Prof. Dr. Frank Neese - Molekulare Theorie und Spektroskopie

Prof. Dr. Frank Neese
Director
Department Molecular Theory and Spectroscopy

Vita

Diplom (Biology)University of Konstanz (with Prof. P. Kroneck) (1993)
Ph.D. (Dr. rer. nat.)University of Konstanz (with Prof. P. Kroneck) (1997)
PostdocStanford University (with Prof. E.I. Solomon) (1997-1999)
HabilitationBioinorganic and Theoretical Chemistry, University of Konstanz (2001)
Staff scientistMPI for Bioanorganic Chemistry; today: MPI CEC (2001-2006)
Full Professor and ChairTheoretical Chemistry, University of Bonn (2006-2011)
Max Planck FellowMPI for Bioanorganic Chemistry; today: MPI CEC (2008-2011)
DirectorMPI CEC (since 2011)
Honorary ProfessorRheinische Friedrich-Wilhelms-Universität Bonn (since 2013)

 

Short Bio

Frank Neese received both his Diploma (Biology – 1993) and Ph.D (Dr. rer. Nat. – 1997) working with Prof. P. Kroneck at the University of Konstanz. He performed postdoctoral work at Stanford University with Prof. E. I. Solomon from 1997 to 1999, then returned to Konstanz where he completed his habilitation in 2001. He joined the Max Planck Institute (MPI) for Bioinorganic Chemistry in 2001 as a group leader, where he directed a research group until accepting the position of full Professor and Chair of Theoretical Chemistry at the University of Bonn in 2006. In 2008, Neese returned part time to the MPI as one of its rare “Max Planck Fellows” within the Department of Inorganic Chemistry. In 2011, he became Director of the MPI for Bioinorganic Chemistry, renamed in 2012 in MPI for Chemical Energy Conversion, where he heads the department of Molecular Theory and Spectroscopy. In 2005, Neese received the Hellmann Award of the German Theoretical Chemical Society for the Development and Application of new Theoretical Methods and subsequently the Klung-Wilhelmy Weberbank Award in 2008 and the Gottfried Wilhelm Leibniz Award of the German Science Foundation in 2010. In 2013, he was inducted into the Leopoldina Nationale Akademie der Wissenschaften (German National Academy of Sciences). He was Associate Editor (2011-2014) of the journal PhysChemChemPhys and is a Member of the International Academy of Quantum Molecular Sciences (IAQMS, since 2012). Since 2015 Frank Neese is Associate Editor of the journal Inorg. Chem. and as of 2016 he is Member of the Editorial Board of the review book series Struct. Bond.. As of 2016 Neese has been appointed as an active member of the International Advisory Board for the Institute of Organic Chemistry and Biochemistry (IOCB) of the Czech Academy of Sciences in Prague and he was elected as a new Member of the Review Board „Physical and Theoretical Chemistry“ in the field of „General Theoretical Chemistry“ of the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG). Frank Neese is the author of more than 440 scientific articles in journals of Chemistry, Biochemistry and Physics. His work focuses on the Theory of Magnetic Spectroscopies (electron paramagnetic resonance, magnetic circular dichroism) and their experimental and theoretical application, local pair natural orbital correlation theories, spectroscopy oriented configuration interaction, electronic and geometric structure and reactivity of transition metal complexes and metalloenzymes. He is lead author of the ORCA program.

Publications

Selected Publications

Photosystem II

  • Beckwith, M. A.; Ames, W.; Vila, F. D.; Krewald, V.; Pantazis, D. A.; Mantel, C.; Pecaut, J.; Gennari, M.; Duboc, C.; Collomb, M. N.; Yano, J.; Rehr, J. J.; Neese, F.; DeBeer, S. How Accurately Can Extended X-ray Absorption Spectra Be Predicted from First Principles? Implications for Modeling the Oxygen-Evolving Complex in Photosystem II J. Am. Chem. Soc. 2015, 137, 12815-12834.
  • Lohmiller, T.; Krewald, V.; Navarro, M. P.; Retegan, M.; Rapatskiy, L.; Nowaczyk, M. M.; Boussac, A.; Neese, F.; Lubitz, W.; Pantazis, D. A.; Cox, N. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S-2 state: a combined EPR and DFT study Phys. Chem. Chem. Phys. 2014, 16, 11877-11892.
  • Cox, N.; Retegan, M.; Neese, F.; Pantazis, D. A.; Boussac, A.; Lubitz, W. Electronic structure of the oxygenevolving complex in photosystem II prior to O-O bond formation Science 2014, 345, 804-808.  
  • Retegan, M.; Neese, F.; Pantazis, D. A. Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II J. Chem. Theory Comput. 2013, 9, 3832-3842.
  • Rapatskiy, L.; Cox, N.; Savitsky, A.; Ames, W. M.; Sander, J.; Nowaczyk, M. M.; Rogner, M.; Boussac, A.; Neese, F.; Messinger, J.; Lubitz, W. Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band O-17 Electron-Electron Double Resonance-Detected NMR Spectroscopy J. Am. Chem. Soc. 2012, 134, 16619-16634.
  • Pantazis, D. A.; Ames, W.; Cox, N.; Lubitz, W.; Neese, F. Two Interconvertible Structures that Explain the Spectroscopic Properties of the Oxygen-Evolving Complex of Photosystem II in the S2 State Angew. Chem. Int. Ed. 2012, 51, 9935-9940.

Nitrogenase

  • Rees, J. A.; Bjornsson, R.; Schlesier, J.; Sippel, D.; Einsle, O.; DeBeer, S. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom Angew. Chem. Int. Ed. 2015, 54, 13249-13252.
  • Bjornsson, R.; Lima, F. A.; Spatzal, T.; Weyhermuller, T.; Glatzel, P.; Bill, E.; Einsle, O.; Neese, F.; DeBeer, S. Identification of a spin-coupled Mo(III) in the nitrogenase iron-molybdenum cofactor Chem. Sci. 2014, 5, 3096-3103.
  • Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y. L.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor Science 2011, 334, 974-977.

Hydrogenase

  • Hugenbruch, S.; Shafaat, H. S.; Kramer, T.; Delgado-Jaime, M. U.; Weber, K.; Neese, F.; Lubitz, W.; DeBeer, S. In search of metal hydrides: an X-ray absorption and emission study of NiFe hydrogenase model complexes Phys. Chem. Chem. Phys. 2016, 18, 10688-10699.
  • Das, R.; Neese, F.; van Gastel, M. Hydrogen evolution in NiFe hydrogenases and related biomimetic systems: similarities and differences Phys. Chem. Chem. Phys. 2016, 18, 24681-24692.
  • Kochem, A.; Weyhermuller, T.; Neese, F.; van Gastel, M. EPR and Quantum Chemical Investigation of a Bioinspired Hydrogenase Model with a Redox-Active Ligand in the First Coordination Sphere Organometallics 2015, 34, 995-1000.
  • Kramer, T.; Kamp, M.; Lubitz, W.; van Gastel, M.; Neese, F. Theoretical Spectroscopy of the Ni-II Intermediate States in the Catalytic Cycle and the Activation of NiFe Hydrogenases ChemBioChem 2013, 14, 1898-1905.
  • Shafaat, H. S.; Weber, K.; Petrenko, T.; Neese, F.; Lubitz, W. Key Hydride Vibrational Modes in NiFe Hydrogenase Model Compounds Studied by Resonance Raman Spectroscopy and Density Functional Calculations Inorg. Chem. 2012, 51, 11787-11797.

CO2 Activation

  • Mondal, B.; Neese, F.; Ye, S. F. Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps Inorg. Chem. 2016, 55, 5438-5444.
  • Mondal, B.; Song, J. S.; Neese, F.; Ye, S. F. Bio-inspired mechanistic insights into CO2 reduction Curr. Opin. Chem. Biol. 2015, 25, 103-109.
  • Mondal, B.; Neese, F.; Ye, S. F. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study Inorg. Chem. 2015, 54, 7192-7198.
  • Song, J. S.; Klein, E. L.; Neese, F.; Ye, S. F. The Mechanism of Homogeneous CO2 Reduction by Ni(cyclam): Product Selectivity, Concerted Proton-Electron Transfer and C-O Bond Cleavage Inorg. Chem. 2014, 53, 7500-7507.

High-valent Iron

  • Mondal, B.; Roy, L.; Neese, F.; Ye, S. F. High-Valent Iron-Oxo and -Nitrido Complexes: Bonding and Reactivity Isr. J. Chem. 2016, 56, 763-772.
  • Sharma, S.; Sivalingam, K.; Neese, F.; Chan, G. K. L. Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics Nat. Chem. 2014, 6, 927-933.
  • Krahe, O.; Bill, E.; Neese, F. Decay of Iron(V) Nitride Complexes By a N-N Bond-Coupling Reaction in Solution: A Combined Spectroscopic and Theoretical Analysis Angew. Chem. Int. Ed. 2014, 53, 8727-8731.
  • Geng, C. Y.; Ye, S. F.; Neese, F. Does a higher metal oxidation state necessarily imply higher reactivity toward H-atom transfer? A computational study of C-H bond oxidation by high-valent iron-oxo and -nitrido complexes Dalton Trans. 2014, 43, 6079-6086.
  • Ye, S. F.; Geng, C. Y.; Shaik, S.; Neese, F. Electronic structure analysis of multistate reactivity in transition metal catalyzed reactions: the case of C-H bond activation by non-heme iron(IV)-oxo cores Phys. Chem. Chem. Phys. 2013, 15, 8017-8030.
  • Ye, S. F.; Neese, F. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state Proc. Natl. Acad. Sci. USA 2011, 108, 1228-1233.

Molecular Magnetism

  • Rechkemmer, Y.; Breitgoff, F. D.; van der Meer, M.; Atanasov, M.; Hakl, M.; Orlita, M.; Neugebauer, P.; Neese, F.; Sarkar, B.; van Slageren, J. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier Nat. Commun. 2016, 7.
  • Aravena, D.; Atanasov, M.; Neese, F. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory Inorg. Chem. 2016, 55, 4457-4469.
  • Suturina, E. A.; Maganas, D.; Bill, E.; Atanasov, M.; Neese, F. Magneto-Structural Correlations in a Series of Pseudotetrahedral Co-II(XR)(4) (2-) Single Molecule Magnets: An ab Initio Ligand Field Study Inorg. Chem. 2015, 54, 9948-9961.
  • Atanasov, M.; Aravena, D.; Suturina, E.; Bill, E.; Maganas, D.; Neese, F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets Coord. Chem. Rev. 2015, 289, 177-214.
  • Zadrozny, J. M.; Xiao, D. J.; Long, J. R.; Atanasov, M.; Neese, F.; Grandjean, F.; Long, G. J. Mossbauer Spectroscopy as a Probe of Magnetization Dynamics in the Linear Iron(I) and Iron(II) Complexes Fe(C(SiMe3)(3))(2) (1-/0) Inorg. Chem. 2013, 52, 13123-13131.
  • Zadrozny, J. M.; Xiao, D. J.; Atanasov, M.; Long, G. J.; Grandjean, F.; Neese, F.; Long, J. R. Magnetic blocking in a linear iron(I) complex Nat. Chem. 2013, 5, 577-581.
  • Zadrozny, J. M.; Atanasov, M.; Bryan, A. M.; Lin, C. Y.; Rekken, B. D.; Power, P. P.; Neese, F.; Long, J. R. Slow magnetization dynamics in a series of two-coordinate iron(II) complexes Chem. Sci. 2013, 4, 125-138.
  • Atanasov, M.; Zadrozny, J. M.; Long, J. R.; Neese, F. A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior Chem. Sci. 2013, 4, 139-156.
  • Atanasov, M.; Ganyushin, D.; Sivalingam, K.; Neese, F. in Molecular Electronic Structures of Transition Metal Complexes II; Mingos, D. M. P., Day, P., Dahl, J. P., Eds. 2012; Vol. 143, p 149-220.

Solids and Surfaces

  • Maganas, D.; Trunschke, A.; Schlogl, R.; Neese, F. A unified view on heterogeneous and homogeneous catalysts through a combination of spectroscopy and quantum chemistry Farad. Discuss. 2016, 188, 181-197.
  • Kubas, A.; Berger, D.; Oberhofer, H.; Maganas, D.; Reuter, K.; Neese, F. Surface Adsorption Energetics Studied with "Gold Standard" Wave Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110) J. Phys. Chem. Lett. 2016, 7, 4207-4212.
  • Maganas, D.; DeBeer, S.; Neese, F. Restricted Open-Shell Configuration Interaction Cluster Calculations of the L-Edge X-ray Absorption Study of TiO2 and CaF2 Solids Inorg. Chem. 2014, 53, 6374-6385.
  • Maganas, D.; Roemelt, M.; Havecker, M.; Trunschke, A.; Knop-Gericke, A.; Schlogl, R.; Neese, F. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin-orbit coupled configuration interaction approaches Phys. Chem. Chem. Phys. 2013, 15, 7260-7276.

X-ray spectroscopy

  • Van Kuiken, B. E.; Hahn, A. W.; Maganas, D.; DeBeer, S. Measuring Spin-Allowed and Spin-Forbidden d-d Excitations in Vanadium Complexes with 2p3d Resonant Inelastic X-ray Scattering Inorg. Chem. 2016, 55, 11497-11501.
  • Hugenbruch, S.; Shafaat, H. S.; Kramer, T.; Delgado-Jaime, M. U.; Weber, K.; Neese, F.; Lubitz, W.; DeBeer, S. In search of metal hydrides: an X-ray absorption and emission study of NiFe hydrogenase model complexes Phys. Chem. Chem. Phys. 2016, 18, 10688-10699.
  • Rees, J. A.; Martin-Diaconescu, V.; Kovacs, J. A.; DeBeer, S. X-ray Absorption and Emission Study of Dioxygen Activation by a Small-Molecule Manganese Complex Inorg. Chem. 2015, 54, 6410-6422.  
  • Pollock, C. J.; DeBeer, S. Insights into the Geometric and Electronic Structure of Transition Metal Centers from Valence-to-Core X-ray Emission Spectroscopy Acc. Chem. Res. 2015, 48, 2967-2975.  
  • Beckwith, M. A.; Ames, W.; Vila, F. D.; Krewald, V.; Pantazis, D. A.; Mantel, C.; Pecaut, J.; Gennari, M.; Duboc, C.; Collomb, M. N.; Yano, J.; Rehr, J. J.; Neese, F.; DeBeer, S. How Accurately Can Extended X-ray Absorption Spectra Be Predicted from First Principles? Implications for Modeling the Oxygen-Evolving Complex in Photosystem II J. Am. Chem. Soc. 2015, 137, 12815-12834.
  • Pollock, C. J.; Delgado-Jaime, M. U.; Atanasov, M.; Neese, F.; DeBeer, S. K beta Mainline X-ray Emission Spectroscopy as an Experimental Probe of Metal-Ligand Covalency J. Am. Chem. Soc. 2014, 136, 9453-9463.
  • Maganas, D.; Roemelt, M.; Weyhermuller, T.; Blume, R.; Havecker, M.; Knop-Gericke, A.; DeBeer, S.; Schlogl, R.; Neese, F. L-edge X-ray absorption study of mononuclear vanadium complexes and spectral predictions using a restricted open shell configuration interaction ansatz Phys. Chem. Chem. Phys. 2014, 16, 264-276.
  • Maganas, D.; Kristiansen, P.; Duda, L. C.; Knop-Gericke, A.; DeBeer, S.; Schlogl, R.; Neese, F. Combined Experimental and Ab Initio Multireference Configuration Interaction Study of the Resonant Inelastic X-ray Scattering Spectrum of CO2 J. Phys. Chem. C 2014, 118, 20163-20175.
  • Hall, E. R.; Pollock, C. J.; Bendix, J.; Collins, T. J.; Glatzel, P.; DeBeer, S. Valence-to-Core-Detected X-ray Absorption Spectroscopy: Targeting Ligand Selectivity J. Am. Chem. Soc. 2014, 136, 10076-10084.
  • Roemelt, M.; Maganas, D.; DeBeer, S.; Neese, F. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy J. Chem. Phys. 2013, 138.
  • Lundberg, M.; Kroll, T.; DeBeer, S.; Bergmann, U.; Wilson, S. A.; Glatzel, P.; Nordlund, D.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Metal-Ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering J. Am. Chem. Soc. 2013, 135, 17121-17134.
  • Lassalle-Kaiser, B.; Boron, T. T.; Krewald, V.; Kern, J.; Beckwith, M. A.; Delgado-Jaime, M. U.; Schroeder, H.; Alonso-Mori, R.; Nordlund, D.; Weng, T. C.; Sokaras, D.; Neese, F.; Bergmann, U.; Yachandra, V. K.; DeBeer, S.; Pecoraro, V. L.; Yano, J. Experimental and Computational X-ray Emission Spectroscopy as a Direct Probe of Protonation States in Oxo-Bridged Mn-IV Dimers Relevant to Redox-Active Metalloproteins Inorg. Chem. 2013, 52, 12915-12922.
  • Krewald, V.; Lassalle-Kaiser, B.; Boron, T. T.; Pollock, C. J.; Kern, J.; Beckwith, M. A.; Yachandra, V. K.; Pecoraro, V. L.; Yano, J.; Neese, F.; DeBeer, S. The Protonation States of Oxo-Bridged Mn-IV Dimers Resolved by Experimental and Computational Mn K Pre-Edge X-ray Absorption Spectroscopy Inorg. Chem. 2013, 52, 12904-12914.
  • Lancaster, K. M.; Finkelstein, K. D.; DeBeer, S. K beta X-ray Emission Spectroscopy Offers Unique Chemical Bonding Insights: Revisiting the Electronic Structure of Ferrocene Inorg. Chem. 2011, 50, 6767-6774.

Domain based local pair natural orbital theories

  • Schneider, W. B.; Bistoni, G.; Sparta, M.; Saitow, M.; Riplinger, C.; Auer, A. A.; Neese, F. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework J. Chem. Theory Comput. 2016, 12, 4778-4792.
  • Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps-A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory J. Chem. Phys. 2016, 144.
  • Pavosevic, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F. SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals J. Chem. Phys. 2016, 144
  • Guo, Y.; Sivalingam, K.; Valeev, E. F.; Neese, F. SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory J. Chem. Phys. 2016, 144.
  • Dutta, A. K.; Neese, F.; Izsak, R. Towards a pair natural orbital coupled cluster method for excited states J. Chem. Phys. 2016, 145.
  • Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, F. Sparse maps-A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals J. Chem. Phys. 2015, 143.
  • Liakos, D. G.; Sparta, M.; Kesharwani, M. K.; Martin, J. M. L.; Neese, F. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory J. Chem. Theory Comput. 2015, 11, 1525-1539.  
  • Liakos, D. G.; Neese, F. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory J. Chem. Theory Comput. 2015, 11, 4054-4063.
  • Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals J. Chem. Phys. 2013, 139.
  • Riplinger, C.; Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method J. Chem. Phys. 2013, 138.
  • Hansen, A.; Liakos, D. G.; Neese, F. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals J. Chem. Phys. 2011, 135.
  • Neese, F.; Wennmohs, F.; Hansen, A. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method J. Chem. Phys. 2009, 130.
  • Neese, F.; Hansen, A.; Liakos, D. G. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis J. Chem. Phys. 2009, 131.

Multireference methods

  • Sivalingam, K.; Krupicka, M.; Auer, A. A.; Neesea, F. Comparison of fully internally and strongly contracted multireference configuration interaction procedures J. Chem. Phys. 2016, 145.
  • Demel, O.; Pittner, J.; Neese, F. A Local Pair Natural Orbital-Based Multireference Mukherjee's Coupled Cluster Method J. Chem. Theory Comput. 2015, 11, 3104-3114.
  • Neese, F.; Petrenko, T.; Ganyushin, D.; Olbrich, G. Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: Multiplets, spin-orbit coupling and resonance Raman intensities Coord. Chem. Rev. 2007, 251, 288-327.

All publications on Researcher ID and ORCID

Functions

Third party fundings

  • RESOLV - Cluster of Excellence 1069 - RESOLV (Ruhr Explores Solvation) - Understanding and Design of Solvent Controlled Processes (link)

Awards

  • 2017 Ceremonial Lecturer on the occasion of the 150th Anniversary of the Gesellschaft Deutscher Chemiker (GDCh) and the 125th Anniversary of the journal Angewandte Chemie, Berlin, Germany
  • 2017 Ceremonial Lecturer on the occasion of the 10th anniversary of UniCat and BIG-NSE, Berlin, Germany
  • 2017 The 27th Rudolf Brdička Memorial Lecturer at the J. Heyrovsky Institute of Physical Chemistry, Prague, Czech Republic
  • 2017 Johnston Lectureship in honor of Harold Johnston, Emory University, Atlanta, GA, USA
  • 2017 Löwdin Lectureship, Quantum Theory Project, University of Florida, Gainesville, FL, USA
  • 2017 Award Lecturer, William B. Tolman Award Symposium, 253rd ACS National Meeting & Exposition, San Francisco, CA, USA
  • 2017 Ceremonial Lecturer on the occasion of "The 2017 Golden Symposium of the Lise Meitner Center for Computational Quantum Chemistry", Jerusalem, Israel
  • 2016 "The Roger E. Miller Lecturer" on the occasion of the The 32nd Symposium on Chemical Physics at the University of Waterloo (SCP 2016), Waterloo, Canada
  • 2016 "Conseils Solvay" Lecturer on the occasion of the 24th Solvay Conference on Chemistry – Catalysis in Chemistry and Biology, Brussels, Belgium
  • 2016 Ceremonial Lecturer on the occasion of the awards ceremony of the Dr. Barbara Mez-Starck-Stiftung, Ulm, Germany
  • 2016 Coulson Lectureship, University of Georgie, Athens, Georgia
  • 2015 Member of the exclusive circle of invited guests on the occassion of the bilateral celebration of "50 years German-Israeli diplomatic relations" Symposium: "Chemistry: The Central Science" of the Leopoldina and the Israel Academy of Sciences and Humanities (IASH)
  • 2015 "Thomson Reuters Highly Cited Researcher", listed among the worldwide top 1% cited researchers 
  • 2015 Davidson Lectureship, University of North Texas, Denton, Texas
  • 2014 "Kohlenforschung Centennial Lectureship", Max-Planck-Institut für Kohlenforschung, Germany
  • 2013 “Jean Perrin Reader” for the year 2013
  • 2013 Schulich Lectureship, University of Haifa. Honorary member of the Israelian Society of Chemistry
  • 2013 Election to the Leopoldina Nationale Akademie der Wissenschaften (Germany National Academy of Sciences)
  • 2012 Election to the International Academy of Quantum Molecular Sciences
  • 2010 Gottfried-Wilhelm Leibniz Award of the German Science Foundation
  • 2010 McElvain Lecture, University of Wisconsin, Madison, USA
  • 2009 Early Career Award of the International Society for Bioinorganic Chemistry
  • 2008 Klung-Wilhelmy-Weberbank award for outstanding young German Chemists and Physicists
  • 2008 First Chemist to be appointed as “Max Planck fellow” of the Max Planck Society
  • 2007 Lise Meitner Award for "Outstanding young German Scientists" from the Minerva Supercomputing Center, Hebrew University, Jerusalem, Israel 
  • 2005 Award of the Northrhine-Westfalia Academy of Sciences for outstanding contributions of younger scientists (download speech Karl-Arnold Preis)
  • 2005 Hellmann Award of the German Theoretical Chemistry Society for the Development and Application of new Theoretical Methods

Group Members

    Scientific staff

  • Dr. Hao-Ching Chang
  • Dr. Miquel Alexandre Garcia-Ratés
  • Dr. Christian Kollmar
  • Dr. Marc Müller
  • Dr. Masaaki Saitow
  • Jonathan Eric Vandezande

    Postdocs

  • Dr. Ahmet Altun
  • Dr. Agisilaos Chantzis
  • Dr. Vijay Gopal Chilkuri
  • Dr. Juliana De Mendonça Silva
  • Dr. Miquel Alexandre Garcia
  • Dr. Yang Guo
  • Dr. Puneet Gupta
  • Dr. Lee Huntington
  • Dr. Malgorzata Ewa Krasowska
  • Dr. Qing Lu
  • Dr. Corentin Poidevin
  • Avijit Sen
  • Dr. Saurabh Kumar Singh
  • Dr. Willem Van den Heuvel

    ORCA Team

  • Ute Becker
  • Dagmar Lenk
  • Dr. Dimitrios Liakos
  • Kantharuban Sivalingam
  • PhD students

  • Reza Ghafarian Shirazi
  • Lucas Lang
  • Marvin Lechner
  • Peter Pinski
  • Christine Schulz
  • Abhishek Sirohiwal
  • Georgi Lazarov Stoychev
  • Maxime Francois Xavier Tarrago
  • IMPRS-RECHARGE students

  • Casey Michael van Stappen

    Lab staff

  • Andreas Göbels
  • Heike Schucht
  • Dennis Skerra
  • Marion Stapper

Department of Molecular Theory and Spectroscopy

Our department is interested in fundamental science related to the activation of small molecules by transition metals in a broad sense as well as in the development and application of quantum chemical methods. The activities of the group span the three major, interrelated areas:

I.   Development of new quantum chemical methods
II.  Computational chemistry
III. Molecular spectroscopy

The leading overall motivation is to unravel reaction mechanisms of complex, transition metal catalyzed reactions at the electronic structure level. As the experimental means of addressing electronic structure involves various forms of spectroscopy, a thorough understanding of structure/spectra relationships is of paramount importance (and clearly branches into the area of material science). Furthermore, the characterization of reaction intermediates can in almost all cases only proceed through a thorough interpretation of spectra taken under transient or quench conditions.

The activation of small molecules by transition metals is of paramount importance in the active sites of metalloproteins, in homogenous and in heterogeneous catalysis. In fact, the chemistry of sustainable energy, the coming focus of the future institute involves a number of elementary reactions (for a review see ref [1]):

2 H+ + 2 e-→ H2(1)
2 H2O→ O2 + 4 H+ + 4e-(2)
O2 + 4 H+ + 4e-→ 2 H2O(3)
CO2 + 2H+ + 2e-→ HCOOH(4)
CH4 + 1/2 O2 → H3COH(5)
N2 + 6H+ + 6e-→ 2 NH3(6)

 

While all of these reactions are catalyzed in a highly efficient manner by metalloproteins, the search for suitable low molecular weight catalysts represents an active area of research in all cases. In our department, we are interested in all of these reactions, the associated enzymes (in cooperation with the department of Prof. Wolfgang Lubitz), low-molecular weight catalysts with potential for large scale applications, as well as heterogeneous processes (in cooperation with the department of Prof. Robert Schlögl).

The group and project leaders who are assigned specific projects in the department are shown in Figure 2.

The overall strategy of the work involves a careful combination of theoretical and experimental techniques. Where necessary, theoretical or experimental methods will be developed in house. Furthermore, the department is involved in a large number of coordinated research programs and collaborations with scientists worldwide.

(1) Quantum chemical method development

In our group, the large-scale quantum chemistry program ORCA is developed. ORCA is a highly-efficient, flexible and user friendly quantum chemistry program that is intensely used by a quickly growing user community of about 15,000 researchers worldwide. Its features are fully described elsewhere[2].

ORCA features all common standard functionality involving density functional theory (DFT), correlated single- (CCSD(T)) and multireference (MR-CI, SORCI, NEVPT2) ab initio wavefunction  methods, as well as semi-empirical methods. ORCA is particularly well suited for the calculation of molecular spectra and is widely used by spectroscopists in various areas of research ranging from solid state chemistry to pharmacology.

One obvious goal of the theoretical method development is to enhance the efficiency and accuracy of theoretical methods and thereby push the boundaries of what is possible with computational chemistry. In recent years, a particular focus has been the development and application of low-order scaling electron correlation methods. This has led to the domain-based local pair natural orbital (DLPNO) family of methods that we regard as ‘breakthrough’ technology in the application of ab initio quantum mechanics to chemistry.[3] In a nutshell, DLPNO methods recover about 99.9% of the canonical correlation energy but the computational effort scales linearly with system size and with a sufficiently low prefactor to treat molecules with hundreds of atoms on standard hardware.

The DLPNO family presently spans DLPNO-MP2[3f] and DLPNO-CCSD(T)[3a, 3h, 3i] in the single-reference case as well as DLPNO-NEVPT2 and DLPNO-Mk-MRCC in the multireference case. DLPNO is based on the powerful concept of SparseMaps that we have developed in order to simplify the complex task of implementing high-level, linear scaling quantum chemical methods.[3f] Methods have been developed for closed-[3a, 3h, 3i]  and open-[4] shell systems, molecular properties,[3e] excited states[3d] and explicit correlation.[3b]

While the single-reference problem appears to be well under control based on the DLPNO concepts, much more work remains to be done in the multi-reference case. The latter methods are instrumental to treat complicated multiplet problems, bond breaking phenomena and magnetic properties. We have intensely worked on several aspects of this very challenging problem. First of all, DLPNO concepts have been used to achieve a linear scaling DLPNO-NEVPT2 method that provides 99.9% of the correlation energy reliably. Starting from there, several new developments are: a) the ability to treat much larger reference spaces with fifty and more orbitals using the new iterative configuration expansion (ICE-CI) algorithm (a variant of the CIPSI method[5]), b) a differential correlation dressed CAS (DCD-CAS) method to address the limitations of the internal contraction scheme, c) internally contracted multi-reference configuration interaction (FIC-MRCI)[6] and coupled cluster (FIC-MRCC) approaches to achieve higher accuracy than NEVPT2. d) a smoother approach to the one-particle basis set limit using explicit correlation and e) the incorporation of relativistic effects using quasi-degenerate perturbation theory.

These challenging developments are greatly aided by new technology to directly and automatically implement complex theories using an automatic code generator (ORCA-AGE) that reduces development times from years to days.[7]

Another major focus of method development is the design of suitable methods for the prediction of spectroscopic properties throughout all regions of the electromagnetic spectrum. An overview can be found in refs.[8] Being based on elementary to highly advanced theoretical concepts, methods to calculate Mössbauer parameters,[9] X-ray absorption and emission,[10] electron paramagnetic resonance (EPR[11]), resonance Raman (rR[8c, 12]) and magnetic circular dichroism (MCD[13]) spectra have found widespread application in various communities.

Finally, we are striving to provide a link between advanced computation and chemical intuition. In this realm, two important developments are the ‘local energy decomposition’ (LED) that allow to decompose the DLPNO coupled cluster energy into chemically meaningful parts.[14] For example, one can extract the dispersion component of the intermolecular interaction energy accurately from such calculations which can be used to give extended insights into the chemical origin of interaction energies.[15] Secondly, in the realm of inorganic chemistry, we have developed ab initio ligand field theory (AILFT) which provides a unique link between high-level multireference electronic structure theory and ligand field theory.[16] This can be used fruitfully to obtain insight into coordination complexes, for example magneto-structural correlations or periodic trends.[17]

The development efforts in Mülheim are coordinated jointly by Prof. Neese and Dr. Frank Wennmohs, who heads the ORCA development team. We are very grateful to our collaborators all over the world who contribute their expertise, energy and enthusiasm to the project.

The group of Prof. Alexander Auer is involved in theoretical method development. The focus is on accurate electronic structure methods based on tensor decomposition methods.[18]

(2) Computational Chemistry

Our computational chemistry applications center around the reactions depicted above. Areas of recent interest are centered around:

(a)   The oxidation of water by the oxygen evolving complex (OEC) of Photosystem II (PSII). This research area is led by Dr. Dimitrios Pantazis and is carried out in close collaboration with the department of Prof. Wolfgang Lubitz. The efforts that have led to the proposal of a refined structure for the OEC that is consistent with all crystallographic and spectroscopic data.[2, 19] Our desire to understand the reaction mechanism of the OEC on the basis of its spectroscopic properties[2, 19a, 19e] has led us to consider the properties of manganese complexes in greater detail and has led to a series of systematic investigations on manganese monomers, dimers and oligomers e.g. [10c, 11b, 20] Recent reviews summarize the state of affairs.[19c, 21] 

(b)  The activation of dinitrogen, one of the most inert molecules known in chemistry, by the enzyme nitrogenase is another focus of research in the group. This research area is headed by Prof. Serena DeBeer.[22] Despite intense research efforts, even the structural basis for biological nitrogen fixation has been proven elusive. Highlights include the identification of the central atom in the active site of nitrogenase to be a carbide through the combination of X–ray emission spectroscopy with quantum chemistry,[22f] the assignment of the molybdenum oxidation state as Mo(III)[22e] as well as the characterization of a nitrogen activating trinuclear iron complex (in collaboration with the group of Prof. Patrick Holland, Rochester, USA).[23]

(c)  The activation of CO2, another extremely inert molecule  is one of the most important reactions in energy research. Conversion of CO2 to alcohols or other energy rich molecules could solve CO2 pollution problems and provide liquid fuels at the same time. Our research in this area is headed by Dr. Shengfa Ye.[24]

(d)  The spectroscopy and reactivity of high-valent iron centers in iron enzymes and low-molecular weight catalysts. These research efforts are coordinated by Dr. Eckhard Bill (spectroscopy) and Dr. Shengfa Ye (theory).[25] A special focus of the DeBeer group is the study of the reaction mechanism of the important enzyme Methane Monooxygenase that features a dinuclear iron active site and catalyzes the chemically extremely complex transformation from methane to methanol. Highlights include the characterization of Fe(V)[26] and Fe(VI)[27] complexes (in collaboration with the former director, Prof. Karl Wieghardt), the detailed analysis of C-H bond activation reactions[28],[25a, 25e, 29] and the fascinatingly complex chemistry of iron-nitrosyls.[30]

 

 

(e)  Molecular magnetism, is a fascinating research field that has been a long term interest of the department. The ultimate goal is the design of molecules (SMMs) that show magnetic hysteresis at elevated temperatures (ideally room temperature). While this goal has been proven elusive so far, important progress has been made. Importantly, after it has been realized that big oligonuclear clusters are not necessary to design molecular magnets,[8a, 17, 20a, 25f, 31] focus has shifted towards systems with only one or two transition metal ion and fascinating progress has been made towards high-temperature SMMs.86-98 Our contributions to the field range from the development of electronic structure methods to high-level applications using multireference electronic structure theory. Importantly, we have developed the method of ‘Ab initio ligand field theory’[8a, 16] that lets us deduce the classical ligand field parameters uniquely from multireference wavefunction calculations. This is invaluable for defining magnetostructural correlations and obtaining qualitative insights into the investigated systems (transition metals, lanthanides or actinides).[17, 31b, 31c, 31h, 31i]

(f)  Heterogeneous catalysis - We have shown that accurate wavefunction based methods can be applied to solids and surfaces without explicitly introducing periodic boundary conditions. While this approach is limited, it is also very powerful since with present day electronic structure know-how sufficiently large clusters can be treated such that cluster model is properly approaching the properties of the bulk system. This is demonstrated in Figure 14 by showing that a) cluster calculations at the DFT level approach the results of truly periodic cluster calculations and b) that DLPNO-CCSD(T) calculations converge with respect to cluster size.[32] Once carefully extrapolated to the basis set limit these DLPNO-CCSD(T) calculations were the first to predict binding energies to surfaces with an accuracy of 1 kcal/mol.[32] However, these studies are not limited to small molecule binding to surfaces. In collaboration with the department of Prof. Schlögl, we have shown that the same strategy of correlating calculations to spectroscopy and ultimately to reactivity that is so successful in the molecular realm, can be applied as well to heterogeneous catalysts thus opening fascinating avenues for future explorations in this important field.[33]

(3) Molecular spectroscopy

The department is involved in a wide range of advanced spectroscopic experiments that are aimed at obtaining geometric and electronic structure information on stable as well as transient open-shell transitionmetal species. Apart from standard laboratory equipment UV/vis, IR Raman,Fluorescence and NMR spectroscopy) the department focuses on the following techniques:

(a)  X-ray Absorption and Emission spectroscopy. Modern synchrotron based techniques allow for many exciting, element specific experiments to be performed. The group of Prof. DeBeer is actively involved in the development and application of new X-ray based techniques.[10a-d, 22b, 23a, 34]

(b)  Mößbauer spectroscopy is one of the most powerful tools for the investigation of iron containing enzymes, coordination complexes and materials. The group of Dr. Bill has a long term tradition on performing and analyzing Mößbauer spectra with and without an applied external magnetic field.[23b, 25a, 26-27, 35]

(c)  High resolution electron paramagnetic resonance is the most powerful technique to investigate paramagnetic molecules. In addition to our collaboration with the department of Prof. Lubitz this technique is implemented in our department in the group of Dr. Maurice van Gastel who is exploring novel techniques as well as applications in the fields of bioinorganic chemistry and energy research.[36]

(d)  Resonance Raman spectroscopy is a particularly powerful technique for the investigation of chromophores. This technique is represented in our department by Dr.Maurice van Gastel who is developing the instrumental as well as theoretical aspects of the technique.[8c, 12, 37] Using resonance Raman spectroscopy one obtains highly and selectively vibrationally resolved information about absorbing species. Besides carrying a wealth of electronic structure information, the enormous enhancement of the inelastic response of a system once excited in the area of an absorption band provides extremely powerful fingerprints that allow for the characterization of elusive species.[37a]

(e)  Magnetic Circular Dichroism spectroscopy is a powerful technique that bridges the fields of optical and magnetic spectroscopy. MCD, as applied to paramagnetic substances, provides a wealth of electronic structure information. In addition, variation of applied field and temperature allows for the optical measurement of the ground state magnetic susceptibility even in the presence of mixtures or impurities. The MCD laboratory is also headed by Dr.Bill using a home-designed setup that allows for spectra to be taken all the way from the deep UV to the near-IR regions.[13, 25a, 25e, 38]

References

[1] S. DeBeer, M. van Gastel, E. Bill, S. Ye, T. Petrenko, D. A. Pantazis, F. Neese, in Chemical Energy Storage (Ed.: R. Schlögl), DeGruyter, 2012, pp. 353-378.

[2] D. A. Pantazis, W. Ames, N. Cox, W. Lubitz, F. Neese, Angew. Chem. Int. Ed. 2012, 51, 9935-9940.

[3] a) C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese, J. Chem. Phys. 2016, 144; b) F. Pavosevic, P. Pinski, C. Riplinger, F. Neese, E. F. Valeev, J. Chem. Phys. 2016, 144; c) Y. Guo, K. Sivalingam, E. F. Valeev, F. Neese, J. Chem. Phys. 2016, 144; d) A. K. Dutta, F. Neese, R. Izsak, J. Chem. Phys. 2016, 145; e) D. Datta, S. Kossmann, F. Neese, J. Chem. Phys. 2016, 145; f) P. Pinski, C. Riplinger, E. F. Valeev, F. Neese, J. Chem. Phys. 2015, 143; g) O. Demel, J. Pittner, F. Neese, J. Chem. Theory Comput. 2015, 11, 3104-3114; h) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139; i) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138; j) A. Hansen, D. G. Liakos, F. Neese, J. Chem. Phys. 2011, 135; k) F. Neese, F. Wennmohs, A. Hansen, J. Chem. Phys. 2009, 130.

[4] M. Saitow, C. Riplinger, F. Neese, J. Chem. Phys. 2017, submitted for publication.

[5] a) S. Evangelisti, J. P. Daudey, J. P. Malrieu, Chem. Phys. 1983, 75, 91-102; b) B. Huron, J. P. Malrieu, P. Rancurel, J. Chem. Phys. 1973, 58, 5745-5759.

[6] K. Sivalingam, M. Krupicka, A. A. Auer, F. Neese, J. Chem. Phys. 2016, 145, 054104.

[7] M. Krupicka, K. Sivalingam, L. M. Huntington, A. A. Auer, F. Neese, J. Comput. Chem. 2017, submitted for publication.

[8] a) M. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas, F. Neese, Coord. Chem. Rev. 2015, 289, 177-214; b) F. Neese, Coord. Chem. Rev. 2009, 253, 526-563; c) F. Neese, T. Petrenko, D. Ganyushin, G. Olbrich, Coord. Chem. Rev. 2007, 251, 288-327.

[9] F. Neese, Inorg. Chim. Acta 2002, 337C, 181-192.

[10] a) C. J. Pollock, M. U. Delgado-Jaime, M. Atanasov, F. Neese, S. DeBeer, J. Am. Chem. Soc. 2014, 136, 9453-9463; b) M. Roemelt, D. Maganas, S. DeBeer, F. Neese, J. Chem. Phys. 2013, 138; c) M. A. Beckwith, M. Roemelt, M. N. Collomb, C. DuBoc, T. C. Weng, U. Bergmann, P. Glatzel, F. Neese, S. DeBeer, Inorg. Chem. 2011, 50, 8397-8409; d) N. Lee, T. Petrenko, U. Bergmann, F. Neese, S. DeBeer, J. Am. Chem. Soc. 2010, 132, 9715-9727; e) S. D. George, F. Neese, Inorg. Chem. 2009, 49, 1849-1853; f) S. D. George, T. Petrenko, F. Neese, Inorg. Chim. Acta 2008, 361, 965-972.

[11] a) F. Neese, J. Chem. Phys. 2007, 127, 164112; b) S. Sinnecker, L. Noodleman, F. Neese, W. Lubitz, J. Am. Chem. Soc. 2004, 126, 2613-2622; c) F. Neese, Chem. Phys. Lett. 2003, 380, 721-728; d) F. Neese, J. Chem. Phys. 2003, 118, 3939; e) F. Neese, Int. J. Quant. Chem. 2001, 83, 104-114; f) F. Neese, E. I. Solomon, Inorg. Chem. 1998, 37, 6568-6582.

[12] a) T. Petrenko, F. Neese, J. Chem. Phys. 2007, 127, 164319; b) T. Petrenko, F. Neese, J. Chem. Phys. 2012, 137.

[13] a) F. Neese, E. I. Solomon, Inorg. Chem. 1999, 38, 1847-1865; b) S. Piligkos, L. D. Slep, T. Weyhermuller, P. Chaudhuri, E. Bill, F. Neese, Coord. Chem. Rev. 2009, 253, 2352-2362; c) D. Ganyushin, F. Neese, J. Chem. Phys. 2008, 128.

[14] W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, F. Neese, J. Chem. Theory Comput. 2016, 12, 4778-4792.

[15] G. Bistoni, A. A. Auer, F. Neese, Chem. Eur. J. 2017, early view.

[16] M. Atanasov, D. Ganyushin, K. Sivalingam, F. Neese, in Molecular Electronic Structures of Transition Metal Complexes Ii, Vol. 143 (Eds.: D. M. P. Mingos, P. Day, J. P. Dahl), Struct. Bond. 2012, pp. 149-220.

[17] E. A. Suturina, D. Maganas, E. Bill, M. Atanasov, F. Neese, Inorg. Chem. 2015, 54, 9948-9961.

[18] a) K. H. Bohm, A. A. Auer, M. Espig, J. Chem. Phys. 2016, 144; b) U. Benedikt, K. H. Bohm, A. A. Auer, J. Chem. Phys. 2013, 139; c) U. Benedikt, H. Auer, M. Espig, W. Hackbusch, A. A. Auer, Mol. Phys. 2013, 111, 2398-2413; d) U. Benedikt, A. A. Auer, M. Espig, W. Hackbusch, J. Chem. Phys. 2011, 134.

[19] a) M. Retegan, V. Krewald, F. Mamedov, F. Neese, W. Lubitz, N. Cox, D. A. Pantazis, Chem. Sci. 2016, 7, 72-84; b) V. Krewald, M. Retegan, F. Neese, W. Lubitz, D. A. Pantazis, N. Cox, Inorg. Chem. 2016, 55, 488-501; c) V. Krewald, M. Retegan, N. Cox, J. Messinger, W. Lubitz, S. DeBeer, F. Neese, D. A. Pantazis, Chem. Sci. 2015, 6, 1676-1695; d) V. Krewald, F. Neese, D. A. Pantazis, Isr. J. Chem. 2015, 55, 1219-1232; e) N. Cox, M. Retegan, F. Neese, D. A. Pantazis, A. Boussac, W. Lubitz, Science 2014, 345, 804-808; f) W. Ames, D. Pantazis, V. Krewald, N. Cox, J. Messinger, W. Lubitz, F. Neese, J. Am. Chem. Soc. 2011, in press.

[20] a) C. G. Werncke, E. Suturina, P. C. Bunting, L. Vendier, J. R. Long, M. Atanasov, F. Neese, S. Sabo-Etienne, S. Bontemps, Chem. Eur. J. 2016, 22, 1668-1674; b) D. A. Pantazis, V. Krewald, M. Orio, F. Neese, Dalton Trans. 2010, 39, 4959-4967; c) D. Pantazis, M. Orio, T. Petrenko, J. Messinger, W. Lubitz, F. Neese, Chem. Eur. J. 2009, 15, 5108; d) B. Lassalle-Kaiser, C. Hureau, D. A. Pantazis, Y. Pushkar, R. Guillot, V. K. Yachandra, J. Yano, F. Neese, E. Anxolabehere-Mallart, Energy Environ. Sci. 2010, 3, 924-938; e) C. Duboc, D. Ganyushin, K. Sivalingam, M. N. Collomb, F. Neese, J. Phys. Chem. A 2010, 114, 10750-10758.

[21] a) M. Perez-Navarro, F. Neese, W. Lubitz, D. A. Pantazis, N. Cox, Curr. Opin. Chem. Biol. 2016, 31, 113-119; b) N. Cox, D. A. Pantazis, F. Neese, W. Lubitz, Interface Focus 2015, 5; c) N. Cox, D. A. Pantazis, F. Neese, W. Lubitz, Accounts of Chemical Research 2013, 46, 1588-1596.

[22] a) J. A. Rees, R. Bjornsson, J. Schlesier, D. Sippel, O. Einsle, S. DeBeer, Angew. Chem. Int. Ed. 2015, 54, 13249-13252; b) J. Kowalska, S. DeBeer, BBA-Molecular Cell Research 2015, 1853, 1406-1415; c) R. Bjornsson, M. U. Delgado-Jaime, F. A. Lima, D. Sippel, J. Schlesier, T. Weyhermuller, O. Einsle, F. Neese, S. DeBeer, Zeitschrift Fur Anorganische Und Allgemeine Chemie 2015, 641, 65-71; d) S. DeBeer, R. Bjornsson, F. A. Lima, T. Weyhermueller, F. Neese, O. Einsle, J. Biol. Inorg. Chem. 2014, 19, S90-S90; e) R. Bjornsson, F. A. Lima, T. Spatzal, T. Weyhermuller, P. Glatzel, E. Bill, O. Einsle, F. Neese, S. DeBeer, Chem. Sci. 2014, 5, 3096-3103; f) K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. L. Hu, M. W. Ribbe, F. Neese, U. Bergmann, S. DeBeer, Science 2011, 334, 974-977.

[23] a) C. J. Pollock, K. Grubel, P. L. Holland, S. DeBeer, J. Am. Chem. Soc. 2013, 135, 11803-11808; b) M. H. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, Science 2011, 334, 780.

[24] a) B. Mondal, F. Neese, S. F. Ye, Inorg. Chem. 2016, 55, 5438-5444; b) B. Mondal, J. S. Song, F. Neese, S. F. Ye, Curr. Opin. Chem. Biol. 2015, 25, 103-109; c) B. Mondal, F. Neese, S. F. Ye, Inorg. Chem. 2015, 54, 7192-7198; d) J. S. Song, E. L. Klein, F. Neese, S. F. Ye, Inorg. Chem. 2014, 53, 7500-7507.

[25] a) S. F. Ye, C. Kupper, S. Meyer, E. Andris, R. Navratil, O. Krahe, B. Mondal, M. Atanasov, E. Bill, J. Roithova, F. Meyer, F. Neese, J. Am. Chem. Soc. 2016, 138, 14312-14325; b) C. C. Wang, H. C. Chang, Y. C. Lai, H. Y. Fang, C. C. Li, H. K. Hsu, Z. Y. Li, T. S. Lin, T. S. Kuo, F. Neese, S. F. Ye, Y. W. Chiang, M. L. Tsai, W. F. Liaw, W. Z. Lee, J. Am. Chem. Soc. 2016, 138, 14186-14189; c) E. Tamanaha, B. Zhang, Y. S. Guo, W. C. Chang, E. W. Barr, G. Xing, J. St Clair, S. F. Ye, F. Neese, J. M. Bollinger, C. Krebs, J. Am. Chem. Soc. 2016, 138, 8862-8874; d) G. J. Christian, F. Neese, S. F. Ye, Inorg. Chem. 2016, 55, 3853-3864; e) S. F. Ye, G. Q. Xue, I. Krivokapic, T. Petrenko, E. Bill, L. Que, F. Neese, Chem. Sci. 2015, 6, 2909-2921; f) D. Schweinfurth, M. G. Sommer, M. Atanasov, S. Demeshko, S. Hohloch, F. Meyer, F. Neese, B. Sarkar, J. Am. Chem. Soc. 2015, 137, 1993-2005.

[26] N. Aliaga-Alcade, S. DeBeer George, E. Bill, K. Wieghardt, F. Neese, Angew. Chem. Int. Ed. 2005, 44, 2908-2912.

[27] J. F. Berry, E. Bill, E. Bothe, S. D. George, B. Mienert, F. Neese, K. Wieghardt, Science 2006, 312, 1937-1941.

[28] a) S. F. Ye, F. Neese, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1228-1233; b) C. Y. Geng, S. F. Ye, F. Neese, Angew. Chem. Int. Ed. 2010, 49, 5717-5720.

[29] a) B. Mondal, L. Roy, F. Neese, S. F. Ye, Isr. J. Chem. 2016, 56, 763-772; b) C. Y. Geng, S. F. Ye, F. Neese, Dalton Trans. 2014, 43, 6079-6086; c) S. F. Ye, C. Y. Geng, S. Shaik, F. Neese, Phys. Chem. Chem. Phys. 2013, 15, 8017-8030; d) M. Sundararajan, F. Neese, J. Chem. Theory Comput. 2012, 8, 563-574; e) D. Bykov, F. Neese, J. Biol. Inorg. Chem. 2012, 17, 741-760.

[30] a) S. F. Ye, J. C. Price, E. W. Barr, M. T. Green, J. M. Bollinger, C. Krebs, F. Neese, J. Am. Chem. Soc. 2010, 132, 4739-4751; b) S. F. Ye, F. Neese, J. Am. Chem. Soc. 2010, 132, 3646-+.

[31] a) F. Neese, D. A. Pantazis, Faraday Discuss. 2011, 148, 229-238; b) Y. Rechkemmer, F. D. Breitgoff, M. van der Meer, M. Atanasov, M. Hakl, M. Orlita, P. Neugebauer, F. Neese, B. Sarkar, J. van Slageren, Nature Communications 2016, 7; c) D. Aravena, M. Atanasov, F. Neese, Inorg. Chem. 2016, 55, 4457-4469; d) S. E. Stavretis, M. Atanasov, A. A. Podlesnyak, S. C. Hunter, F. Neese, Z. L. Xue, Inorg. Chem. 2015, 54, 9790-9801; e) J. England, E. Bill, T. Weyhermuller, F. Neese, M. Atanasov, K. Wieghardt, Inorg. Chem. 2015, 54, 12002-12018; f) M. H. Al-Afyouni, E. Suturina, S. Pathak, M. Atanasov, E. Bill, D. E. DeRosha, W. W. Brennessel, F. Neese, P. L. Holland, J. Am. Chem. Soc. 2015, 137, 10689-10699; g) J. M. Zadrozny, D. J. Xiao, J. R. Long, M. Atanasov, F. Neese, F. Grandjean, G. J. Long, Inorg. Chem. 2013, 52, 13123-13131; h) J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, J. R. Long, Nat. Chem. 2013, 5, 577-581; i) J. M. Zadrozny, M. Atanasov, A. M. Bryan, C. Y. Lin, B. D. Rekken, P. P. Power, F. Neese, J. R. Long, Chem. Sci. 2013, 4, 125-138; j) M. Atanasov, J. M. Zadrozny, J. R. Long, F. Neese, Chem. Sci. 2013, 4, 139-156.

[32] A. Kubas, D. Berger, H. Oberhofer, D. Maganas, K. Reuter, F. Neese, J. Phys. Chem. Lett. 2016, 7, 4207-4212.

[33] D. Maganas, A. Trunschke, R. Schlogl, F. Neese, Faraday Discuss. 2016, 188, 181-197.

[34] a) S. DeBeer George, T. Petrenko, F. Neese, J. Phys. Chem. A 2008, 112, 12936-11294; b) S. DeBeer George, T. Petrenko, F. Neese, Inorg. Chim. Acta 2007, 361 965-972

[35] a) S. F. Ye, T. Tuttle, E. Bill, L. Simkhovich, Z. Gross, W. Thiel, F. Neese, Chem. Eur. J. 2008, 14, 10839-10851; b) T. Petrenko, S. DeBeer George, N. Aliaga-Alcalde, E. Bill, B. Mienert, Y. Xiao, Y. Guo, W. Sturhahn, S. P. Cramer, K. Wieghardt, F. Neese, J. Am. Chem. Soc. 2007, 129, 11053-11060; c) A. K. Patra, E. Bill, E. Bothe, K. Chlopek, F. Neese, T. Weyhermüller, K. Stobie, M. D. Ward, J. A. McCleverty, K. Wieghardt, Inorg. Chem 2006, 45, 7877-7890; d) J. F. Berry, E. Bill, E. Bothe, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 2006, 128, 13515-13528; e) S. C. Bart, K. Chłopek, E. Bill, M. W. Bouwkamp, E. Lobkovsky, F. Neese, K. Wieghardt, P. J. Chirik, J. Am. Chem. Soc. 2006, 128, 13901-13912.

[36] M. van Gastel, J. Phys. Chem. A 2010, 114, 10864-10870.

[37] a) H. S. Shafaat, K. Weber, T. Petrenko, F. Neese, W. Lubitz, Inorg. Chem.2012, 51, 11787-11797; b) T. Petrenko, K. Ray, K. E. Wieghardt, F. Neese, J. Am. Chem. Soc. 2006, 128, 4422-4436.

[38] A. Westphal, H. Broda, P. Kurz, F. Neese, F. Tuczek, Inorg. Chem. 2012, 51, 5748-5763.