORCA program to calculate the spin-spin term on the basis of the UNO determinant.

9.29.4 Local Energy Decomposition

The DLPNO-CCSD(T) method provides very accurate correlation energies and allows to successfully predict many chemical phenomena. In order to facilitate the interpretation of coupled cluster results, we have developed the Local Energy Decomposition (LED) analysis [176], which permit to divide the interaction energy between two fragments (including the Hartree-Fock reference) into physically meaningful contributions.

As a word of caution we emphasize that only the total energy is an observable and its decomposition is, to some extent, arbitrary. Nevertheless, the LED analysis appears to be physically well grounded and logical to us, it is straightforward to apply and comes at negligible computational cost. It makes no assumption about the strength of the intermolecular interaction and hence it remains valid and consistent over the entire potential energy surface. Alternative schemes, such as the popular symmetry adapted perturbation theory, are perturbative in nature and hence are best applied to weakly interacting systems.
The idea of the LED analysis is rather simple. In local correlation methods occupied orbitals are localized and can be readily assigned to pre-defined fragments in the molecule. The fragmentation is user defined. The same can be done for the correlation energy in terms of pair correlation energies that refer to pairs of occupied orbitals. Furthermore, since in the DLPNO-CCSD(T) method the virtual space is spanned by pair natural orbitals that are also essentially local, the entire correlation energy can be decomposed into local contributions as well.

The LED has as reference point the geometrically and electronically relaxed fragments that constitute the interacting super-molecule. Relative to this reference state, the electronic energy difference to the interacting geometric and electronic structure can be written as:

\[
\Delta E = \Delta E_{\text{geo-prep}} + \Delta E_{\text{el-prep}} + \Delta E_{\text{elstat}} + \Delta E_{\text{exch}} + \Delta E_{\text{DISP}} + \Delta E_{\text{CT}} + \Delta E_{\text{WP}} + \Delta E_{\text{CT}}.
\]

\(\Delta E_{\text{geo-prep}}\) is the energy needed to distort the fragments from their equilibrium configuration to the interacting geometry. The \(\Delta E_{\text{el-prep}}\) term represents the electronic preparation energy and describes how much energy is necessary to bring the fragments into the electronic structure that is optimal for interaction. It includes both Hartree-Fock and correlation contributions. \(E_{\text{exch}}\) is the inter-fragment exchange interaction (it always gives a binding contribution in our formalism) and \(E_{\text{elstat}}\) is the electrostatic energy interaction. These two terms are described at the Hartree-Fock level of theory. The decomposition of the DLPNO-CCSD strong pairs yields \(E_{\text{DISP}}\), the genuine dispersion interaction term, and \(E_{\text{CT}}\), the dynamic charge polarization terms that mainly serve to counteract the HF overpolarization. In a simplified scheme, this last contribution can be counted together with \(E_{\text{elstat}}\). Finally, \(E_{\text{WP}}\) and \(E_{\text{CT}}\) are contributions from weak pairs and triple excitations, respectively. While \(E_{\text{WP}}\) is mainly of dispersive nature and hence, in a simplified scheme, can be counted together with \(E_{\text{DISP}}\), the intermolecular contribution of the triples \(E_{\text{CT}}\) is expected to contain dispersion and charge transfer contributions as well.

The following options can be used in accordance with LED.

```
! DLPNO-CCSD(T) cc-pVDZ cc-pVDZ/C def2/JK RIJK TightPNO LED TightSCF

%mdci
LED 1          # localization method for the PNOs. Choices:
               # 1 = PipekMezey (default)
               # 2 = FosterBoys
PrintLevel 3    # Selects large output for LED and prints the
               # detailed contribution
               # of each DLPNO-CCSD strong pair
LocMaxIterLed 300 # Maximum number of localization iterations for PNOs
LocTolLed 1e-6  # Absolute threshold for the localization procedure for PNOs
```
9.30 Natural Bond Orbital (NBO) Analysis

A popular and useful method for population analysis is the natural bond orbital analysis due to Weinhold and co-workers. It is implemented in the NBO program which is distributed in older versions via the CCL list and in newer versions via the University of Wisconsin/Madison. Information about the NBO program can be found at http://www.chem.wisc.edu/~nbo6. In order to use it together with ORCA you need a version of the stand-alone executable. Starting with version 3.1.x ORCA can only be used with NBO6. To specify the NBO executable the environment variable NBOEXE=/full/name/of/nbo6-executable has to be set. As the NBO part of the interface is not independent of the integer data-type width (i4 or i8), the NBO executable which will be used together with ORCA has to be compiled using i4!

ORCA features two methods to interface with the NBO program: ! NBO and the %nbo - block. The following example illustrates the use:

```latex
#
# Test the interface to the NBO program
#
!
RHF SVP NBO

* xyz 0 1
C  0.000000  0.000000  0.000000
O  1.200000  0.000000  0.000000
H -0.550000  0.952628  0.000000
H -0.550000 -0.952628 -0.000000
*
```

This produces the following output:

```
Now starting NBO6....

***************************** development version ****************************
(c) Copyright 1996-2014 Board of Regents of the University of Wisconsin System
on behalf of the Theoretical Chemistry Institute. All rights reserved.

Cite this program as:

NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed,
J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis,
and F. Weinhold (Theoretical Chemistry Institute, University
of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/
```
Filename set to FILE

Job title: ORCA Job: check

NATURAL POPULATIONS: Natural atomic orbital occupancies

<table>
<thead>
<tr>
<th>NAO</th>
<th>Atom No</th>
<th>lang</th>
<th>Type(AO)</th>
<th>Occupancy</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>1 s</td>
<td>Cor(1s)</td>
<td>1.99966</td>
<td>-11.23369</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1 s</td>
<td>Val(2s)</td>
<td>1.01121</td>
<td>-0.23403</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1 s</td>
<td>Ryd(3s)</td>
<td>0.00689</td>
<td>0.61431</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1 px</td>
<td>Val(2p)</td>
<td>0.82024</td>
<td>0.95722</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1 px</td>
<td>Ryd(3p)</td>
<td>0.01280</td>
<td>0.63773</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>1 py</td>
<td>Val(2p)</td>
<td>1.89998</td>
<td>-0.91646</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>1 py</td>
<td>Ryd(3p)</td>
<td>0.00064</td>
<td>0.80092</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>1 pz</td>
<td>Val(2p)</td>
<td>0.65974</td>
<td>-0.93397</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1 pz</td>
<td>Ryd(3p)</td>
<td>0.00302</td>
<td>0.62768</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>1 dxy</td>
<td>Ryd(3d)</td>
<td>0.00572</td>
<td>2.75504</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>1 dzx</td>
<td>Ryd(3d)</td>
<td>0.00375</td>
<td>2.25507</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>1 dyz</td>
<td>Ryd(3d)</td>
<td>0.00000</td>
<td>2.99062</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>1 dx2y2</td>
<td>Ryd(3d)</td>
<td>0.00346</td>
<td>2.73607</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>1 dz2</td>
<td>Ryd(3d)</td>
<td>0.00114</td>
<td>2.41304</td>
</tr>
<tr>
<td>15</td>
<td>O</td>
<td>2 s</td>
<td>Cor(1s)</td>
<td>1.99976</td>
<td>-20.31978</td>
</tr>
<tr>
<td>16</td>
<td>O</td>
<td>2 s</td>
<td>Val(2s)</td>
<td>1.70414</td>
<td>-1.12939</td>
</tr>
<tr>
<td>17</td>
<td>O</td>
<td>2 s</td>
<td>Ryd(3s)</td>
<td>0.00165</td>
<td>1.55528</td>
</tr>
<tr>
<td>18</td>
<td>O</td>
<td>2 px</td>
<td>Val(2p)</td>
<td>1.62356</td>
<td>-0.45319</td>
</tr>
<tr>
<td>19</td>
<td>O</td>
<td>2 px</td>
<td>Ryd(3p)</td>
<td>0.00083</td>
<td>1.29399</td>
</tr>
<tr>
<td>20</td>
<td>O</td>
<td>2 py</td>
<td>Val(2p)</td>
<td>1.91509</td>
<td>-0.46837</td>
</tr>
<tr>
<td>21</td>
<td>O</td>
<td>2 py</td>
<td>Ryd(3p)</td>
<td>0.00338</td>
<td>1.41525</td>
</tr>
<tr>
<td>22</td>
<td>O</td>
<td>2 pz</td>
<td>Val(2p)</td>
<td>1.32997</td>
<td>-0.28652</td>
</tr>
<tr>
<td>23</td>
<td>O</td>
<td>2 pz</td>
<td>Ryd(3p)</td>
<td>0.00010</td>
<td>1.30113</td>
</tr>
<tr>
<td>24</td>
<td>O</td>
<td>2 dxy</td>
<td>Ryd(3d)</td>
<td>0.00211</td>
<td>3.27368</td>
</tr>
<tr>
<td>25</td>
<td>O</td>
<td>2 dxz</td>
<td>Ryd(3d)</td>
<td>0.00339</td>
<td>3.20718</td>
</tr>
<tr>
<td>26</td>
<td>O</td>
<td>2 dyz</td>
<td>Ryd(3d)</td>
<td>0.00000</td>
<td>2.98898</td>
</tr>
<tr>
<td>27</td>
<td>O</td>
<td>2 dx2y2</td>
<td>Ryd(3d)</td>
<td>0.00393</td>
<td>3.55727</td>
</tr>
<tr>
<td>28</td>
<td>O</td>
<td>2 dz2</td>
<td>Ryd(3d)</td>
<td>0.00114</td>
<td>3.17796</td>
</tr>
<tr>
<td>29</td>
<td>H</td>
<td>3 s</td>
<td>Val(1s)</td>
<td>0.88637</td>
<td>0.95683</td>
</tr>
<tr>
<td>30</td>
<td>H</td>
<td>3 s</td>
<td>Ryd(2s)</td>
<td>0.90304</td>
<td>0.41662</td>
</tr>
<tr>
<td>31</td>
<td>H</td>
<td>3 px</td>
<td>Ryd(2p)</td>
<td>0.00031</td>
<td>2.18696</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>3 py</td>
<td>Ryd(2p)</td>
<td>0.00166</td>
<td>2.47708</td>
</tr>
<tr>
<td>33</td>
<td>H</td>
<td>3 pz</td>
<td>Ryd(2p)</td>
<td>0.00002</td>
<td>1.85384</td>
</tr>
<tr>
<td>34</td>
<td>H</td>
<td>4 s</td>
<td>Val(1s)</td>
<td>0.88637</td>
<td>0.95683</td>
</tr>
<tr>
<td>35</td>
<td>H</td>
<td>4 s</td>
<td>Ryd(2s)</td>
<td>0.90304</td>
<td>0.41662</td>
</tr>
<tr>
<td>36</td>
<td>H</td>
<td>4 px</td>
<td>Ryd(2p)</td>
<td>0.00031</td>
<td>2.18696</td>
</tr>
<tr>
<td>37</td>
<td>H</td>
<td>4 py</td>
<td>Ryd(2p)</td>
<td>0.00166</td>
<td>2.47708</td>
</tr>
<tr>
<td>38</td>
<td>H</td>
<td>4 pz</td>
<td>Ryd(2p)</td>
<td>0.00002</td>
<td>1.85384</td>
</tr>
</tbody>
</table>
Summary of Natural Population Analysis:

<table>
<thead>
<tr>
<th>Atom No</th>
<th>Natural Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Charge</td>
</tr>
<tr>
<td>C 1</td>
<td>0.37176</td>
</tr>
<tr>
<td>O 2</td>
<td>-0.58895</td>
</tr>
<tr>
<td>H 3</td>
<td>0.10859</td>
</tr>
<tr>
<td>H 4</td>
<td>0.10859</td>
</tr>
</tbody>
</table>

* Total * 0.00000 3.99942 11.93659 0.06400 16.00000

Natural Population

- Core 3.99942 (99.9854% of 4)
- Valence 11.93659 (99.4716% of 12)
- Natural Minimal Basis 15.93600 (99.6000% of 16)
- Natural Rydberg Basis 0.06400 (0.4000% of 16)

Atom No	Natural Electron Configuration
C 1 | [core]2s(1.01)2p(2.58)3s(0.01)3p(0.02)3d(0.01)
O 2 | [core]2s(1.70)2p(4.87)3d(0.01)
H 3 | 1s(0.89)
H 4 | 1s(0.89)

NATURAL BOND ORBITAL ANALYSIS:

<table>
<thead>
<tr>
<th>Cycle Ctr</th>
<th>Thresh</th>
<th>Occupancies</th>
<th>Lewis Structure</th>
<th>Low occ</th>
<th>High occ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>Occ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Structure accepted: No low occupancy Lewis orbitals

Core 3.99942 (99.985% of 4)
Valence Lewis 11.89656 (99.138% of 12)
Total Lewis 15.89597 (99.350% of 16)

Valence non-Lewis 0.07868 (0.492% of 16)
Rydberg non-Lewis 0.02535 (0.158% of 16)
Total non-Lewis 0.10403 (0.650% of 16)

<table>
<thead>
<tr>
<th>(Occupancy)</th>
<th>Bond orbital / Coefficients / Hybrids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis</td>
<td></td>
</tr>
<tr>
<td>1. (1.99966) CR (1) C 1</td>
<td>s(100.00%)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>(1.99976) CR (1) O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>(1.98819) LP (1) O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>(1.91727) LP (2) O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>(1.99996) BD (1) C 1- O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>(1.99969) BD (2) C 1- O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>(1.99572) BD (1) C 1- H 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>(1.99572) BD (1) C 1- H 4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>(0.00000) BD*(1) C 1- O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>(0.00062) BD*(2) C 1- O 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>(0.03933) BD*(1) C 1- H 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-Lewis</td>
</tr>
</tbody>
</table>
9.30 Natural Bond Orbital (NBO) Analysis

NBO DIRECTIONALITY AND BOND BENDING (deviations from line of nuclear centers)

<table>
<thead>
<tr>
<th>NBO Type</th>
<th>Atomic Orbitals</th>
<th>RY (1) C 1</th>
<th>RY (2) C 1</th>
<th>RY (3) C 1</th>
<th>RY (4) C 1</th>
<th>RY (5) C 1</th>
<th>RY (6) C 1</th>
<th>RY (7) C 1</th>
<th>RY (8) C 1</th>
<th>RY (9) C 1</th>
<th>RY (10) C 2</th>
<th>RY (11) C 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0002)</td>
<td>RY (3) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (4) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (5) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (6) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (7) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (8) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (9) C 1</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (10) C 2</td>
<td>0.6587</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>RY (11) C 2</td>
<td>0.6587</td>
</tr>
</tbody>
</table>

Example ROW:

<table>
<thead>
<tr>
<th>bond</th>
<th>coefficients</th>
<th>directionality</th>
<th>bond bending</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>0.0000 -0.5827 -0.0187 0.3995 0.0027</td>
<td>(56.61%)</td>
<td>-0.7524</td>
</tr>
<tr>
<td></td>
<td>-0.7664 0.0073 -0.0000 0.0000 0.0314</td>
<td>0.0000</td>
<td>0.0152</td>
</tr>
<tr>
<td></td>
<td>0.0000 0.0000 0.0182 0.0152</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Example ROW:

<table>
<thead>
<tr>
<th>bond</th>
<th>coefficients</th>
<th>directionality</th>
<th>bond bending</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>0.0000 -0.5827 -0.0187 0.3995 0.0027</td>
<td>(56.61%)</td>
<td>-0.7524</td>
</tr>
<tr>
<td></td>
<td>-0.7664 0.0073 -0.0000 0.0000 0.0314</td>
<td>0.0000</td>
<td>0.0152</td>
</tr>
<tr>
<td></td>
<td>0.0000 0.0000 0.0182 0.0152</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Notes:

- The table above shows the Natural Bond Orbital (NBO) analysis for various bonds, detailing the coefficients and their contributions to directionality and bond bending.
- The directionality and bond bending are quantified in terms of deviations from the line of nuclear centers.
Detailed Documentation

Thresholds for printing:
- Angular deviation > 1.0 degree
- p-character > 25.0%
- orbital occupancy > 0.10e

<table>
<thead>
<tr>
<th>NBO</th>
<th>Theta</th>
<th>Phi</th>
<th>Hybrid 1</th>
<th>Theta</th>
<th>Phi</th>
<th>Dev</th>
<th>Hybrid 2</th>
<th>Theta</th>
<th>Phi</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. LP (1) O 2</td>
<td>--</td>
<td>--</td>
<td>90.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4. LP (2) O 2</td>
<td>--</td>
<td>--</td>
<td>90.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>90.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5. BD (1) C 1- O 2</td>
<td>90.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>90.0</td>
<td>0.0</td>
<td>0.0</td>
<td>90.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

Threshold for printing: 0.50 kcal/mol

<table>
<thead>
<tr>
<th>Donor (L) NBO</th>
<th>Acceptor (NL) NBO</th>
<th>E(2) kcal/mol</th>
<th>E(NL)-E(L) a.u.</th>
<th>F(L,NL) a.u.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CR (1) C 1</td>
<td>23. RY (2) O 2</td>
<td>0.56</td>
<td>12.79</td>
<td>0.076</td>
</tr>
<tr>
<td>1. CR (1) C 1</td>
<td>31. RY (1) H 3</td>
<td>0.53</td>
<td>11.66</td>
<td>0.070</td>
</tr>
<tr>
<td>1. CR (1) C 1</td>
<td>35. RY (1) H 4</td>
<td>0.53</td>
<td>11.66</td>
<td>0.070</td>
</tr>
<tr>
<td>2. CR (1) O 2</td>
<td>13. RY (1) C 1</td>
<td>6.44</td>
<td>20.99</td>
<td>0.328</td>
</tr>
<tr>
<td>3. LP (1) O 2</td>
<td>11. BD*(1) C 1- H 3</td>
<td>0.56</td>
<td>1.63</td>
<td>0.027</td>
</tr>
<tr>
<td>3. LP (1) O 2</td>
<td>12. BD*(1) C 1- H 4</td>
<td>0.56</td>
<td>1.63</td>
<td>0.027</td>
</tr>
<tr>
<td>3. LP (1) O 2</td>
<td>13. RY (1) C 1</td>
<td>12.74</td>
<td>1.52</td>
<td>0.124</td>
</tr>
<tr>
<td>4. LP (2) O 2</td>
<td>11. BD*(1) C 1- H 3</td>
<td>26.31</td>
<td>1.16</td>
<td>0.156</td>
</tr>
<tr>
<td>4. LP (2) O 2</td>
<td>12. BD*(1) C 1- H 4</td>
<td>26.31</td>
<td>1.16</td>
<td>0.156</td>
</tr>
<tr>
<td>4. LP (2) O 2</td>
<td>14. RY (2) C 1</td>
<td>5.71</td>
<td>3.82</td>
<td>0.117</td>
</tr>
<tr>
<td>4. LP (2) O 2</td>
<td>27. RY (6) O 2</td>
<td>0.72</td>
<td>3.76</td>
<td>0.047</td>
</tr>
<tr>
<td>6. BD (2) C 1- O 2</td>
<td>13. RY (1) C 1</td>
<td>1.25</td>
<td>1.99</td>
<td>0.045</td>
</tr>
<tr>
<td>7. BD (1) C 1- H 3</td>
<td>12. BD*(1) C 1- H 4</td>
<td>0.68</td>
<td>1.45</td>
<td>0.028</td>
</tr>
<tr>
<td>7. BD (1) C 1- H 3</td>
<td>22. RY (1) O 2</td>
<td>1.95</td>
<td>2.16</td>
<td>0.058</td>
</tr>
<tr>
<td>8. BD (1) C 1- H 4</td>
<td>11. BD*(1) C 1- H 3</td>
<td>0.68</td>
<td>1.45</td>
<td>0.028</td>
</tr>
<tr>
<td>8. BD (1) C 1- H 4</td>
<td>22. RY (1) O 2</td>
<td>1.95</td>
<td>2.16</td>
<td>0.058</td>
</tr>
</tbody>
</table>

NATURAL BOND ORBITALS (Summary):

<table>
<thead>
<tr>
<th>Molecular unit 1 (CH2O)</th>
<th>NBO</th>
<th>Occupancy</th>
<th>Energy (geminal,vicinal,remote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CR (1) C 1</td>
<td>1.99966</td>
<td>-11.23369</td>
<td>23(v),31(v),35(v)</td>
</tr>
<tr>
<td>2. CR (1) O 2</td>
<td>1.99976</td>
<td>-28.31978</td>
<td>13(v)</td>
</tr>
<tr>
<td>3. LP (1) O 2</td>
<td>1.98819</td>
<td>-8.93621</td>
<td>13(v),11(v),12(v)</td>
</tr>
<tr>
<td>4. LP (2) O 2</td>
<td>1.91727</td>
<td>-8.46967</td>
<td>11(v),12(v),14(v),27(g)</td>
</tr>
<tr>
<td>5. BD (1) C 1- O 2</td>
<td>1.99996</td>
<td>-8.53513</td>
<td></td>
</tr>
<tr>
<td>6. BD (2) C 1- O 2</td>
<td>1.99969</td>
<td>-1.48029</td>
<td>13(g)</td>
</tr>
<tr>
<td>7. BD (1) C 1- H 3</td>
<td>1.99572</td>
<td>-8.75649</td>
<td>22(v),12(g)</td>
</tr>
<tr>
<td>8. BD (1) C 1- H 4</td>
<td>1.99572</td>
<td>-8.75649</td>
<td>22(v),11(g)</td>
</tr>
<tr>
<td>9. BD*(1) C 1- O 2</td>
<td>0.99900</td>
<td>0.28694</td>
<td></td>
</tr>
</tbody>
</table>

Principal Delocalizations

- Lewis

- non-Lewis

Thus, in this example the NBO analysis shows that a single Lewis structure is dominant with single bonds between C and H, a double bond between C and O and two lone pairs at the oxygen — just as ordinary chemical arguments would imply. In addition, the program produces the four corresponding valence antibonds (as expected). The remaining components of the basis set span the “Rydberg” space and lead to semilocalized, orthogonal orbitals that are assigned to single atoms (Note the nomenclature: BD = bond, BD* = antibond, LP = lone pair, CR = core orbital, RY= Rydberg orbital). The NPA analysis shows a partially negative oxygen and partially positive carbon and hydrogen atoms — all matching the expectations.
Additionally, the NBO orbitals are stored in the ORCA .gbw file-format in a file called jobname.nbo. This file can be used for further analysis and usage with ORCA e.g. for plotting orbitals via orca_plot.

The NBO program has many additional features and analysis tools. The features that are implemented in ORCA are

```
%nb0
NBOKEYLIST = "$NBO ... $END"
DELKEYLIST = "$DEL ... $END"
COREKEYLIST = "$CORE ... $END"
NRTSTRKEYLIST = "$NRTSTR ... $END"
end
```

The syntax of the respective keylists is given by the NBO6.x manual.

Specifying the ! NBO keyword as a one-liner command, the corresponding block as NBOKEYLIST would be:

```
%nb0
NBOKEYLIST = "$NBO NBO NPA AONBO=C ARCHIVE $END"
end
```

The full set of features beyond those which can be give via the %nb0 block can be accessed using the file FILE.47, which is generated by the NBO program. This is an ascii file that can be edited with a text editor. Add or remove keywords in the corresponding blocks as needed and call the gennbo program like

```
gennbo < FILE.47 >jobname.nboout
```

The FILE.47 file looks like:

```
$GENNBO NATOMS=4 NBAS=38 UPPER BODM FORMAT $END
$NBO $END
$COORD
ORCA Job: check
  6 6  0.000000  0.000000  0.000000
  8 8  2.267671  0.000000  0.000000
  1 1 -1.039349  1.800206  0.000000
  1 1 -1.039349 -1.800206  0.000000
$END
$BASIS
```

If you have no need for this (rather large) file, then you have to delete it manually!
9.30 Natural Bond Orbital (NBO) Analysis

(a) π

(b) $\pi - LP$

(c) π^*

(d) σ

(e) $\sigma - LP$

(f) σ^*

Figure 9.46: Six NBOs of the H$_2$CO molecule. Shown are the occupied bonding π and σ orbitals (left) for C and O, the two oxygen lone-pairs (middle) and the two π and σ antibonding orbitals (right).

9.30.1 NBO Deletions

An advanced feature which has been implemented via the ORCA-NBO interface is the possibility of using deletions.

```
! RHF 3-21G BOHRS TightSCF

%nbo
nbokeylist="$nbo nbo npa aonbo=c archive $end"
delkeylist="$del lewis delete 1 element 3 11 $end"
end

*xyz @ 1
C    1.4089705283    0.0210567401    0.0000000000
N    -1.3645072652   -0.1355759321   0.0000000000
H    1.9849776453    1.9986808971    0.0000000000
H    2.1492280974    -0.9096841007    1.6818209547
H    2.1492280974    -0.9096841007   -1.6818209547
H    -2.0504340036   0.7268536543   -1.5583845544
```
The **DELKEYLIST** provides NBO with the task to perform certain deletions of orbitals/interactions. Per deletion ORCA calculates a new Fock-matrix on basis of an NBO-density corresponding to the deletions:

Starting NBO again for del instructions...

LEWIS: Delete all non-Lewis NBOs

Deletion of the following orbitals from the NBO Fock matrix:

<table>
<thead>
<tr>
<th>Orbital No</th>
<th>No deletions</th>
<th>This deletion</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CR (1) C 1</td>
<td>1.99900</td>
<td>2.00000</td>
<td>0.00100</td>
</tr>
<tr>
<td>2. CR (1) N 2</td>
<td>1.99953</td>
<td>2.00000</td>
<td>0.00047</td>
</tr>
<tr>
<td>3. LP (1) N 2</td>
<td>1.97796</td>
<td>2.00000</td>
<td>0.02204</td>
</tr>
<tr>
<td>4. BD (1) C 1- N 2</td>
<td>1.99855</td>
<td>2.00000</td>
<td>0.00145</td>
</tr>
<tr>
<td>5. BD (1) C 1- H 3</td>
<td>1.99863</td>
<td>2.00000</td>
<td>0.00137</td>
</tr>
<tr>
<td>6. BD (1) C 1- H 4</td>
<td>1.99400</td>
<td>2.00000</td>
<td>0.00600</td>
</tr>
<tr>
<td>7. BD (1) C 1- H 5</td>
<td>1.99400</td>
<td>2.00000</td>
<td>0.00600</td>
</tr>
<tr>
<td>8. BD (1) N 2- H 6</td>
<td>1.99441</td>
<td>2.00000</td>
<td>0.00559</td>
</tr>
<tr>
<td>9. BD (1) N 2- H 7</td>
<td>1.99441</td>
<td>2.00000</td>
<td>0.00559</td>
</tr>
<tr>
<td>10. BD*(1) C 1- N 2</td>
<td>0.00012</td>
<td>0.00000</td>
<td>-0.00012</td>
</tr>
<tr>
<td>11. BD*(1) C 1- H 3</td>
<td>0.01571</td>
<td>0.00000</td>
<td>-0.01571</td>
</tr>
<tr>
<td>12. BD*(1) C 1- H 4</td>
<td>0.00771</td>
<td>0.00000</td>
<td>-0.00771</td>
</tr>
<tr>
<td>13. BD*(1) C 1- H 5</td>
<td>0.00771</td>
<td>0.00000</td>
<td>-0.00771</td>
</tr>
<tr>
<td>14. BD*(1) N 2- H 6</td>
<td>0.00428</td>
<td>0.00000</td>
<td>-0.00428</td>
</tr>
<tr>
<td>15. BD*(1) N 2- H 7</td>
<td>0.00428</td>
<td>0.00000</td>
<td>-0.00428</td>
</tr>
<tr>
<td>16. RY (1) C 1</td>
<td>0.00103</td>
<td>0.00000</td>
<td>-0.00103</td>
</tr>
<tr>
<td>17. RY (2) C 1</td>
<td>0.00033</td>
<td>0.00000</td>
<td>-0.00033</td>
</tr>
<tr>
<td>18. RY (3) C 1</td>
<td>0.00023</td>
<td>0.00000</td>
<td>-0.00023</td>
</tr>
<tr>
<td>19. RY (4) C 1</td>
<td>0.00001</td>
<td>0.00000</td>
<td>-0.00001</td>
</tr>
<tr>
<td>20. RY (1) N 2</td>
<td>0.00110</td>
<td>0.00000</td>
<td>-0.00110</td>
</tr>
<tr>
<td>21. RY (2) N 2</td>
<td>0.00046</td>
<td>0.00000</td>
<td>-0.00046</td>
</tr>
<tr>
<td>22. RY (3) N 2</td>
<td>0.00038</td>
<td>0.00000</td>
<td>-0.00038</td>
</tr>
<tr>
<td>23. RY (4) N 2</td>
<td>0.00002</td>
<td>0.00000</td>
<td>-0.00002</td>
</tr>
<tr>
<td>24. RY (1) H 3</td>
<td>0.00178</td>
<td>0.00000</td>
<td>-0.00178</td>
</tr>
<tr>
<td>25. RY (1) H 4</td>
<td>0.00096</td>
<td>0.00000</td>
<td>-0.00096</td>
</tr>
<tr>
<td>26. RY (1) H 5</td>
<td>0.00096</td>
<td>0.00000</td>
<td>-0.00096</td>
</tr>
<tr>
<td>27. RY (1) H 6</td>
<td>0.00123</td>
<td>0.00000</td>
<td>-0.00123</td>
</tr>
<tr>
<td>28. RY (1) H 7</td>
<td>0.00123</td>
<td>0.00000</td>
<td>-0.00123</td>
</tr>
</tbody>
</table>

NEXT STEP: Perform one SCF cycle to evaluate the energy of the new density matrix constructed from the deleted NBO Fock matrix.

Copying NBO density...
Calculating new Fock-Matrix...
Calculating Fock-Matrix... done!
New NBO energy via Fock-Matrix: -94.618095

Starting NBO again for del/return energy instructions...

<table>
<thead>
<tr>
<th>Energy of deletion</th>
<th>Total SCF energy</th>
<th>Energy change</th>
</tr>
</thead>
<tbody>
<tr>
<td>-94.618095196</td>
<td>-94.679444929</td>
<td>0.061350 a.u., 38.498 kcal/mol</td>
</tr>
</tbody>
</table>

Multiple deletions can also be specified, as can be seen in the example above. The output then contains the additional energy values:

Starting NBO again for del instructions...

Deletion of the following NBO Fock matrix elements:
3, 11;

Orbital occupancies:

<table>
<thead>
<tr>
<th>Orbital</th>
<th>No deletions</th>
<th>This deletion</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CR (1) C 1</td>
<td>1.99990</td>
<td>1.99991</td>
<td>0.00001</td>
</tr>
<tr>
<td>2. CR (1) N 2</td>
<td>1.99953</td>
<td>1.99952</td>
<td>-0.00001</td>
</tr>
<tr>
<td>3. LP (1) N 2</td>
<td>1.97796</td>
<td>1.99343</td>
<td>0.01548</td>
</tr>
<tr>
<td>4. BD (1) C 1- N 2</td>
<td>1.99855</td>
<td>1.99867</td>
<td>0.00012</td>
</tr>
<tr>
<td>5. BD (1) C 1- H 3</td>
<td>1.99863</td>
<td>1.99859</td>
<td>-0.00014</td>
</tr>
<tr>
<td>6. BD (1) C 1- H 4</td>
<td>1.99400</td>
<td>1.99397</td>
<td>-0.0003</td>
</tr>
<tr>
<td>7. BD (1) C 1- H 5</td>
<td>1.99400</td>
<td>1.99397</td>
<td>-0.0003</td>
</tr>
<tr>
<td>8. BD (1) N 2- H 6</td>
<td>1.99441</td>
<td>1.99452</td>
<td>0.00011</td>
</tr>
<tr>
<td>9. BD (1) N 2- H 7</td>
<td>1.99441</td>
<td>1.99452</td>
<td>0.00011</td>
</tr>
<tr>
<td>10. BD* (1) C 1- H 2</td>
<td>0.00012</td>
<td>0.00011</td>
<td>-0.0000</td>
</tr>
<tr>
<td>11. BD* (1) C 1- H 3</td>
<td>0.01571</td>
<td>0.00049</td>
<td>-0.01522</td>
</tr>
<tr>
<td>12. BD* (1) C 1- H 4</td>
<td>0.00771</td>
<td>0.00788</td>
<td>0.00017</td>
</tr>
<tr>
<td>13. BD* (1) C 1- H 5</td>
<td>0.00771</td>
<td>0.00788</td>
<td>0.00017</td>
</tr>
<tr>
<td>14. BD* (1) N 2- H 6</td>
<td>0.00428</td>
<td>0.00428</td>
<td>0.0000</td>
</tr>
<tr>
<td>15. BD* (1) N 2- H 7</td>
<td>0.00428</td>
<td>0.00428</td>
<td>0.0000</td>
</tr>
<tr>
<td>16. RY (1) C 1</td>
<td>0.00193</td>
<td>0.00073</td>
<td>-0.0012</td>
</tr>
<tr>
<td>17. RY (2) C 1</td>
<td>0.00033</td>
<td>0.00033</td>
<td>0.0000</td>
</tr>
<tr>
<td>18. RY (3) C 1</td>
<td>0.00023</td>
<td>0.00036</td>
<td>0.00013</td>
</tr>
<tr>
<td>19. RY (4) C 1</td>
<td>0.00091</td>
<td>0.00091</td>
<td>0.0000</td>
</tr>
<tr>
<td>20. RY (1) N 2</td>
<td>0.00119</td>
<td>0.00111</td>
<td>0.0000</td>
</tr>
<tr>
<td>21. RY (2) N 2</td>
<td>0.00046</td>
<td>0.00046</td>
<td>0.0000</td>
</tr>
<tr>
<td>22. RY (3) N 2</td>
<td>0.00038</td>
<td>0.00038</td>
<td>0.0000</td>
</tr>
<tr>
<td>23. RY (4) N 2</td>
<td>0.00022</td>
<td>0.00022</td>
<td>0.0000</td>
</tr>
<tr>
<td>24. RY (1) H 3</td>
<td>0.00178</td>
<td>0.00109</td>
<td>-0.00069</td>
</tr>
<tr>
<td>25. RY (1) H 4</td>
<td>0.00096</td>
<td>0.00100</td>
<td>0.00005</td>
</tr>
<tr>
<td>26. RY (1) H 5</td>
<td>0.00096</td>
<td>0.00100</td>
<td>0.00005</td>
</tr>
<tr>
<td>27. RY (1) H 6</td>
<td>0.00123</td>
<td>0.00123</td>
<td>0.0000</td>
</tr>
<tr>
<td>28. RY (1) H 7</td>
<td>0.00123</td>
<td>0.00123</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

NEXT STEP: Perform one SCF cycle to evaluate the energy of the new density
9.30.2 NBO for Post-HF Densities

NBO analysis can be performed on all methods producing a density. In some methods the density generation has to be specified explicitly, e.g. for MP2 calculations this would be:

```plaintext
! RHF MP2 3-21G TightSCF BOHRS NBO

%MP2
density relaxed
density relaxed
end

*xyz 0 1
C 1.4089705283 0.9210567401 0.0000000000
N -1.3645072652 -0.1355759321 0.0000000000
H 1.9849776453 1.9986808971 0.0000000000
H 2.1492280974 -0.9096841007 1.6818209547
H 2.1492280974 -0.9096841007 -1.6818209547
H -2.0504340036 0.7268536543 -1.5583845544
H -2.0504340036 0.7268536543 1.5583845544
```

The output will contain both the NBO analysis of the SCF density as well as of the MP2 relaxed density. An NBO analysis of a density generated by the MDCI module can be specified as follows:
Again, the output will contain both the NBO analysis of the SCF density as well as of the CISD linearized density.

9.31 Population Analyses and Control of Output

At present ORCA knows three different ways of analyzing the computed SCF wavefunction that will be described below. All of these methods can produce a tremendous amount of output. However, this output can be precisely controlled by the user to his or her individual needs.

In general there is one compound key called PrintLevel which is there to choose reasonable amounts of output. All that PrintLevel does is to set certain flags in the array Print which holds the details about what to print and what not.

9.31.1 Controlling Output

The array Print allows the control of output. The general way of assigning elements of Print is:

```
%output
PrintLevel    Normal
Print[ Flag ] 0  # turn print off
              1  # turn print on
              n  # some flags are more sophisticated
end
```

The compound key PrintLevel can be used to select certain default settings for the print array. Specifying Print after PrintLevel can be used to modify these defaults.
%output
PrintLevel Nothing
Small
Normal
Large
Huge
Debug
end

Print has presently the following elements that can be user controlled:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_InputFile</td>
<td>Echo the input file</td>
</tr>
<tr>
<td>P_Cartesian</td>
<td>Print the cartesian coordinates</td>
</tr>
<tr>
<td>P_Internal</td>
<td>Print the internal coordinates</td>
</tr>
<tr>
<td>P_Basis</td>
<td>= 1 : Print the basis set information</td>
</tr>
<tr>
<td></td>
<td>= 2 : Also print the primitives in input format</td>
</tr>
<tr>
<td>P_OneElec</td>
<td>Print of the one electron matrix</td>
</tr>
<tr>
<td>POverlap</td>
<td>Print the overlap matrix</td>
</tr>
<tr>
<td>PKinEn</td>
<td>Print the kinetic energy matrix</td>
</tr>
<tr>
<td>PS12</td>
<td>Print the $S^{-1/2}$ matrix</td>
</tr>
<tr>
<td>PGuessOrb</td>
<td>Print the initial guess orbitals</td>
</tr>
<tr>
<td>POrbEn</td>
<td>Print Orbital Energies</td>
</tr>
<tr>
<td>PMOs</td>
<td>Print the MO coefficients on convergence</td>
</tr>
<tr>
<td>PDensity</td>
<td>Print the converged electron density</td>
</tr>
<tr>
<td>P_SpinDensity</td>
<td>Print the converged spin density</td>
</tr>
<tr>
<td>PEHTDetails</td>
<td>Print initial guess extended Hückel details</td>
</tr>
<tr>
<td>P_SCFInfo</td>
<td>Print the SCF input flags</td>
</tr>
<tr>
<td>P_SCFIterInfo</td>
<td>= 1 : print short iteration information</td>
</tr>
<tr>
<td></td>
<td>= 2 : print longer iteration information</td>
</tr>
<tr>
<td></td>
<td>= 3 : in a direct SCF also print integral progress</td>
</tr>
<tr>
<td>P_Fockian</td>
<td>Print Fockian matrix</td>
</tr>
<tr>
<td>P_DIIISMat</td>
<td>Print DIIS matrix</td>
</tr>
<tr>
<td>P_DIISError</td>
<td>Print DIIS error</td>
</tr>
<tr>
<td>P_Iter_P</td>
<td>Print Density</td>
</tr>
<tr>
<td>P_Iter_C</td>
<td>Print MO coefficients</td>
</tr>
<tr>
<td>P_Iter_F</td>
<td>Print Fock matrix</td>
</tr>
<tr>
<td>P_Mayer</td>
<td>Print Mayer population analysis. Default = on.</td>
</tr>
<tr>
<td>P_NatPop</td>
<td>Print Natural population analysis. Default = off.</td>
</tr>
<tr>
<td>P_Hirshfeld</td>
<td>Print Hirshfeld population analysis. Default = off.</td>
</tr>
<tr>
<td>P_Mulliken</td>
<td>Print Mulliken population analysis. Default = on</td>
</tr>
<tr>
<td>P_AtCharges_M</td>
<td>Print Mulliken atomic charges</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>P.OrbCharges_M</td>
<td>Print Mulliken orbital charges</td>
</tr>
<tr>
<td>P.FragCharges_M</td>
<td>Print Mulliken fragment charges</td>
</tr>
<tr>
<td>P.FragBondOrder_M</td>
<td>Print Mulliken fragment bond orders</td>
</tr>
<tr>
<td>P.BondOrder_M</td>
<td>Print Mulliken bond orders</td>
</tr>
<tr>
<td>P.ReducedOrbPop_M</td>
<td>Print Mulliken reduced orb. charges</td>
</tr>
<tr>
<td>P.FragPopMO_M</td>
<td>Print Mulliken fragment population for each MO</td>
</tr>
<tr>
<td>P.FragOvlMO_M</td>
<td>Print Mulliken overlap populations per fragment pair</td>
</tr>
<tr>
<td>P.AtPopMO_M</td>
<td>Print Mulliken atomic charges in each MO</td>
</tr>
<tr>
<td>P.OrbPopMO_M</td>
<td>Print Mulliken orbital population for each MO</td>
</tr>
<tr>
<td>P.ReducedOrbPopMO_M</td>
<td>Print Mulliken reduced orbital population for each MO</td>
</tr>
<tr>
<td>P.Loewdin</td>
<td>Print Loewdin population analysis. Default = on.</td>
</tr>
<tr>
<td>P.AtCharges_L</td>
<td>Print Loewdin atomic charges</td>
</tr>
<tr>
<td>P.OrbCharges_L</td>
<td>Print Loewdin orbital charges</td>
</tr>
<tr>
<td>P.FragCharges_L</td>
<td>Print Loewdin fragment charges</td>
</tr>
<tr>
<td>P.FragBondOrder_L</td>
<td>Print Loewdin fragment bond orders</td>
</tr>
<tr>
<td>P.BondOrder_L</td>
<td>Print Loewdin bond orders</td>
</tr>
<tr>
<td>P.ReducedOrbPopL</td>
<td>Print Loewdin reduced orb. charges</td>
</tr>
<tr>
<td>P.FragPopMO_L</td>
<td>Print Loewdin fragment population for each MO</td>
</tr>
<tr>
<td>P.FragOvlMO_L</td>
<td>Print Loewdin overlap populations per fragment pair</td>
</tr>
<tr>
<td>P.AtPopMO_L</td>
<td>Print Loewdin atomic charges in each MO</td>
</tr>
<tr>
<td>P.OrbPopMO_L</td>
<td>Print Loewdin orbital population for each MO</td>
</tr>
<tr>
<td>P.ReducedOrbPopMO_L</td>
<td>Print Loewdin reduced orbital population for each MO</td>
</tr>
<tr>
<td>P.NPA</td>
<td>Natural population analysis</td>
</tr>
<tr>
<td>P.NBO</td>
<td>Natural bond orbital analysis</td>
</tr>
<tr>
<td>P.Fragments</td>
<td>Print fragment information</td>
</tr>
<tr>
<td>P.GUESSPOP</td>
<td>Print initial guess populations</td>
</tr>
<tr>
<td>P.UNO_FragPopMO_M</td>
<td>Print Mulliken fragment population per UNO</td>
</tr>
<tr>
<td>P.UNO_OrbPopMO_M</td>
<td>Print Mulliken orbital pop. per UNO</td>
</tr>
<tr>
<td>P.UNO_AtPopMO_M</td>
<td>Print Mulliken atomic charges per UNO</td>
</tr>
<tr>
<td>P.UNO_ReducedOrbPopMO_M</td>
<td>Print Mulliken reduced orbital pop. per UNO</td>
</tr>
<tr>
<td>P.UNO_FragPopMO_L</td>
<td>Print Loewdin fragment population per UNO</td>
</tr>
<tr>
<td>P.UNO_OrbPopMO_L</td>
<td>Print Loewdin orbital pop. per UNO</td>
</tr>
<tr>
<td>P.UNO_AtPopMO_L</td>
<td>Print Loewdin atomic charges per UNO</td>
</tr>
<tr>
<td>P.UNO_ReducedOrbPopMO_L</td>
<td>Print Loewdin reduced orbital pop. per UNO</td>
</tr>
<tr>
<td>P.UNO_OccNum</td>
<td>Print occupation numbers per UNO</td>
</tr>
<tr>
<td>P.AtomExpVal</td>
<td>Print atomic expectation values</td>
</tr>
<tr>
<td>P.AtomBasis</td>
<td>Print atomic basis</td>
</tr>
<tr>
<td>P.AtomDensFit</td>
<td>Print electron density fit</td>
</tr>
<tr>
<td>P.Symmetry</td>
<td>Symmetry basic information</td>
</tr>
<tr>
<td>P.SymSalc</td>
<td>Symmetry process printing</td>
</tr>
<tr>
<td>P.SCFSTABANA</td>
<td>Information on progress, convergence, and results of the SCF stability analysis</td>
</tr>
<tr>
<td>P_DFTD</td>
<td>Print info on Grimme’s dispersion correction</td>
</tr>
<tr>
<td></td>
<td>print mini = 0</td>
</tr>
<tr>
<td></td>
<td>print small = 1</td>
</tr>
<tr>
<td></td>
<td>print normal = 1</td>
</tr>
<tr>
<td></td>
<td>print maxi = 2</td>
</tr>
<tr>
<td></td>
<td>print huge = 2</td>
</tr>
<tr>
<td>P_DFTD_GRAD</td>
<td>Print gradient info on Grimme’s dispersion correction</td>
</tr>
<tr>
<td></td>
<td>print mini = 0</td>
</tr>
<tr>
<td></td>
<td>print small = 0</td>
</tr>
<tr>
<td></td>
<td>print normal = 0</td>
</tr>
<tr>
<td></td>
<td>print maxi = 1</td>
</tr>
<tr>
<td></td>
<td>print huge = 2</td>
</tr>
</tbody>
</table>

The various choices for PrintLevel have the following defaults:

<table>
<thead>
<tr>
<th>PrintLevel</th>
<th>Print settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini</td>
<td>P.OrbEn = 1</td>
</tr>
<tr>
<td></td>
<td>P.Cartesian = 1</td>
</tr>
<tr>
<td></td>
<td>P.InputFile = 1</td>
</tr>
<tr>
<td></td>
<td>P.SCFIterInfo = 1</td>
</tr>
<tr>
<td>Small</td>
<td>all the previous plus</td>
</tr>
<tr>
<td></td>
<td>P.SCFInfo = 1</td>
</tr>
<tr>
<td></td>
<td>P.Mayer = 1</td>
</tr>
<tr>
<td></td>
<td>P.MULLIKEN = 1</td>
</tr>
<tr>
<td></td>
<td>P.AtCharges,M = 1</td>
</tr>
<tr>
<td></td>
<td>P.ReducedOrbPop,M = 1</td>
</tr>
<tr>
<td></td>
<td>P.Loewdin = 1</td>
</tr>
<tr>
<td></td>
<td>P.AtCharges,L = 1</td>
</tr>
<tr>
<td></td>
<td>P.ReducedOrbPop,L = 1</td>
</tr>
<tr>
<td></td>
<td>P.Fragments = 1</td>
</tr>
<tr>
<td></td>
<td>P.FragCharges,M = 1</td>
</tr>
<tr>
<td></td>
<td>P.FragBondOrder,M = 1</td>
</tr>
<tr>
<td></td>
<td>P.FragCharges,L = 1</td>
</tr>
<tr>
<td></td>
<td>P.FragBondOrder,L = 1</td>
</tr>
<tr>
<td>Normal</td>
<td>all the previous plus</td>
</tr>
<tr>
<td></td>
<td>P.Internal = 1</td>
</tr>
<tr>
<td></td>
<td>P.BondOrder,L = 1</td>
</tr>
<tr>
<td></td>
<td>P.BondOrder,M = 1</td>
</tr>
<tr>
<td></td>
<td>P.FragPopMO,L = 1</td>
</tr>
<tr>
<td></td>
<td>P.ReducedOrbPopMO,L = 1</td>
</tr>
<tr>
<td></td>
<td>P.SCFIterInfo = 2</td>
</tr>
<tr>
<td>Maxi</td>
<td>all the previous plus</td>
</tr>
<tr>
<td></td>
<td>P.GuessOrb = 1</td>
</tr>
<tr>
<td></td>
<td>P.MOs = 1</td>
</tr>
<tr>
<td></td>
<td>P.Density = 1</td>
</tr>
</tbody>
</table>
9.31.2 Mulliken Population Analysis

The Mulliken population analysis \[412\] is, despite all its known considerable weaknesses, the standard in most quantum chemical programs. It partitions the total density using the assignment of basis functions to given atoms in the molecules and the basis function overlap. If the total charge density is written as \(\rho(\vec{r}) \) and the total number of electrons is \(N \) we have:

\[
\int \rho(\vec{r}) \, d\vec{r} = N \tag{9.396}
\]

and from the density matrix \(\mathbf{P} \) and the basis functions \(\{\phi\} \):

\[
\rho(\vec{r}) = \sum_{\mu\nu} P_{\mu\nu} \phi_\mu(\vec{r}) \phi_\nu(\vec{r}) \tag{9.397}
\]

therefore:

\[
\int \rho(\vec{r}) \, d\vec{r} = \sum_{\mu\nu} P_{\mu\nu} \int \phi_\mu(\vec{r}) \phi_\nu(\vec{r}) \, d\vec{r} \tag{9.398}
\]

\[
= \sum_{\mu\nu} P_{\mu\nu} S_{\mu\nu} \tag{9.399}
\]

After assigning each basis function to a given center this can be rewritten:

\[
= \sum_A \sum_B \sum_\mu \sum_\nu A^B P_{\mu\nu}^{AB} S_{\mu\nu}^{AB} \tag{9.400}
\]
\[
= \sum_A \sum_A \sum_A^{PAA} S^{AA}_{\mu\nu} + 2 \sum_A \sum_{B<A} \sum_A^{PAB} S^{AB}_{\mu\nu} (9.401)
\]

Mulliken proposed to divide the second term equally between each pair of atoms involved and define the number of electrons on center \(A\), \(N_A\), as:

\[
N_A = \sum_A \sum_A^{PAA} S^{AA}_{\mu\nu} + \sum_{B\neq A}^A \sum_A^{PAB} S^{AB}_{\mu\nu} (9.402)
\]

such that \(\sum_A N_A = N\). The charge of an atom in the molecule is then:

\[
Q_A = Z_A - N_A (9.403)
\]

where \(Z_A\) is the core charge of atom \(A\). The cross terms between pairs of basis functions centered on different atoms is the overlap charge and is used in \texttt{ORCA} to define the Mulliken bond order:

\[
B_{AB} = 2 \sum_{\mu}^A \sum_{\nu}^B P^{AB}_{\mu\nu} S^{AB}_{\mu\nu} (9.404)
\]

The Mulliken population analysis is turned on by using:

```latex
%output
Print[ P_Mulliken ] 1 # default = on
end
```

A number of additional options can be specified to control the details of the Mulliken population analysis. By default the Mulliken population analysis is turned on.

```latex
%output
Print[ P_AtCharges_M ] 1 # Print atomic charges
Print[ P_OrbCharges_M ] 1 # Print orbital charges
Print[ P_FragCharges_M ] 1 # Print fragment charges
Print[ P_BondOrder_M ] 1 # Print bond orders
Print[ P_FragBondOrder_M ] 1 # Print fragment b.o.
Print[ P_ReducedOrbPop_M ] 1 # Print reduced orb. Charges
Print[ P_AtPopMO_M ] 1 # Print atomic charges in # each MO
Print[ P_OrbPopMO_M ] 1 # Print orbital population # for each MO
Print[ P_ReducedOrbPopMO_M ] 1 # Print reduced orbital # pop for each MO
Print[ P_FragPopMO_M ] 1 # Print the fragment # population for for each MO
end
```
These options allow to get very detailed information about the computed wavefunctions and is much more convenient than to look at the MOs directly. A “reduced orbital population” is a population per angular momentum type. For example the sum of populations of each p_z orbital at a given atom is the reduced orbital population of the p_z function.

Note that for finite temperature HF or KS-DFT calculations (SmearTemp > 0 K, fractional occupation numbers or FOD analysis, see 9.5.8), only the Mulliken reduced orbital charges based on ρ^{FOD} will be printed. They can be used to get a first impression about the localization of hot electrons in the molecule without generating the corresponding FOD plot (see 9.32.2.2). The following example shows the corresponding printout for the first carbon atom of p-benzyne based on a FOD analysis with default settings (see 9.5.8.2).

<table>
<thead>
<tr>
<th>FOD BASED MULLIKEN REDUCED ORBITAL CHARGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 C s : 0.006371 s : 0.006371</td>
</tr>
<tr>
<td>pz : 0.016375 p : 0.030785</td>
</tr>
<tr>
<td>px : 0.009893</td>
</tr>
<tr>
<td>py : 0.004516</td>
</tr>
<tr>
<td>dz2 : 0.004248 d : 0.019308</td>
</tr>
<tr>
<td>dxz : 0.000254</td>
</tr>
<tr>
<td>dyz : 0.004855</td>
</tr>
<tr>
<td>dx2y2 : 0.000860</td>
</tr>
<tr>
<td>dxy : 0.000991</td>
</tr>
<tr>
<td>f0 : 0.000006 f : 0.000378</td>
</tr>
<tr>
<td>f+1 : 0.000014</td>
</tr>
<tr>
<td>f-1 : 0.000309</td>
</tr>
<tr>
<td>f+2 : 0.000002</td>
</tr>
<tr>
<td>f-2 : 0.000006</td>
</tr>
<tr>
<td>f+3 : 0.000010</td>
</tr>
<tr>
<td>f-3 : 0.000032</td>
</tr>
</tbody>
</table>

If other population analysis printouts are wanted the user is referred to the Löwdin analysis (9.31.3) which is turned on by default using the total SCF density of the calculation, also in the case of finite electronic temperature.

9.31.3 Löwdin Population Analysis

The Löwdin analysis [59] is somewhat more straightforward than the Mulliken analysis. In the Löwdin method one changes to a basis where all overlap integrals vanish. This is accomplished via Löwdin’s symmetric orthogonalization matrix $S^{-1/2}$. Using this transformation matrix the new basis functions are multicentered but are in a least square sense as similar as possible to the original, strictly localized, atomic basis functions. The similarity of the transformed functions and original functions is explored in the population analysis. The density matrix transforms as:

$$P^L = S^{1/2}PS^{1/2}$$

Then the atomic populations are:

$$N_A = \sum_{\mu} A p_{\mu}^{L}$$
The bond order is defined from the Wiberg index [413] that was first used in the context of semiempirical methods (that are formulated in the Löwdin basis right from the start):

\[B_{AB} = \sum_{\mu}^{A} \sum_{\nu}^{B} (P_{\mu\nu}^L)^2 \] (9.407)

The output for the Löwdin population analysis (that I personally prefer over the Mulliken analysis) is closely similar. By default the Löwdin population analysis is turned on and provides some more detail than the Mulliken analysis.

```
%output
Print[ P_Loewdin ] 1 # default = on
end
```

The flags to regulate the details are almost identical:

```
%output
Print[ P_AtCharges_L ] 1 # Print atomic charges
Print[ P_OrbCharges_L ] 1 # Print orbital charges
Print[ P_FragCharges_L ] 1 # Print fragment charges
Print[ P_BondOrder_L ] 1 # Print bond orders
Print[ P_FragBondOrder_L ] 1 # Print fragment b.o.
Print[ P_ReducedOrbPop_L ] 1 # Print reduced orb. Charges
Print[ P_AtPopMO_L ] 1 # Print atomic charges in
    # each MO
Print[ P_OrbPopMO_L ] 1 # Print orbital population
    # for each MO
Print[ P_ReducedOrbPopMO_L ] 1 # Print reduced orbital
    # pop for each MO
Print[ P_FragPopMO_L ] 1 # Print the fragment
    # population for each MO
end
```

9.31.4 Mayer Population Analysis

Mayers bonding analysis [414–417] is another creative attempt to define chemically useful indices. The Mayer atomic charge is identical to the Mulliken charge. The Mayer bond order is defined as:

\[B_{AB} = \sum_{\mu}^{A} \sum_{\nu}^{B} (PS)_{\mu\nu} (PS)_{\nu\mu} + (RS)_{\mu\nu} (RS)_{\nu\mu} \] (9.408)

Here \(\mathbf{P} \) is the total electron density matrix and \(\mathbf{R} \) is the spin-density matrix. These Mayer bond orders are very useful. Mayer’s total valence for atom \(A \) is defined as:

%output
Print[P_AtCharges_L] 1 # default = on
end
\[V_A = 2N_A - \sum_{\mu}^A \sum_{\nu}^A (PS)_{\mu\nu} (PS)_{\nu\mu} \] (9.409)

In normal bonding situations and with normal basis sets \(V_A \) should be reasonably close to the valence of atom \(A \) in a chemical sense (i.e. close to four for a carbon atom). The bonded valence is given by:

\[X_A = V_A - \sum_{B \neq A} B_{AB} \] (9.410)

and finally the free valence (a measure of the ability to form further bonds) is given by:

\[F_A = V_A - X_A \] (9.411)

The Mayer population analysis is turned on by:

```
%output
Print[ P_Mayer ] 1  # default = on
end
```

The output is rather simple and short and can not be further controlled. By default the Mayer population analysis is turned on.

9.31.5 Natural Population Analysis

A popular and useful method for population analysis is the natural population analysis due to Weinhold and co-workers. It is implemented in the NBO interface.

9.31.6 Density of the Effectively Unpaired Electrons

Investigating open-shell molecules, it is common practice to consult the spin-population analysis i.e. the Mulliken spin-population using the spin-density matrix. The trace of spin-density corresponds to difference in the number of \(\alpha \) and \(\beta \) electrons. For an open-shell system in high-spin configuration, the trace matches the number of unpaired electrons. However, the spin-density is not able to discriminate anti-ferromagnetic coupled electrons from electron pairs. Thus, open-shell singlets appear to have no unpaired electrons. There are many approaches in the literature to define a density matrix for unpaired electrons that correctly describe low-spin configurations. For a CASSCF-type wavefunction, two common effective unpaired electron densities (eff. UED) are available in ORCA. Namely, Taksuka’s [418] and Head-Gordon’s [419] formulations. If the one-particle density matrix is denoted with \(\gamma \), its eigenvalues \(\mathbf{n} \) and vectors \(\mathbf{U} \) satisfy

\[\gamma = \mathbf{U} \mathbf{n} \mathbf{U}^\dagger. \] (9.412)
The eff. unpaired electron density matrix \textbf{UED} can be expressed as a function of the natural orbital occupation

\[
\text{UED} = U f(n) U^\dagger.
\] (9.413)

In case of Takatsuka’s definition we have

\[
f(n) = 2n - nn
\] (9.414)

and for Head-Gordon the function is modified towards

\[
f(n) = 1 - |1 - n|.
\] (9.415)

As an example, let us recompute the example in [419] - two oxygen atoms at a 10 Å distance in the triplet state. The active space contains all the 2p orbitals and electrons. Since the ground-state is 9-fold degenerate, we must take into account all 9 roots.

```
!svp
%maxcore 2000
%casscf nel 8
   norb 6
   mult 3
   nroots 9
actorbs locorbs # localized active orbitals
end
%output
   print[p_unpaired_t] 1 # Takatsuka UED
   print[p_unpaired_hg] 1 # Head-Gordon UED
end
*xyz 0 3
  0 0 0
  0 0 10.0
*
```

According to the CASSCF wavefunction, there should be 4 unpaired electrons coupled to a triplet state.

```
_________________________
CAS-SCF STATES FOR BLOCK 1 MULT= 3 NROOTS= 9
_________________________

ROOT 0: E=  -149.4274934720 Eh
  0.49867 [ 31]: 121211
  0.48600 [ 50]: 211112
  0.01400 [ 51]: 211121
ROOT 1: E=  -149.4274934720 Eh  0.000 eV
```

As expected, the spin density is not sensitive for the two-antiferromagnetically coupled electrons.

SPIN-DENSITY MATRIX

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.333333</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1</td>
<td>0.000000</td>
<td>0.333333</td>
<td>-0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>0.333333</td>
<td>-0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>0.333333</td>
<td>-0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>4</td>
<td>-0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>0.333333</td>
<td>0.000000</td>
</tr>
<tr>
<td>5</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.333333</td>
</tr>
</tbody>
</table>

Trace of the spin density: 2.000000

The eff. unpaired density matrix by Head-Gordon on the other hand is able to reproduce the correct picture here.

Head-Gordon eff. unpaired electron density

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.666667</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>-0.000000</td>
<td>0.000000</td>
<td>-0.000000</td>
</tr>
<tr>
<td>1</td>
<td>0.000000</td>
<td>0.666667</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>-0.000000</td>
<td>0.666667</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>-0.000000</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>0.666667</td>
<td>-0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>4</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>0.666667</td>
<td>-0.000000</td>
</tr>
<tr>
<td>5</td>
<td>-0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.000000</td>
<td>0.666667</td>
</tr>
</tbody>
</table>

Number of eff. unpaired electrons ... 4.000

**

* MULLIKEN POPULATION ANALYSIS *
* (EFF. UED) *
**

MULLIKEN ATOMIC EFF. UED
The full printing will contain both eff. unpaired electron densities their Mulliken and Loewdin analysis. Extensions for single-reference UHF/UKS wavefunction exist and might find their way into ORCA in the future.

9.31.7 Local Spin Analysis

It is common practice in various areas of chemistry to think about the interaction of open-shell systems in terms of local spin states. For example, in dimeric or oligomeric transition metal clusters, the ‘exchange coupling’ between open shell ions that exist locally in high-spin states is a much studied phenomenon. Diradicals would be typical systems in organic chemistry that show this phenomenon. In quantum mechanics, however, the total spin is not a local property, but instead a property of the system as a whole. The total spin squared, S^2, and its projection onto the z-axis, S_z, commute with the non-relativistic Hamiltonian and hence, the eigenfunctions of the non-relativistic Hamiltonian can be classified according to good quantum numbers S and M according to:
\[S^2 |\Psi^{SM}\rangle = S(S+1) |\Psi^{SM}\rangle \]

\[S_z |\Psi^{SM}\rangle = M |\Psi^{SM}\rangle \]

where \(|\Psi^{SM}\rangle \) is an exact eigenfunction of the non-relativistic Hamiltonian or an approximation to it that conserves the total spin as a good quantum number. The total spin itself is given by the sum over the individual electron spins as:

\[S = \sum_i s(i) \]

And hence,

\[S^2 = \sum_{i,j} s(i)s(j) \]

is a two-electron property of the system. It is obviously not trivial to relate the chemically very meaningful concept of local spin to a rigorous quantum mechanical treatment. While there are various proposals of how to deal with this problem, we follow here a proposal of Clark and Davidson (Clark, A.E.; Davidson, E.R., J. Chem. Phys. 2001, 115, 7382-7392). The following equations are implemented in the SCF and CASSCF modules of Orca.

Clark and Davidson define fragment projection operators with the property:

\[P_A P_B = \delta_{AB} P_A \]

and:

\[\sum_A P_A = 1 \]

Then using this identity:

\[S = \sum_i \sum_A s(i) P_A(i) \]

\[S = \sum_A \sum_i s(i) P_A(i) \]

\[= \sum_A S_A(i) \]

they show that the local spin operators obey the standard relations for spin operators:

\[S_A = S_A^\dagger \]

\[S_A \times S_A = i\hbar S_A \]

Hence
\[S^2 = \sum_A \sum_B S_A S_B \]

But then importantly:

\[S_A S_B = \sum_i \sum_j s(i) s(j) P_A(i) P_B(j) \]

\[= \frac{3}{4} \delta_{AB} \sum_A P_A(i) + \frac{1}{4} \sum_i \sum_{j>i} s(i) s(j) \{ P_A(i) P_B(j) + P_A(j) P_B(i) \} \]

With the first- and second-order density matrix:

\[\gamma(x, x') = N \int \Psi(x, x_2, \ldots, x_N) \Psi^*(x', x_2, \ldots, x_N) dx_2 \ldots dx_N \]

\[\Gamma(x_1, x'_1; x_2, x'_2) = \binom{N}{2} \int \Psi(x_1, x_2, \ldots, x_N) \Psi^*(x'_1, x'_2, \ldots, x_N) dx_3 \ldots dx_N \]

(with \(\binom{N}{2} = \frac{1}{2} N(N - 1) \)). Then:

\[\langle S_A S_B \rangle = \frac{3}{4} \delta_{AB} tr(\gamma P_A) + 2 tr(P_A(1) P_B(2) s(1) s(2) \Gamma(1, 1; 2, 2)) \]

In terms of the number of electrons on site ‘A’ and the expectation value of \(S_A \)

\[\langle S_A \rangle = \frac{1}{2} tr(\gamma P_A) \]

\[\langle N_A \rangle = tr(\gamma P_A) \]

in terms of molecular orbitals:

\[\langle S_A^4 \rangle = \frac{1}{2} \sum_{p,q} \gamma_{pq}^{\alpha-\beta} \langle p | P_A | q \rangle \]

\[\langle N_A \rangle = \sum_{p,q} \gamma_{pq}^{\alpha+\beta} \langle p | P_A | q \rangle \]

McWeeny and Kutzelnigg (McWeeny, R.; Kutzelnigg, W. Int. J. Quant. Chem. 1968, 11, 187-203) show that for the expectation value of \(s(1)s(2) \), the relevant irreducible part of the two-body density can be expressed in terms of the spinless density matrix of second order:

\[R_0^{(0)}(1, 1'; 2, 2') = -\frac{1}{4} \Gamma(1, 1'; 2, 2') - \frac{3}{4} \Gamma(2, 1'; 1, 2') \]
\[
\sum_{pqrs} \left(\Gamma_{pq}^{rs} p(1) q(1') r(2) s(2') + 2 \Gamma_{pq}^{rs} p(1) q(1') r(2) s(2') \right)
\]

\[
= -\frac{1}{3} \sum_{pqrs} \left(\Gamma_{pq}^{rs} p(1) q(1') r(2) s(2') + 2 \Gamma_{pq}^{rs} p(1) q(1') r(2) s(2') \right)
\]

with a normalization factor of \(\frac{3}{4}\) after spin integration. Hence using this:

\[
\langle S_A S_B \rangle = \frac{3}{4} \delta_{AB} \text{tr} (\gamma P_A) + \frac{6}{4} \text{tr} (P_A(1) P_B(2) R_0^{(1)} (1, 2, 2))
\]

And then performing the integral:

\[
\langle S_A S_B \rangle = \frac{3}{4} \delta_{AB} \text{tr} (\gamma P_A) - \frac{6}{4} \frac{1}{3} \sum_{pqrs} \left(\Gamma_{pq}^{rs} p(1) q(1') r(2) s(2') + 2 \Gamma_{pq}^{rs} p(1) q(1') r(2) s(2') \right)
\]

This is the final and perhaps most compact equation. The projection operator can be defined in very many different ways. The easiest is to Löwdin orthogonalize the basis set:

\[
| \mu^A_L \rangle = \sum_{\nu^A} | \nu^A \rangle S^{-1/2}_{\mu \nu}
\]

where ‘L’ denotes the Löwdin basis. This means that molecular orbitals are expressed in the orthogonal basis as:

\[
e^L = S^{+1/2} e^A
\]

and the density as:

\[
P_L = S^{+1/2} P S^{+1/2}
\]

The fragment projector is defined as:

\[
P_A = \sum_{\mu_L \in A} | \mu_L \rangle \langle \mu_L |
\]

Clark and Davidson suggest a slightly more elaborate projector in which first, the intra-fragment overlap is eliminated. This happens with a matrix \(U\) that for two fragments takes form:

\[
U = \begin{pmatrix}
S^{-1/2}_A & 0 \\
0 & S^{-1/2}_B
\end{pmatrix}
\]

where is the block of basis functions belonging to fragment A. Likewise:
\[U^{-1} = \begin{pmatrix} S_A^{1/2} & 0 \\ 0 & S_B^{1/2} \end{pmatrix} \]

Then the ‘pre-overlap’ is:

\[\bar{S} = U^\dagger S U \]

This contains the unit matrix in the intra-fragment blocks and non-zero elements elsewhere. This overlap matrix is the finally orthogonalized to obtain the globally orthogonal Löwdin basis. We finally transform the MO coefficients by the following transformation:

\[c_L = S^{1/2} U^{-1} c \]

For the projectors, operating with the two MOs i and j gives:

\[
\langle i | P_A | j \rangle = \sum_{\mu_L \in A} \sum_{\kappa_B \in \bar{A}} \langle \kappa_L^B | \mu_L^A \rangle \langle \mu_L^A | \tau_L^C \rangle c_{\kappa_L^C}^{L} c_{\tau_L^C}^{L} \\
= \sum_{\mu_L \in A} \sum_{\kappa_B \in \bar{A}} \delta_{AB} \delta_{AC} \delta_{\kappa_L \kappa_B} \delta_{\tau_L \tau_B} c_{\mu_L^A}^{L} c_{\mu_L^A}^{L}
\]

Herrmann et al. (Herrmann, C.; Reiher, M.; Hess, B.A. J. Chem. Phys. 2005, 122, 34102) give the correct expression of the expectation values for a single spin-unrestricted determinant

\[
\langle S_A S_B \rangle = \frac{3}{2} \delta_{AB} \left\{ \sum_i P_{ii}^A + \sum_i P_{ii}^B \right\} \\
+ \frac{1}{4} \left\{ \sum_{ij} P_{ii}^A P_{jj}^B + \sum_{ij} P_{ii}^A P_{jj}^B - \sum_{ij} P_{ij}^A P_{ij}^B - \sum_{ij} P_{ij}^A P_{ij}^B - \sum_{ij} P_{ii}^A P_{jj}^B - \sum_{ij} P_{ii}^B P_{jj}^B \right\} \\
- \sum_{ij} P_{ij}^A P_{ij}^B
\]

Which is used in the Orca implementation.

The use of the Local spin-implementation is very easy. All that is required is to divide the molecule into fragments. The rest happens automatically. For example, let us consider two nitrogen atoms at the dissociation limit. While the total spin state is \(S=0 \), the two nitrogen atoms local exist in high-spin states \((S=3/2) \). Consider the following test job:
thus perfectly corresponding to the expectations. The same can be done at the CASSCF level:

! HF def2-SVP UHF TightSCF PModel

%casscf nel 6 norb 6 nroots 1 end

* xyz 0 1
N(1) 0 0 0
N(2) 0 0 1094
*
With the result:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7500</td>
<td>3.7500</td>
</tr>
<tr>
<td>2</td>
<td>-3.7500</td>
<td>3.7500</td>
</tr>
</tbody>
</table>

\[<\text{SzA}^* > \text{Seff(A)} \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n.a. 1.5000</td>
</tr>
<tr>
<td>2</td>
<td>n.a. 1.5000</td>
</tr>
</tbody>
</table>

* = for a singlet state all \(<\text{SzA}>\) values are zero by definition

Thus, cleanly confirming the expectations.

As a less trivial example, consider a typical Fe(III) antiferromatically coupled transition metal dimer. An appropriate input may be:

```
! pbe def2-sv(p) def2/j tightscf kdiis soscf pmodel

%scf brokensym 5,5
end

* xyz -2 1
Fe(1) -1.93818 0.53739 -0.00010
Fe(2) 1.06735 0.47031 0.00029
S(3) -0.38935 2.59862 -0.00983
S(3) -0.48170 -1.59050 0.01091
S(1) 2.68798 0.43924 1.99710
S(1) 2.68692 0.42704 -1.99712
S(2) -3.55594 0.56407 -1.99889
S(2) -3.55850 0.58107 1.99646
H(1) 3.91984 0.39462 1.47608
H(1) 3.91940 0.39536 -1.47662
H(2) -4.78410 0.69179 -1.48280
H(2) -4.78991 0.49249 1.47983
*
```

Where one of the bridging sulfurs was assigned to each site respectively.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.7009</td>
</tr>
<tr>
<td>2</td>
<td>-5.3721</td>
</tr>
</tbody>
</table>
9.32 Orbital and Density Plots

There are two types of graphics output possible in ORCA - two dimensional contour plots and three dimensional surface plots. The quantities that can be plotted are the atomic orbitals, molecular orbitals, natural orbitals, the total electron density or the total spin density. The graphics is controlled through the block %plots.

9.32.1 Contour Plots

The contour plots are controlled via the following variables:

<table>
<thead>
<tr>
<th>(<SzA>)</th>
<th>(\text{Seff}(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 1.7579</td>
<td>2.3197</td>
</tr>
<tr>
<td>2 : -1.7579</td>
<td>2.3198</td>
</tr>
</tbody>
</table>

Nicely shows the expected results with the local site spins being close to their ideal value 2.5 which would hold for a high-spin Fe(III) ion.

9.31.8 UNO Orbital Printing

The analysis of UNO’s can be controlled similarly. The flags together with their default values are shown below:

```plaintext
%output
Print[ P_UNO_OccNum   ] = 1; # Occupation numbers
Print[ P_UNO_AtPopMO_M ] = 0; # Mulliken atom pop.
# per UNO
Print[ P_UNO_OrbPopMO_M] = 0; # Mulliken orbital pop.
# per UNO
Print[ P_UNO_ReducedOrbPopMO_M] = 0;
# Mulliken reduced orbital
# pop. per UNO
Print[ P_UNO_AtPopMO_L ] = 0; # Loewdin atom pop.
# per UNO
Print[ P_UNO_OrbPopMO_L] = 0; # Loewdin orbital pop.
# per UNO
Print[ P_UNO_ReducedOrbPopMO_L] = 0;
# Loewdin reduced orbital
# pop. per UNO
end
```
%plots
 *** the vectors defining the cut plane
v1 0, 0, 0 # pointer to the origin
v2 1, 0, 0 # first direction
v3 0, 1, 0 # second direction
 *** alternative to defining vectors. Use atom coordinates
at1 0 # first atom defining v1
at2 2 # second atom defining v2
at3 4 # third atom defining v3
 *** resolution of the contour
dim1 45 # resolution in v2-direction
dim2 45 # resolution in v3-direction
 *** minimum and maximum values along v2 and v3
min1 -7.0 # min value along v2 in bohr
max1 7.0 # max value along v2 in bohr
min2 -7.0 # min value along v3 in bohr
max2 7.0 # max value along v3 in bohr

UseCol true # Use color in the plot (blue=positive, red=negative)
Skeleton true # Draw Skeleton of the molecule of those atoms that are in or close to the cut plane
Atoms true # Draw the atoms that are in the plane as circles
NCont 200 # Number of contour levels.
ICont 0 # Draw NCont equally space contours
 # Start with 1/NCont and the double the value for each additional contour
 *** the format of the output file
Format Origin # straight ascii files
 HPGL # plotter language files
 *** the quantities to plot
MO("MyOrbital-15xy.plt",15,0); # orbital to plot
v3= 0, 0, 1 # change cut plane
MO("MyOrbital-16xz.plt",16,0); # orbital to plot
ElDens("MyElDens.plt"); # Electron density
SpinDens("MySpinDens"); # Spin density
end
Figure 9.47: Contour plot of the lowest unoccupied spin down orbital of the H$_2$CO$^+$ cation radical in the x, y plane.

The input was:

\[v1 = 0, 0, 0; \]
\[v2 = 1, 0, 0; \]
\[v3 = 0, 1, 0; \]
\[\text{min1} = -8; \text{max1} = 8; \]
\[\text{min2} = -8; \text{max2} = 8; \]
\[\text{dim1} = 50; \text{dim2} = 50; \]
\[\text{Format} = \text{HPGL}; \]
\[\text{NCont} = 200; \]
\[\text{Icont} = 1; \]
\[\text{Skeleton} = \text{true}; \]
\[\text{Atoms} = \text{true}; \]
\[\text{MO("Test-DFT-H2CO+-MO7xy.plt",7,1);} \]

NOTE:

- The command \texttt{MO("MyOrbital-15xy.plt",15,0);} is to be interpreted as follows: \texttt{MO} means that a MO is to be plotted. "\texttt{MyOrbital-15xy.plt}" is the file to be created. 15 is the number of the MO to be drawn (remember: counting starts at orbital 0!) and 0 is the operator the orbital belongs to. For a RHF (or RKS) calculation there is only one operator which has number 0. For a UHF (or UKS) calculation there are two operators - the spin-up orbitals belong to operator 0 and the spin-down orbitals belong to operator 1. For ROHF calculations there may be many operators but at the end all orbitals will be collected in one set of vectors. Thus the operator is always =0 in ROHF.

- The \texttt{ELDENS} (plot of the total electron density) and \texttt{SPINDENS} (plot of the total spin density) commands work analogous to the \texttt{MO} with the obvious difference that there is no MO or operator to be defined.

- The \texttt{UNO} option plots natural orbitals of the UHF wavefunction (if they are available). No operator can be given for this command because there is only one set of UHF-NOs.

- If the program cannot find the plot module ("Bad command or filename") try to use \texttt{ProgPlot="orca.plot.exe"} in the \texttt{\%method} block or point to the explicit path.

- The defining vectors \texttt{v2} and \texttt{v3} are required to be orthonormal. The program will use a Schmidt orthonormalization of \texttt{v3} with respect to \texttt{v2} to ensure orthonormality. If you do not like this make sure that the input vectors are already orthogonal.

- \texttt{at1}, \texttt{at2} and \texttt{at3} can be used instead of \texttt{v1}, \texttt{v2} and \texttt{v3}. In this case say \texttt{v1} is taken as the coordinates of atom \texttt{at1}. Mixed definitions where say \texttt{v2} is explicitly given and say \texttt{v3} is defined through \texttt{at3} are possible. A value of -1 for \texttt{at1}, \texttt{at2} and \texttt{at3} signals that \texttt{at1}, \texttt{at2} and \texttt{at3} are not to be used. This type of definition may sometimes be more convenient.
Variables can be assigned several times. The “actual” value a variable has is stored together with the command to generate a plot (MO, ELDENS or SPINDENS). Thus after each plot command the format or orientation of the plot can be changed for the next one.

- The Origin format produces a straightforward ASCII file with x, y and z values that can be read into your favorite contour plot program or you could write a small program that reads such files and converts them to whatever format is more appropriate for you.

- I usually use Word for Windows to open the HPGL files which appears to work fine. Double clicking on the graphics will allow modification of linewidth etc. For some reason that is not clear to me some graphics programs do not like the HPGL code that is produced by ORCA. If you are an HPGL expert and you have a suggestion - let me know.

9.32.2 Surface Plots

9.32.2.1 General Points

Surface plots can, for example, be created through an interface to Leif Laaksonen’s gOpenMol program. This program can be obtained free of charge over the internet (https://research.csc.fi/-/gopenmol). It runs on a wide variety of platforms, is easy to use, produces high quality graphics and is easy to interface – thank you Leif for making this program available!

The relevant [PLOTS] section looks like this:

```plaintext
%output
   XYZFile true
end

%plots
   dim1 45 # resolution in x-direction
   dim2 45 # resolution in y-direction
   dim3 45 # resolution in z-direction
   min1 -7.0 # x-min value in bohr
   max1  7.0 # x-max value in bohr
   min2 -7.0 # y-min value in bohr
   max2  7.0 # y-max value in bohr
   min3 -7.0 # z-min value in bohr
   max3  7.0 # z-max value in bohr
   Format gOpenMol_bin   # binary *.plt file
           gOpenMol_ascii # ascii *.plt file
           Gaussian_Cube  # Gaussian-cube format
                           # (an ASCII file)
   MO("MyOrbital-15.plt",15,0); # orbital to plot
```

22 There were some reports of problems with the program on Windows platforms. Apparently it is better to choose the display settings as “true color 32 bit” rather than “high 16 bit”. Thanks to Thomas Brunold!
MO("MyOrbital-16.plt",16,0); # orbital to plot
UNO("MyUNO-48.plt",48); # UHF-NO to plot
ElDens("MyElDens.plt"); # Electron density
SpinDens("MySpinDens.plt"); # Spin density
end

Figure 9.48: The total electron density (shown as a mesh) and the spin density (shown with solid contours) of the H$_2$CO$^+$ cation radical as calculated by the RI-BP/VDZP method. Note the small negative spin density at the carbon atom. The spin density was calculated at 120x120x120 resolution which takes much longer than the DFT calculation itself.

NOTE:

- it is admittedly inconvenient to manually input the dimension of the cube that is used for plotting. If you do nothing such that $\text{min}_1 = \text{max}_1 = \text{min}_2 = \text{max}_2 = \text{min}_3 = \text{max}_3 = 0$ then the program will try to be smart and figure out a good cube size by itself. It will look at the minimum and maximum values of the coordinates and then add 7 bohrs to each dimension in the hope to properly catch all wavefunction tails.

Sometimes you will want to produce orbital plots after you looked at the output file and decided which orbitals you are interested in. In this case you can also run the orca_plot program in a crude interactive form by invoking it as:

```
orca_plot MyGBWFile.gbw -i
```

This will only provide you with a small subset of the capabilities of this program but may already be enough to produce the plots you want to look at. Note that for the name of the GBW-file you may as well input files that result from natural orbitals (normally *.uno), corresponding orbitals (normally *.uco) or localized orbitals (normally *.loc).
9.32.2.2 FOD plots

The fractional occupation number weighted electron density (ρ^{FOD}, see 9.5.8.1) can be plotted in 3D for a predefined contour surface value which, after extensive testing, was set to the default value of $\sigma = 0.005 \text{ e/Bohr}^3$. In order to allow comparison of various systems this value should be kept fix (in critical cases, one may also check the FOD plot with a smaller value of $\sigma = 0.002 \text{ e/Bohr}^3$ for comparison). The FOD is strictly positive in all space and resembles orbital densities (e.g., π-shape in large polyenes) or the total charge density for an ideal ‘metal’ with complete orbital degeneracy in trivial cases. FOD plots represent a cost-effective and robust way to identify the ‘hot’ (strongly correlated) electrons in a molecule and to choose appropriate approximate QC methods for a subsequent computational study of the systems in question. Based on our experience, the following rules of thumb can be derived:

a) no significant ρ^{FOD}: use (double)-hybrid functionals or (DLPNO-)CCSD(T) (single-reference electronic structure)

b) significant but rather localized ρ^{FOD}: use semi-local GGA functionals (or hybrid functional with low Fock-exchange, avoid HF or MP2; slight multi-reference character)

c) significant and delocalized ρ^{FOD}: use multi-reference methods (or finite temperature DFT; strong multi-reference character)

Basically, ρ^{FOD} can be plotted analogously to an electron density calculated with ORCA using Basename.scfp_fod instead of Basename.scfp. Note that producing *.cube files with orca_plot (see 9.33.7) may take a considerable amount of time for larger molecules, particularly if high quality plots for publication purposes (i.e., 120x120x120 resolution) are wanted. An example FOD plot (singlet ground sate of p-benzyne, see 9.5.8.1 for the corresponding ORCA input) is shown in Fig. 9.50. It has been produced with the UCSF CHIMERA program (this program can be obtained free of charge over the internet: https://www.cgl.ucsf.edu/chimera/) using the *.cube file generated with orca_plot:
It is also possible to generate *.cube files from ρ^{FOD} (analogously to electron density plots) with other programs that can read ORCA BaseName.gbw and electron density files by simply using the Basename.scfp_fod file instead of the Basename.scfp file.

Figure 9.50: FOD plot at $\sigma = 0.005$ e/Bohr3 (TPSS/def2-TZVP (T = 5000 K) level) for the 1A_g ground state of p-benzyne (FOD depicted in yellow).

The significant and rather delocalized FOD for p-benzyne (1A_g) indicates that multi-reference methods would be needed for reliable computational study of this molecule (category c)). More examples of FOD plots generated with the same setup and programs can be found in the original publication and corresponding supplementary information. [307]

9.32.2.3 Interface to gOpenMol

Here is a short summary of how to produce these plots with gOpenMol:

- First of all the molecular geometry must be save by choosing XYZFile=true in the [OUTPUT] block. This will produce a straightforward ascii file containing the molecular geometry (or simply ! XYZFile).

- After having produced the plot files start gOpenMol and choose File-Import-Coords. In the dialog choose the XYZ format and select the file. Then press apply and dismiss. The molecule should now be displayed in the graphics window.
• You can change the appearance by choosing _View-Atom type_.

• The color of the background can be changed with _Colour-Background_.

• After having done all this choose _Plot-Contour_ and select the _Browse_ button to select the appropriate file. Then press _Import File_ to read it in. NOTE: you can only directly read files that were produced in _gOpenMol_bin_ format. If you have chosen _gOpenMol_ascii_ you must first use the _gOpenMol_ file conversion utility under _Run-Pltfile (conversion)_ to produce the binary plt file.

• After having read the plt file choose the appropriate isocontour value (one for the positive and one for the negative lobes of an orbital) and select suitable colors via _Colour(n)_ to the right of the isocontour value. The _Details_ button allows you to choose between solid and mesh representation and other things.

• Once the plot looks the way you like, use _File-Hardcopy_ to produce a publication quality postscript or bitmap picture that can be imported into any word processing or graphics software.

9.32.2.4 Interface to Molekel

The Molekel program (http://ugovaretto.github.io/molekel/) is another beautiful and easy-to-use graphics tool that is recommended in combination with ORCA. You may even find it a little easier to use than gOpenMol but this may be a matter of personal taste. In order to produce plots with Molekel follow the following procedure:

• Produce Gaussian-Cube files (and optionally also an XYZ file) with ORCA as described above.

• Start Molekel and use the right mouse button to obtain the _Load_ menu.

• Choose the format _xyz_ to load your coordinates

• Use the right mouse button again to select the _Surface_ menu

• Choose the format “Gaussian Cube” and click _Load Surface_

• Click on _Both Signs_ if you visualize an orbital or spin density

• Select a suitable contour value in the _Cutoff_ box.

• Click on _Create Surface_. That’s it!

• In the _Color_ menu (also available via the right mouse button) you can adjust the colors and in the main menu the display options for your molecule. Default settings are in a startup file that you can modify to suit your taste. More details are in the Molekel manual – check it out; it can do many other useful things for you too!
9.33 Utility Programs

9.33.1 orca_mapspc

This utility program is used to turn calculated spectra into a format that can be plotted with standard graphics programs. The usage is simple (for output examples see for example sections 9.19.2, 8.12.3.1, 8.12.3.2 and 9.20.4):

```
orca_mapspc  file  spectrum  options

file = name of an ORCA output file
      name of an ORCA hessian file (for IR and Raman)

spectrum= abs - Absorption spectra
cd - CD spectra
ir - IR spectra
raman - Raman spectra

options -x0value: Start of the x-axis for the plot
         -x1value: End of the x-axis for the plot
         -wvalue: Full-width at half-maximum height in cm**-1 for each transition
         -nvalue: Number of points to be used
```

The exact abilities of orca_mapspc can be seen by simply executing the command in a terminal

```
orca_mapspc
```

Then one gets:

```
---------------------------------------------------------------
usage: orca_mapspc Output-file ABS, ABSV, ABSQ, ABSOI, CD, IR, RAMAN, NRVS, VDOS,
       MCD, SOCABS, SOCABSQ, SOCABSOI, XES, XESV, XESQ, XESOI,
       XAS, XASV, XASQ, XASOI, XESSOC, XASSOC, RIXS, RIXSSOC -options
---------------------------------------------------------------
----General options ----
-o output file
-cm use cm**-1 (default)
-eV use eV (default cm**-1)
-g use Gaussian lineshape default
-l use Lorentz lineshape (only for Absorption and Emission like spectra)
-v use Voigt lineshape (only for Absorption and Emission like spectra)
-x0 initial point of spectrum
```
-x1 final point of spectrum
-w line width for Gaussian/Lorenzian linewidth
-q line width for the Gaussian part of Voigt linewidth
-kw coefficient for the line width calculated as kw*sqrt(energy)
-n number of points

--- The following additional options are for RIXS and RIXSSOC calculations ---
-x2 initial point of the spectrum along y axis
-x3 final point of the spectrum along y axis
-g line width for Gaussian/Lorenzian linewidth along y axis
-m number of points for the emission spectrum
-eaxis plot option for the emission axis: (1) for Energy transfer
(2) for emission spectrum
-uex number of user defined cuts at constant Excitation Energy axis
-udw number of user defined cuts at constant Emission/Energy Transfer axis
-dx number for shifting the spectra along the Excitation/Emission Energy axis
-kg coefficient for the line width calculated as kg*sqrt(energy)

--- Using external files ----
paras.inp: a list of energy ranges with desired broadening parameters
for x axis: E_start E_stop Width
for y axis: 0 0 0 E_start E_stop Width
for xy axis: E_start1 E_stop1 Width1 E_start2 E_stop2 Width2
udex.inp: list of energies for taking cuts
at constant Excitation Energy axis (RIXS/RIXSOC)
udem.inp: list of energies for taking cuts
at constant Emission/Energy Transfer axis (RIXS/RIXSOC)
gfsp.inp: list of ground-final state pairs to generate
individual state pair RIXS planes
and respective analysis planes (ROCIS RIXS/RIXSOC)

NOTE:

- The input to this program can either be a normal output file from an ORCA calculation or a ORCA .hess file if ir or Raman spectra are desired

- Unless it is specified otherwise the default lineshape is always assumed to be a gaussian

- There will be two output files:
 - Input-file.spc.dat (spec=abs-like or cd or ir or raman): This file contains the data to be plotted
 - Input-file.spc.stk: This file contains the individual transitions (wavenumber and intensity)

- The absorption plot has five columns: The first is the wavenumber in reciprocal centimeters, the second the total intensity and the third to fifth are the individual polarizations (i.e. assuming that the electric
vector of the incoming beam is parallel to either the input x-, or y- or z-axis respectively). The last three columns are useful for interpreting polarized single crystal spectra.

- Generation of multiple spectra. When more than one spectra of the same kind are available the program will try to plot them. For example in the case of a CASSCF calculation with the NEVPT2 flag on, there will be two Absorption spectra (CASSCF and NEVPT2) that can be plotted.

For example:

```bash
orca_mapspc My-CASSCF/NEVPT2-Output.out SOCABS -x07000 -x18000 -eV -n10000 -w2.0 -l
```

Mode is SOCABS
Entering SOC-ABS reading
Using eV units
Using Lorentzian shape
Multiple SOCABS (2) spectra detected ...

Plotting SOCABS Spectrum 0

Cannot read the paras.inp file ...
taking the line width parameter from the command line
Number of peaks ... 4455
Start energy [eV] ... 7000.00
Stop energy [eV] ... 8000.00
Peak FWHM [eV] ... 2.00
Number of points ... 10000

Plotting SOCABS Spectrum 1

Cannot read the paras.inp file ...
taking the line width parameter from the command line
Number of peaks ... 4455
Start energy [eV] ... 7000.00
Stop energy [eV] ... 8000.00
Peak FWHM [eV] ... 2.00
Number of points ... 10000

This will generate two kind of spectra one for the CASSCF and one for the NEVPT2 calculation.

CASSCF:
- My-CASSCF/NEVPT2-Output.out.0.socabs.dat
- My-CASSCF/NEVPT2-Output.out.0.socabs.stk

NEVPT2:
- My-CASSCF/NEVPT2-Output.out.1.socabs.dat
- My-CASSCF/NEVPT2-Output.out.1.socabs.stk
Other Absorption or CD spectra can also be generated in the same way.

9.33.2 orca_chelpg

This program calculates CHELPG atomic charges according to Breneman and Wiberg [420]. The atomic charges are fitted to reproduce the electrostatic potential on a regular grid around the molecule, while constraining the sum of all atomic charges to the molecule’s total charge.

The program works with default values in the following way:

```bash
orca_chelpg MyJob.gbw
```

The program uses three adjustable parameters, which can also be set in a separate chelpg input block

```bash
%chelpg
  GRID 0.3 # Spacing of the regular grid in Ang
  RMAX 2.8 # Maximum distance of all atoms to any gridpoint in Ang
  VDWRADII COSMO # VDW Radii of Atoms, COSMO default
  BW # Breneman, Wiberg radii
end
```

In this case the ORCA automatically calculates the CHELPG charges at the end of the calculation. Automatic calculation of CHELPG charges using the default values can also be achieved by specifying

```bash
! CHELPG
```

In the simple input section. By default the program uses the COSMO VDW radii for the exclusion of gridpoints near the nuclei, as these are defined for all atoms. The BW radii are similar, but only defined for very few atom types.

9.33.3 orca_pltvib

This program is used in conjunction with gOpenMol (or xmol) to produce animations or plots of vibrational modes following a frequency run. The usage is again simple and described in section 8.12.3.5 together with a short description of how to produce these plots in gOpenMol.

The program produces 20 frames of animation, where first and last frame correspond to the TS, all others calculated as $\sin(2\pi frame/20 - 1) \times \text{displacement}$.

9.33.4 orca_vib

This is a small “standalone” program to perform vibrational analysis. The idea is that the user has some control over things like the atomic masses that enter the prediction of vibrational frequencies but are independent of the electronic structure calculation as such.

The program takes a “.hess” file as input and produces essentially the same output as follows the frequency calculation. The point is that the “.hess” is a user-editable textfile that can be manually changed to achieve isotope shift predictions and the like. The usage together with an example is described in section 8.12.3.6. If you pipe the output from the screen into a textfile you should also be able to use orca_mapspc to plot the modified IR, Raman and NRVS spectra.

9.33.5 orca_loc

Localization is a widely used technique nowadays. By defining different functionals, various localization methods are established. The most favorable localization methods are developed by Foster-Boys and Pipek-Mezey. In ORCA there are four different localization methods available, the Pipek-Mezey method (PM), the Foster-Boys method (FB), the intrinsic atomic orbitals (IAO) based PM method and the IAO based FB method. (There is another extra FB algorithm, which could be faster to localize virtual MOs of very large systems.)

The intrinsic atomic orbitals and intrinsic bond orbitals (IAOIBO) localization method is developed by Gerald Knizia, see Ref. [421]. In IAOIBO method, the occupied MOs are projected to a minimal basis set to get the IAOs, firstly. In ORCA different from original IAOIBO method, the converged SCF MO of atoms are used instead of Huzinaga MINI or STO-3G. However, the IAO charges computed by our method are quite similar to original IAO. Then, Pipek-Mezey functional is employed to localize these IAOs to IBOs. Finally, IBOs will be backtransformed to their original basis set. The IAO partial charges of canonical MOs for each atom is also printed out before the IAOIBO localization. But make sure you are included all occupied MOs in the IAOIBO localization. Otherwise, the IAO charges are meaningless. We further improved the original IAOIBO method by using the FB functional instead of PM functional. The computational time of the new method named IAOBOYS should be faster than the standard FB method for large systems. However, the IAO based method can only be used for the localization of occupied MOs.

There are two ways to do the MO localization in ORCA. The simpler way is to request the localization at the end of any ORCA calculation input file. Details are set in the %loc block.

<table>
<thead>
<tr>
<th>%loc</th>
<th>LocMet</th>
<th>PM</th>
<th># Localization method e.g. PIPEK-MEZEY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FB</td>
<td>FOSTER-BOYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IAOIBO</td>
<td>IAOIBO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IAOBOYS</td>
<td>IAOBOYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEWBOYS</td>
<td>FOSTER-BOYS</td>
<td></td>
</tr>
<tr>
<td>Tol</td>
<td>1e-6</td>
<td>absolute convergence tolerance for the localization sum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td># default value is 1e-6</td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>0</td>
<td># Always take the same seed for start for localization</td>
<td></td>
</tr>
</tbody>
</table>
Detailed Documentation

(For testing/debug purpose, optional)

PrintLevel 2 # Amount of printing
MaxIter 64 # Max number of iterations
T_Bond 0.85 # Thresh that classifies orbitals in bond-like at the printing
T_Strong 0.95 # Thresh that classifies orbitals into strongly-localized at
the printing
OCC true # Localize the occupied space
T_CORE -99.9 # The Energy window for the first OCC MO to be localized (in a.u.)
Here, we localize all occupied MOs including core orbitals.
VIRT true # Localize the virtual space

The localized MOs are obtained iteratively. Convergence is achieved when the localization functional value is self-consistent (controlled by Tol). Setting the flags OCC/VIRT to true will request a localization of the subspace. If both flags are set, two consecutive localizations are performed. The localized orbitals are stored in the form of a standard GBW file named .loc. Keep in mind that the localization of the occupied orbitals might change the total energy depending on what type of calculation you want to perform thereafter. For RHF and UHF there shouldn’t be any problems, but for CASSCF the keyword OCC is not sufficient. CASSCF is not invariant to rotation of all the occupied orbitals.

The other way to do the localization is calling the orca_loc program directly from shell, which is more general. The orca_loc program requires an input of its own. The input is a textfile containing the necessary parameters. If no input is specified, orca_loc returns a help-file with a description of the necessary input-parameters. You need to specify in/output gbw-files, along with orbital ranges and the localization method to be used. A source of confusion is the operator line op (alpha = 0 or beta = 1). For RHF(ROHF) and CASSCF, this should be set to zero. The input file usually looks like,

```
Myjob.gbw # input orbitals
Myjob.loc.gbw # output orbitals
0 # operator: 0 for alpha, 1 for beta
10 # orbital window: first orbital to be localized e.g. first active
15 # orbital window: last orbital to be localized e.g. last active
200 # maximum number of iterations
1e-6 # convergence tolerance of the localization functional value
0.0 # relative convergence tolerance of the localization functional value
0.95 # printing thresh to call an orbital strongly localized
0.85 # printing thresh to call an orbital bond-like
4 # localization method:
# 1=PIPEK-MEZEY, 2=FOSTER-BOYS, 3=IAO-IBO, 4=IAO-BOYS, 5=NEW-BOYS
1 # use Cholesky Decomposition (0=false, 1=true, default is true, optional)
0 # Randomize seed for localization(optional)
```
If the input file is called myloc.inp, running "orca_loc myloc.inp" will produce the Myjob.loc.gbw file containing the localized orbitals. Please make sure the Myjob.gbw is in the same directory as myloc.inp.

9.33.6 orca_blockf

This utility program allows the canonicalization of orbitals (.gbw file) for arbitrary subspaces. With canonicalization we refer to the block diagonalization of the Fock matrix. Note that the necessary Fock matrix must be generated and be available on disk prior calling orca_blockf. The program is described in section 9.24.2.2, where the Local ZFS decomposition is discussed.

9.33.7 orca_plot

The use of this program is described more fully in section 9.32. It is used to create three dimensional graphics data for visualization. It is also possible to run this program interactively:

```bash
orca_plot gbwfile -i
```

You will then get a simple, self-explaining menu that will allow you to generate a variety of files (such as .plt and .cube) directly from the .gbw files without restarting or running a new job.

It is possible to use the module to create difference densities between the ground and excited states from CIS or TD-DFT calculations. This is implemented as an extra interactive menu point that is (hopefully) self-explanatory.

9.33.8 orca_2mkl: Old Molekel as well as Molden inputs

This little utility program can be used to convert gbw files into mkl files which are of ASCII format. This is useful since molekel can read these files and use them for plotting and the like. The contents of the mkl file is roughly the same as the gbw file (except for the internal flags of ORCA) but this is an ASCII file which can also be read for example by your own programs. It would therefore be a good point for developing an interface. It is likely that this functionality will be further expanded in the future.

```bash
orca_2mkl BaseName
    (will produce BaseName.mkl from BaseName.gbw)
orca_2mkl BaseName -molden
    (writes a file in molden format)
orca_2mkl BaseName -mkl
    (writes a file in MKL format)
```

We have recently also added the capability to convert any gbw type file into MKL or Molden format. Thus, you can use this device to visualize QRO or UNO or UCO orbitals or any type of natural orbitals:
You also have the opportunity to run `orca_2mkl` backwards in order to produce gbw type files. You can use this device in order to import orbitals from other sources into ORCA. This is not a frequently used option and it has limited capabilities. Hence, it is documented here only in a cursory way in order for you to be able to experiment. Note that the CASSCF tutorial, that supplements the manual, shows how to edit the molecular orbitals using `orca_2mkl`.

```
orca_2mkl BaseName -gbw
(will produce BaseName.gbw out of BaseName.mkl)
```

9.33.9 `orca_2aim`

This utility program reads a `.gbw` file and creates a `.wfn` file that can be used for topological analysis of the electron density by other programs. Currently this works only for closed-shell wave functions. The usage is very simple – just type `AIM` in the simple input line of your input file, or use

```
orca_2aim BaseName
(will produce BaseName.wfn from BaseName.gbw)
```

9.33.10 `orca_vpot`

This program calculates the electrostatic potential at a given set of user defined points. It takes four arguments:

```
orca_vpot MyJob.gbw MyJob.scfp.tmp MyJob.vpot.xyz MyJob.vpot.out
```

First: The `.gbw` file containing the correct geometry and basis set

Second: The desired density matrix in this basis (perhaps use the `KeepDens` keyword)

Third: an ASCII file with the target positions, e.g.

```
6 (number_of_points)
5.0 0.0 0.0 (XYZ coordinates)
-5.0 0.0 0.0
0.0 5.0 0.0
0.0 -5.0 0.0
0.0 0.0 5.0
0.0 0.0 -5.0
```
9.33 Utility Programs

Fourth: The target file which will then contain the electrostatic potential, e.g.

<table>
<thead>
<tr>
<th>6</th>
<th>(number of points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX1</td>
<td>VY1</td>
</tr>
<tr>
<td>VX2</td>
<td>VY2</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>

It should be straightforward for you to read this file and use the potential for whatever purpose.

9.33.11 orca_euler

This utility program is used to calculate the relative orientation between calculated hyperfine coupling (HFC)/nuclear quadrupole coupling (NQC) tensors and a reference tensor (the calculated molecular g-/D-tensor). The orca_euler program is run by default in an ORCA job after the calculation of HFCs or NQCs, if g- or D-tensor are also calculated in the same job. The utility program can also be run as a stand-alone program. In this case the .prop file of a previous NQC/HFC- and D- or g-tensor calculation must be available.

The orientation between the tensors is calculated in terms of a 3x3 rotational matrix R. This is parametrized by the three so-called Euler angles α, β and γ. These angles define the relative orientation between two tensors A and B by three successively applied rotations around different axes in order to align A with B. In the commonly used z-y-z convention these three rotations are:

- **Rotate A_{xyz} counterclockwise around its z axis by α to give $A_{x'y'z'}$.**
- **Rotate $A_{x'y'z'}$ counterclockwise around its y' axis by β to give $A_{x''y''z''}$.**
- **Rotate $A_{x''y''z''}$ counterclockwise around its z'' axis by γ to align with B.**

orca_euler prop-file options

```
file = name of an ORCA .prop file

options
- -refg/-refD: Reference tensor (g-tensor or D-tensor, default is -refg)
- -conv zyz/-conv zxz: Euler rotation convention (default is zyz)
- -order: Ordering of the reference tensor (x, y, z) with respect to ORCA output (min, mid, max)
- -plotA: plot the HFC-tensors
- -plotQ: plot the NQC-tensors
- -detail: print detailed information
```

NOTE:

- By default the D-tensor is used as reference tensor only if $S > \frac{1}{2}$ and if $|D| > 0.3 \text{ cm}^{-1}$; in all other cases the g-tensor is used as reference tensor. The user can manually select the reference tensor – if the information is available in the prop-file – by using -refg or -refD.
• By default the Euler rotation in the z-y-z convention is used. The z-x-z convention can be selected manually by using the option `-conv zxz`.

• By default the axes of the g- or D-tensor are assigned depending on their magnitude. \(g_{\text{min}} \rightarrow g_x, \quad g_{\text{mid}} \rightarrow g_y, \quad g_{\text{max}} \rightarrow g_z\) (similarly for D). This ordering can be modified manually when running the standalone program as shown in the following examples:

 -order 3 2 1: \(\text{min} \rightarrow z\)
 \(\text{mid} \rightarrow y\)
 \(\text{max} \rightarrow x\)

 -order 1 -2 3: \(\text{min} \rightarrow x\)
 \(\text{mid} \rightarrow y\) (flipped in the orientation)
 \(\text{max} \rightarrow z\)

• The nuclear hyperfine and quadrupole coupling tensors can be plotted (in the xyz-file format) by the `orca_euler` program using `-plotA` or `-plotQ`. The HFC tensor for atom 3 (counting starts at zero) is e.g. stored in the file `prop-file.3.A.xyz`, the respective NQC tensor is stored in `prop-file.3.Q.xyz`. In these xyz files the position of four atoms (He, Ne, Ar, Kr) is given. The \(x\), \(y\) and \(z\)-direction of the tensor are in the direction of the vectors between He-Ne, He-Ar and He-Kr.

• The actual definition of the used rotation matrix and more information on the relative orientation can be printed by using the option `-detail`.

9.33.12 orca_exportbasis

A small utility program to print out the basis sets used by ORCA. Its usage requires at least the name of the basis set, as specified in the simple input line of ORCA. Additional parameters like an ECP basis set, a list of specific atoms or the name of an output file are accepted. The output is stored in ASCII format, it can be inspected and modified. The user can choose to print the basis sets in either ORCA format, which then can be copied into the input file, or in GAMESS-US format, which can be read via the %basis block as externally specified basis. **NOTE:** Basis set names containing special characters may need a pair of enclosing " or ' to be recognized.

USAGE: orca_exportbasis keywords options

- `-b, --basis : name of basis set`
 - `def2-svp`
 - `'def2-tzvp(-f)'` - string to be passed with literals

EXAMPLE: orca_exportbasis -b svp

Additional Options:

- `-e, --ecp : ecp basis`
sdd

default - ECP-part of basis (if present)

- **f**, --format : output format
 - ORCA - to be read via %basis NewGTO
 - GAMESS-US - to be read as %basis GTOName 'mybasis.bas'
 default - ORCA

- **a**, --atoms : list of elements
 - Cu - single element
 - Ga Ge As Se - list of elements separated by blanks
 default - whole periodic table is printed

- **o**, --outfile: name of outputfile
 - mybasis.bas
 default - derived name

EXAMPLE: orca_exportbasis -b svp -e sdd -a Ag -f GAMESS-US -o mybasis.bas

The output stored in GAMESS-US format can be used in the %basis block of the next ORCA calculation.

```%
%basis
GTOName = "mybasis.bas";
GTOAuxName = "myauxbasis.bas";
end
```

9.33.13 orca_ea

This utility program makes use of the calculated exchange coupling constants to compute relative energies of all possible spin states through diagonalization of spin Hamiltonian. The absolute and relative energies of the spin states are printed in the *.en and *.en0 files respectively. The on-site spin expectation values are also printed in a *.sp file. The following example calculates the spin ladder for a system with exchange coupling constant of -152.48 cm\(^{-1}\) between Mn(III) and Mn(IV).

```%
%sim
ms_bs 0.5 # Arbitrary spin state
end

# specification of spin centers
$spins 2
1 2.0 # Spin on first manganese
2 1.5 # Spin on second manganese
```
Exchange coupling constant \((H = -2J S_1 S_2) \)

Exchange coupling constant (H = -2J S1 S2)
$ecc 1$
1 -152.48

$aiso_bs 2$ # A false segment just to print the *.sp file
1 0.00
2 0.00
10 Some Tips and Tricks

10.1 Input

For calculations on open-shell systems we recommend to use the keywords !UNO !UCO in the input line. This will generate quasi-restricted molecular orbitals QRO, unrestricted natural spin-orbitals UNSO, unrestricted natural orbitals UNO and unrestricted corresponding orbitals UCO. Moreover, it will print the UCO overlaps in the output, which can provide very clear information about the spin-coupling in the system. Below an example of the input and section of the output is provided.

```
!B3LYP def2-SVP def2/J RIJCOSX UNO UCO TightSCF
```

The UCO overlap section in the output will look like:

```
***UHF Corresponding Orbitals were saved in MyJob.uco***

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Overlap(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>96:</td>
<td>0.99968</td>
</tr>
<tr>
<td>97:</td>
<td>0.99955</td>
</tr>
<tr>
<td>98:</td>
<td>0.99947</td>
</tr>
<tr>
<td>99:</td>
<td>0.99919</td>
</tr>
<tr>
<td>100:</td>
<td>0.99873</td>
</tr>
<tr>
<td>101:</td>
<td>0.99563</td>
</tr>
<tr>
<td>102:</td>
<td>0.74329</td>
</tr>
<tr>
<td>103:</td>
<td>0.66660</td>
</tr>
</tbody>
</table>
```

The overlap corresponds to a value usually less than 0.85 denotes a spin-coupled pair. Whereas, values close to 1.00 and 0.00 refers to the doubly occupied and singly occupied orbitals respectively.

10.2 Cost versus Accuracy

A difficult but important subject in electronic structure theory is to balance the price/accuracy ratio of the calculations. This ratio is governed by: (a) the method used, (b) the basis set used and (c) the cutoffs and tolerances used. There are certainly differing opinions among scientists and I merely quote a few general, subjective points:
• Calculations with minimal basis sets are always unreliable and are only good for explorations. This is also true for small split-valence basis sets like 3-21G, 3-21GSP and perhaps also 4-22GSP. These basis sets are significantly more reliable than their minimal basis counterparts but are not capable of delivering quantitatively reliable results. They may, however, be the only choice if very large molecules are targeted.

• In our own research we almost exclusively use the basis sets of the Karlsruhe group for non-relativistic calculations. They have been updated to the “def2” set that is more consistent than the older basis sets.

• Def2-SV(P) is the smallest and computationally efficient split-valence basis set and is largely identical to the old SV(P), except for the transition metals which have more consistent polarization sets.

• Def2-TZVP is different from the old TZVP. It has been realized that if one invests into an accurate triple-zeta description of the valence region it makes limited sense to only employ a single polarization function. The accuracy is then limited by the polarization set and is not much better than what one gets from SV(P). Hence, def2-TZVP contains a single p-set for hydrogens but is otherwise very similar to the old TZVPP basis set, e.g. it contains 2d1f polarization for main group elements and much more extensive polarization sets for transition metals. The highest polarization function (f for main group) does add substantially to the computational effort. Hence, we often use def2-TZVP without the f polarization function. In order to do that one can use the keyword def2-TZVP(-f). Together with RI or RIJCOSX this is still computationally economic enough for most studies.

• Def2-TZVPP is a fully consistent triple-zeta basis set that provides excellent accuracy for SCF calculations (HF and DFT) and is still pretty good for correlated calculations. It is a good basis set to provide final single point energies.

• Def2-QZVPP is a high accuracy basis set for all kinds of calculations. It provides SCF energies near the basis set limit and correlation energies that are also excellent. It is computationally expensive but with RI and RIJCOSX in conjunction with parallelization it can often still be applied for final single-point energy calculations. In conjunction with such large basis sets one should also increase the accuracy of the integration grids in DFT and RIJCOSX — it would be a shame to limit the accuracy of otherwise very accurate calculations by numerical noise due to the grid.

• Correlation consistent basis sets provide good correlation energies but poor to very poor SCF energies. For the same size, the ano-PVDZ basis sets are much more accurate but are also computationally more expensive. Except for systematic basis set extrapolation we see little reason to use the cc bases.

• Pople basis sets are somewhat old fashioned and also much less consistent across the periodic table than the basis from the Karlsruhe group. Hence, we generally prefer the latter.

• For scalar relativistic calculations (ZORA and DKH) we strongly recommend to use the SARC bases in conjunction with the ZORA or DKH recontractions of the Karlsruhe bases. They are also flexible enough in the core region for general purpose and spectroscopic applications.

• Effective core potentials lead to some savings (but not necessarily spectacular ones) compared to all-electron relativistic calculations. For accurate results, small core ECPs should be used. They are generally available for the def2 Karlsruhe type basis sets for elements past Krypton. In general we prefer Stuttgart–Dresden ECPs over LANL ones. For the first transition row, the choices are more meager. Here Karlsruhe basis sets do not exist in conjunction with ECPs and you are bound to either
10.2 Cost versus Accuracy

SDD or LANL of which we recommend the former. Geometries and energies are usually good from ECPs, but for property calculations we strongly recommend to switch to all electron scalar relativistic calculations using ZORA (magnetic properties) or DKH (electric properties).

- You can take advantage of a built-in basis set (Print[P.Basis]=2) and then modify it by uncontracting primitives, adding steeper functions etc. (fully uncontracted bases are generated via uncontract in %basis) Alternatively some basis sets exist that are of at least double-zeta quality in the core region including the DZP and Dunning basis sets. For higher accuracy you may want to consider the aug-series of basis sets.

- Likewise, if you are doing calculations on anions in the gas phase it is advisable to include diffuse functions in the basis set. Having these diffuse functions, however, makes things much more difficult as the locality of the basis set is significantly reduced. If these functions are included it is advisable to choose a small value for Thresh (10^{-12} or lower).

- In case of charged molecules, implicit solvent models are useful in providing more realistic charge distributions and energetics. The use of CPCM model is recommended.

- The integration grids used in DFT should be viewed together with the basis set. If large basis set calculations are converged to high accuracy it is advisable to also use large DFT integration grids (like Grid=5 or even Grid=6). For “unlimited” accuracy (i.e. benchmark calculations) it is probably best to use product grids (Grid=0) with a large value for IntAcc (perhaps around 6.0). The default grids have been chosen such that they provide adequate accuracy at the lowest possible computational cost, but for all-electron calculations on heavy elements in conjunction with scalar relativistic Hamiltonians you should examine the grid dependency very carefully and adjust these parameters accordingly to minimize errors. You should be aware that for large molecules the exchange-correlation integration is usually not the dominating factor (not even in combination with RI-J).

- Similarly important is the value of Thresh that will largely determine the turnaround time for direct SCF calculations. It may be possible to go to values of 10^{-6}–10^{-8} which will result in large speed-ups. However, the error in the final energy may then be 3 orders of magnitude larger than the cutoff or, sometimes, your calculation will fail to converge, due to the limited integral accuracy. In general it will not be possible to converge a direct SCF calculation to better than Thresh (the program will also not allow this). For higher accuracy values of maybe 10^{-10}–10^{-12} may be used with larger molecules requiring smaller cutoffs. In cases where the SCF is almost converged but then fails to finally converge (which is very annoying) decreasing Thresh (and possibly switch to NRSCF) may be a good idea. In general, TCut should be around 0.01×Thresh in order to be on the safe side.

- DFT calculations have many good features and in many cases they produce reliable results. In particular if you study organic molecules it is nevertheless a good idea to check on your DFT results using MP2. MP2 in the form of RI-MP2 is usually affordable and produces reliable results (in particular for weaker interactions where DFT is less accurate). In case of a large mismatch between the MP2 and DFT results the alarm rings — in many such cases MP2 is the better choice, but in others (e.g. for redox processes or transition metal systems) it is not. Remember that SCS-MP2 (RI-SCS-MP2) will usually produce more accurate results than MP2 itself.

- Coupled-cluster calculations become more and more feasible and should be used whenever possible. The LPNO-CCSD, DLPNO-CCSD and DLPNO-CCSD(T) calculations are available for single-point calculations and provide accurate results. However, a coupled-cluster study does require careful study
of basis set effects because convergence to the basis set limit is very slow. The established basis set extrapolation schemes may be very helpful here. For open-shell molecules and in particular for transition metals one cannot be careful enough with the reference. You have to carefully check that the Hartree-Fock calculation converged to the desired state in order to get coupled-cluster results that are meaningful. Orbital optimized MP2, CASSCF or DFT orbitals may help but we have often encountered convergence difficulties in the coupled-cluster equations with such choices.

- Generally speaking, CEPA is often better than CCSD and approaches the quality of CCSD(T). It is, however, also a little less robust than CC methods because of the less rigorous treatment of the single excitations in relation to electronic relaxation.

- Don’t forget: “Computers don’t solve problems – people do”. Not denying the importance and desire to obtain accurate numbers: don’t forget that in the end it is the molecule and its chemistry or spectroscopy that we want to learn something about. The fact that you may be able to compute one or the other number a little more accurate doesn’t mean that this helps us understanding the physics and chemistry of our target system any better. The danger of getting locked into technicalities and miss the desired insight is real!

10.3 Converging SCF Calculations

Despite all efforts you may still find molecules where SCF convergence is poor. These are almost invariably related to open-shell situations and the answer is almost always to provide “better” starting orbitals. Here is my standard strategy to deal with this (assuming a DFT calculation):

- Perform a small basis set (SV) calculation in using the LSD or BP functional and RI approximation with a cheap auxiliary basis set. Set `Convergence=Loose` and `MaxIter=200` or so. Turn the FinalGrid off (`NoFinalGrid`). The key point is to use a large damping factor and damp until the DIIS comes into a domain of convergence. This is accomplished by `SlowConv` or even `VerySlowConv`. If you have an even more pathological case you may need to set `DampFac` larger and `DampErr` smaller than chosen by these defaults. This calculation is quite crude and may take many cycles to converge. It will however be rather quick in terms of wall clock time. If the DIIS gets stuck at some error 0.001 or so the SOSCF (or even better NRSCF) could be put in operation from this point on.

- Use the orbitals of this calculation and `GuessMode=CMatrix` to start a calculation with the target basis set. In DFT we normally use a pure GGA functional (e.g. BP86). This calculation normally converges relatively smoothly.

- Use the target functional, grid etc. to get the final calculation converged. In many cases this should converge fairly well now.

Here are a few other things that can be tried:

- Try to start from the orbitals of a related closed-shell species. In general closed-shell MO calculations tend to converge better. You then hope to reach the convergence radius of another converger for the open-shell case.

- Try to start from the orbitals of a more positive cation. Cation calculations tend to converge better.
• Try to start from a calculation with a smaller basis set. Smaller basis sets converge better. Then you have the choice of \texttt{GuessMode=CMatrix} or \texttt{GuessMode=FMatrix} which will affect the convergence behavior.

• Use large level shifts. This increases the number of iterations but stabilizes the converger. (\texttt{shift shift 0.5 erroff 0 end})

• If your calculations converge to, say 10^{-4} in the DIIS error and then “creep” it is usually a good idea to invoke the second order (\texttt{NRSCF}) converger. Close to the solution, it is incredibly strong and will usually converge in 1 or 2 macro-iterations. Each of these cost perhaps 5–7 or maybe even 10 normal SCF cycles but after the DIIS has brought you into the radius of the convergence of the NR procedure its convergence properties are excellent.

• If you are doing DFT calculations try to start from a Hartree-Fock solution for your molecule. HF calculations tend to converge somewhat better because they have a larger HOMO-LUMO gap (there are of course exceptions).

• Carefully look at the starting orbitals (\texttt{Print[P.GuessOrb]=1}) and see if they make sense for your molecule. Perhaps you have to reorder them (using \texttt{Rotate}) to obtain smooth convergence.

• Most of the time the convergence problems come from “unreasonable” structures. Did you make sure that your coordinates are in the correct units (Angström or Bohrs?) and have been correctly recognized as such by the program?

• If you have trouble with UHF calculations try ROHF (especially SAHF or CAHF) first and then go to the UHF calculation.

• Fool around with \texttt{Guess=Hueckel}, \texttt{PAtom} or even \texttt{HCore}.

• It may sometimes be better to converge to an undesired state and then take the orbitals of this state, reorder them (using \texttt{Rotate}) and try to converge to the desired state.

• Similarly, bad orbitals may be manipulated using the SCF stability analysis (section 9.7) to provide a new guess.

• Try to start the calculation with a large damping factor (\texttt{DampFac=0.90}; or even larger) and specify a relatively small DIIS error to turn damping off (say \texttt{DampErr=0.02}). This will increase the number of cycles but may guide you into a regime were the calculation actually converges.

• The advices above mostly apply to Hartree-Fock and DFT. For CASSCF, the available options and how they can aid to overcome convergence problems are described in the CASSCF manual section. In many cases modifying the initial guess or adding a level shift will help. Do not hesitate to use large level-shifts (e.g 2.0 or even 3.0). The manual is accompanied by CASSCF tutorial that goes through many details of the process including practical advices on convergence. The choice of initial guess is crucial. Some guesses work better for organic molecules while others excel for transition-metal complexes. The tutorial therefore discusses various initial guess options available in ORCA.

• If nothing else helps, stop, grab a friend and go to the next pub (you can also send me an unfriendly e-mail but this will likely not make your calculation converge any quicker; 😞).
10.4 Choice of Theoretical Method

The array of available functionals makes it perhaps difficult to decide which one should be used. While this is a matter of ongoing research and, in the end, can only be answered by experimentation and comparison to experimental results or high-level \textit{ab initio} calculations, I may attempt to give some guidelines.

The simplest density functionals (and in general the least accurate) are the local functionals (\texttt{Functional=LSD}). Although several variants of the local DFT exist in \texttt{ORCA} there is little to choose among them — they give more or less the same result.

The gradient corrected functionals are (very slightly) more expensive because the gradient of the electron density at each point in space must be computed but they are also significantly more accurate for structures and energetics of molecules. The various gradient corrected functionals (GGA functionals) are generally similar in their behavior. The BP functional is probably the most widely used in transition metal chemistry. The BLYP, PBE or PW91 functionals may also be considered. PWP has been shown to be rather good for hyperfine coupling predictions of light nuclei in radicals. In addition, since no Hartree-Fock exchange is used you have the ability to speed up the calculation by a factor of 4–40 if the R1 approximation is employed. This approximation is really advisable for the LSD and GGA functionals since it leads to very little or no loss in accuracy while giving large speedups. It is, in fact, automatically chosen to be operative when you use pure functionals.

In addition, meta-GGAs (TPSS) are available in \texttt{ORCA} and may provide superior results for certain properties compared to standard GGAs. They are somewhat but not much more expensive to evaluate than standard GGAs.

For many properties (but not necessarily for geometries), more accurate results are usually given by the hybrid density functionals that incorporate part of the HF exchange. The computational effort for these is higher than for the GGA functionals because the HF exchange needs to be computed exactly. Very large speedups result if this is done via the R1JCOSX approximation. Nevertheless for energetics, properties and for predictions of charge and spin densities the hybrids appear to be the best choice. The prototype functional of this kind is B3LYP, which has been very widely used throughout chemistry and is successful for a wide range of molecular properties. Other hybrids have been less well tested but maybe a good choice in specific situations, for example the PBE0 functional has been advertised for NMR chemical shift predictions and other properties. From my personal experience I can also recommend PBE0 and PWP1 as two functionals that give good predictions for EPR g-values and hyperfine couplings. The TPSSH meta-GGA hybrid is also very successful in this area.\footnote{Some researchers like to adjust the amount of Hartree-Fock exchange according to their needs or what they think is “better” than the standard. This increases the semiempirical character of the calculations and may represent fixes that only work for a given class of compounds and/or properties while worsening the results for others. With this caveat in mind it is one of the things that you are free to try if you like it. However, we do not recommend it since it will deteriorate the comparability of your results with those of other workers the vast majority of which use standard functionals. An alternative to changing the amount of HF exchange could be to simply construct a linear regression for a number of known cases and then use linear regression.}

Together with DFT, it is often observed that the atom-pairwise dispersion correction of Stefan Grimme substantially improves the results at no extra cost.

Don’t forget that in present days the MP2 method becomes affordable for molecules of significant size and there are quite a number of instances where MP2 (and particularly SCS-MP2) will do significantly

better than DFT even if it takes a little longer (the RI approximation is also highly recommended here). The perturbatively corrected functionals (B2PLYP) may also be a very good choice for many problems (at comparable cost to MP2; note that even for large molecules with more than 1000 basis functions the MP2 correction only takes about 10-20% of the time required for the preceding SCF calculation if the RI approximation is invoked).

Beyond DFT and (SCS)MP2 there are coupled-cluster methods and their implementation in ORCA is efficient. With the local pair natural orbital methods you can even study molecules of substantial size and with appealing turnaround times.

When to go to multireference methods is a more complicated question. Typically, this will be the case if multiplets are desired, pure spin functions for systems with several unpaired electrons, in bond breaking situations or for certain classes of excited states (loosely speaking: whenever there are weakly interacting electrons in the system). However, whenever you decide to do so, please be aware that this require substantial insight into the physics and chemistry of the problem at hand. An uneducated use of CASSCF or MRCI/MRPT method likely yields numbers that are nonsensical and that at tremendous computational cost. Here, there is no substitute for experience (and patience 😞).
11 Publications Related to ORCA

The generic reference for ORCA is:

Please do not only cite the above generic reference, but also cite in addition the original papers that report the development and ORCA implementation of the methods you have used in your studies! The following publications describe functionality implemented in ORCA. We would highly appreciate if you cite them when you use the program.

MCD

CASSCF/NEVPT2/MRCI & Magnetism

MDCI

DLPNO

XAS/XES

Resonance Raman

QM/MM

NRVS

Applications

COSX

SARC

Review

Multireference CI Module and its application to EPR properties and optical spectra:

Internally Contracted Multireference CI:

Ab initio Ligand Field Analysis:

Pair Natural Orbital Local Correlation Methods:

Coupled-Cluster and Coupled Pair Implementation (MDCI module):

Explicit Correlation (R12, F12 Methods):

ANO basis sets:

Orbital Optimized MP2:

Analytic Hessian Implementation:

The Split-J, Split-RI-J, RIJCOSX and RI-JK methods:

DFT/Hartree–Fock Theory of EPR Parameters:

Corresponding Orbital Transformation:

Excited States Methods and Resonance Raman Spectra:

Absorption, Resonance Raman and Fluorescence Spectra:

Magnetic Circular Dichroism Spectra:

Mössbauer Isomer shifts:

Nuclear Resonance Vibrational Spectra:

X-Ray Absorption and X-Ray Emission Spectra:

Double hybrid density functionals:

Dispersion Corrections to DFT:

(not originally implemented in ORCA but the ORCA implementation is based on the code described in these papers)

gCP correction to HF and DFT:

(ORCA implementation is based upon the code used in this paper)

HF-3c method:

PBEh-3c method:

sTDA and sTD-DFT approaches for electronic spectra:

FOD analysis and FOD plots:

COSMO Implementation:

SOSCF Method:

Relativity and SARC Basis Sets:

QM/MM calculations with ORCA:

Applications that make use of ORCA include the following:

183. Atanasov, M.; Surawatanawong, P.; Wieghardt, K.; Neese, F. (2013) A theoretical study of zero-field splitting in Fe(IV)S₆ (S = 1) and Fe(III)S₆ (S = 1/2) core complexes, [Fe⁴⁺(Et₂dtc)₃₋ₙ(mnt)ₙ]^(n−₁)⁻ and [Fe³⁺(Et₂dtc)₃₋ₙ(mnt)ₙ]ⁿ⁻ (n = 0, 1, 2, 3): The origin of the magnetic anisotropy, *Coord. Chem. Rev.*, 257(1), 27–41.

Some Reviews of interest:

Bibliography

[245] Laikov, D.; Van Wüllen, C., Software. http://www.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/. These routines are based on C code provided by Dmitri Laikov (laikov@chem.msu.ru). Christoph van Wüllen (Christoph.van.Wuellen@Ruhr-Uni-Bochum.de) has made the effort to obtain the code and convert it to Fortran77, and he obtained Dmitri’s kind permission to make the routines publically available.
[293] Facility, M. S. C. (2000). Extensible Computational Chemistry Environment Basis Set Database. http://www.emsl.pnl.gov/forms/basisform.html. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version Mon Apr 17 10:05:30 PDT 2000, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.

[394] National Institute of Standards and Technology (NIST) Atomic Spectra Database.

