Dr. Olaf Rüdiger - Proteins on electrodes

Dr. Olaf Rüdiger
Head of Group Proteins on electrodes
Department Inorganic Spectroscopy


B.Sc.Universidad de Valencia, Spain (2003)
M.Sc.Universidad Autónoma de Madrid, Spain (2006)
Ph.D.Universidad Autónoma de Madrid and Instituto de Catálisis y Petroleoquímica (CSIC), Spain (2009)
Research visits
University of Oxford, UK (Prof. Fraser Armstrong) (2005) and Texas A&M University, USA (Prof. Marcetta Darensbourg)
Postdoc MPI for Bioinorganic Chemistry; today: MPI CEC (2009-2013)
Group leader MPI CEC (since 2013)


Download: Publikationsliste (.pdf)

Link: Researcher ID




  • Rodríguez-Maciá, P., Kertess, L., Burnik, J., Birrell, J.A., Hofmann, E., Lubitz, W., Happe, T., Rüdiger, O. (2019). His-ligation to the [4Fe-4S] sub-cluster tunes the catalytic of [FeFe] hydrogenase Journal of American Chemical Society 141, 472-481. https://doi.org/10.1021/jacs.8b11149


  • Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F.D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O., Herges, R. (2018). Light-controlled switching of the spin state of iron(III) Nature Communications 9, 4750. https://doi.org/10.1038/s41467-018-07023-1
  • Rodriguez-Maciá, P., Reijerse, E.J., van Gastel, M., DeBeer, S., Lubitz, W., Rüdiger, O., Birrell, J.A. (2018). Sulfide Protects [FeFe] Hydrogenases From O2 Journal of the American Chemical Society, 140(30), 9346-9350. https://doi.org/10.1021/jacs.8b04339 + correction https://doi.org/10.1021/jacs.8b12514
  • Oughli, A.A., Vélez, M., Birrell, J., Schuhmann, W., Lubitz, W., Plumeré, N., Rüdiger, O. (2018). Viologen-modified Electrodes for Protection of Hydrogenases from High Potential Inactivation while Performing H2 Oxidation at Low Overpotential Dalton Transactions, 47, 10685-10691. https://doi.org/10.1039/C8DT00955D
  • Oughli, A.A., Ruff, A., Boralugodage, N.P., Rodríguez-Maciá, P., Plumere, N., Lubitz, W., Shaw, W.J., Schuhmann, W., Rüdiger, O. (2018). Dual properties of a hydrogen oxidation Ni-catalst entrapped within a polymer promote self-defense against oxygen Nature Communications, 9, 864. https://doi.org/10.1038/s41467-018-03011-7


  • Kertess, L., Adamska-Venkatesh, A., Rodriguez-Maciá, P., Rüdiger, O., Lubitz, W., Happe, T. (2017) “Influence of the [4Fe–4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase” Chemical Science, 8, 8127-8137. Doi.10.1039/C7SC03444J
  • Sommer, C., Adamska-Venkatesh A., Pawlak, K., Birrell, J. A., Rüdiger, O., Reijerse, E.J., Lubitz, W. (2017) “Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases” J. Am. Chem. Soc. 139, 1440-1443 https://pubs.acs.org/doi/10.1021/jacs.6b12636
  • Birrell, J.A., Rüdiger, O. Reijerse, E.J., Lubitz, W. (2017) “Semisynthetic Hydrogenases Propel Biological Energy Research into a New Era” Joule https://doi.org/10.1016/j.joule.2017.07.009
  • Rodríguez-Maciá, P., Reijerse, E.J., Lubitz, W., Birrell, J. A., Rüdiger, O. (2017) “Spectroscopic Evidence of Reversible Disassembly of the [FeFe] Hydrogenase Active Site” J. Phys. Chem. Letters, 8, 3834-3839 https://pubs.acs.org/doi/10.1021/acs.jpclett.7b01608
  • Engelbrecht, V., Rodriguez-Maciá, P., Esselborn, J., Sawyer, A., Hemschemeier, A., Rüdiger, O., Lubitz, W., Winkler, M., Happe, T. (2017) „The structurally unique photosynthetic Chlorella variabilis NC64A hydrogenase does not interact with plant-type ferredoxins” Biochim. Biophys. A. – Bioenerg. https://www.sciencedirect.com/science/article/pii/S0005272817301020?via%3Dihub
  • Kertess, L., Wittkamp, F., Sommer, O., Esselborn, J., Rüdiger, O., Reijerse, E.J., Hofmann, E., Lubitz, W., Winkler, M., Happe, T., Apfel, U.P. (2017) „ Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity” Dalton. Trans. https://pubs.rsc.org/en/Content/ArticleLanding/2017/DT/C7DT03785F#!divAbstract
  • Rodriguez-Maciá, P., Pawlak, K., Rüdiger, O., Reijerse, E.J., Lubitz, W., Birrell, J.A. (2017) “Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases” J. Am. Chem. Soc. 139, 15122-15134. https://pubs.acs.org/doi/10.1021/jacs.7b08193
  • Lampret, O., Adamska-Venkatesh, A., Konegger, H., Wittkamp, F., Apfel, U.P., Reijerse, E.J., Lubitz, W., Rüdiger, O., Happe, T., Winkler, M. (2017) “Interplay between CN– Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases”. J. Am. Chem. Soc. 139, 19222-18230. pubs.acs.org/doi/10.1021/jacs.7b08735


  • Rodríguez-Maciá, P., Birrell, J. A., Lubitz, W., Rüdiger, O. (2016), “Electrochemical Investigations on the Inactivation of the [FeFe] Hydrogenase from Desulfovibrio desulfuricans by O2 or Light under Hydrogen-Producing Conditions”. ChemPlusChem. doi:10.1002/cplu.201600508.
  • Rodríguez-Maciá, P.; Priyadarshani, N.; Dutta, A.; Lubitz, W.; Shaw, W.J.*; Rüdiger, O.* “Covalent Attachment of the Water-Insoluble Ni(P2CyN2Phe)2 Electrocatalyst to Carbon Electrodes Showing Reversible Catalysis in Aqueous Solution” Electroanalysis. 2016, 28, 2452.
  • Birrell, J.A.; Wrede, K.; Pawlak, K.; Rodriguez-Maciá, P.; Rüdiger, O.; Reijerse, E.J.; Lubitz, W. “Artificial maturation of the highly active heterodimeric [FeFe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757” Israel Journal of Chemistry, 2016, 56, 852.


  • Rodriguez-Macia, P.; Dutta, A.; Lubitz, W.; Shaw, W.*; Rüdiger, O.* Angew.Chem., Int. Ed. 2015, 54, 12303-12307.
  • Oughli, A.A.; Conzuelo, F.; Winkler, M.; Happe, T.; Lubitz, W.; Schuhmann, W.; Rüdiger, O.*; Plumere, N. Angew.Chem., Int. Ed. 2015, 54, 12329-12333.
  • Fourmond, V.; Stapf, S.;  Li, H.;  Buesen,  D.; Birrell, J.; Rüdiger, O.; Lubitz, W.; Schuhmann, W.; Plumeré, N.; Léger, C. J. Am. Chem. Soc. 2015, 137, 5494.
  • Plumeré N.#; Rüdiger O.#; Alsheikh-Oughli A.; Williams R.; Vivekananthan J.; Pöller S.; Schuhmann W.; Lubitz W. “A redox hydrogel protects hydrogenase from high-potential deactivation and ​oxygen damage” Nature Chemistry; 6, 822–827. ( # Equal contribution).


  • Lubitz W.; Ogata H.; Rüdiger O.; Reijerse E. “Hydrogenases” Chemical Reviews; 2014, 114 (8), 4081–4148. Número especial “Bioinorganic Enzymology”.


  • Gutiérrez-Sanz O.; Marques M.; Pereira I. A. C.; De Lacey A. L.; Lubitz W.; Rüdiger O.* “Orientation and Function of a Membrane-Bound Enzyme Monitored by Electrochemical Surface-Enhanced Infrared Absorption Spectroscopy” Journal of Physical Chemistry Letters, 2013; 4 (17), 2794–2798.
  • Shafaat H.; Rüdiger O.; Ogata H.; Lubitz W. “[NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions” Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013; 1827 (8–9), 986–1002. Número especial “Metals in Bioenergetics and Biomimetics Systems”.


  • Adamska A.; Silakov A.; Lambertz C.; Rüdiger O.; Happe T.; Reijerse E.; Lubitz W. “Identification and Characterization of the “Super-Reduced” State of the H-Cluster in [FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle?” Angewandte Chemie Int. Ed., 2012; 51 (46), 11458–11462.


  • Riethausen. J.; Rüdiger, O.; Gartner, W.; Lubitz, W.; Shafaat, H.S. “Spectroscopic and Electrochemical Characterization of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F: Reversible Redox Behavior and Interactions between Electron Transfer Centers” CHEMBIOCHEM, 2010, 14, 1714-1719.
  • Gutierrez-Sanchez C.; Rüdiger O.; Fernandez V.M.; De Lacey A.L.; Marques M.; Pereira I.A.C. “Interaction of the active site of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough with carbon monoxide and oxygen inhibitors”. Journal of biological inorganic chemistry, 2010, 15, 8, 1285-1292.
  • Rüdiger O.; Gutierrez-Sanchez C.; Olea D.; Pereira I.A.C.; Velez M.; Fernandez VM.; De Lacey A.L. “Enzymatic Anodes for Hydrogen Fuel Cells based on Covalent Attachment of Ni-Fe Hydrogenases and Direct Electron Transfer to SAM-Modified Gold Electrodes” Electroanalysis, 2010, 22, 7-8, 776-783.


  • Vaz-Dominguez, C.; Campuzano, S.; Rüdiger, O.; Pita, M.; Gorbacheva, M.; Shleev, S.; Fernández, V.M.; De Lacey, A.L. ”Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high operational stability and resistance to chloride inhibition”.  Biosensors&Bioelectronics 2008, 24, 4, 531-537.


  • Alonso-Lomillo, M. A.; Rüdiger, O.; Maroto-Valiente, A.; Velez, M.; Rodriguez-Ramos, I.; Munoz, F. J.; Fernandez, V. M.; DeLacey, A. L. “Hydrogenase-coated carbon nanotubes for efficient H-2 oxidation”. Nano Lett. 2007, 7, 1603-1608.
  • Gebler, A.; Burgdorf, T.; De Lacey, A. L.; Rüdiger, O.; Martinez-Arias, A.; Lenz, O.; Friedrich, B. “Impact of alterations near the [NiFe] active site on the function of the H-2 sensor from Ralstonia eutropha”. Febs Journal 2007, 274, 74-85.
  • Thomas, C. M.; Rüdiger, O.; Liu, T.; Carson, C. E.; Hall, M. B.; Darensbourg, M. Y. “Synthesis of Carboxylic Acid-Modified [FeFe]-Hydrogenase Model Complexes Amenable to Surface Immobilization”. Organometallics 2007, 26, 3976-3984.


  • Rüdiger, O.; Abad, J. M.; Hatchikian, E. C.; Fernandez, V. M.; De Lacey, A. L.”Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for non-mediated oxidation of H2”.  J.Am.Chem.Soc. 2005, 127, 16008-16009.

Group Members

Scientific staff

  • Dr. Patricia Rodriguez Maciá

PhD students

  • Karolina Anna Lewandowska

Lab staff

  • Birgit Nöring

Proteins on electrodes

Proteins and catalysts on electrodes

Our group’s research is focused on the electrochemical study of hydrogen cycling catalysts, more specifically hydrogenases and bio-inspired molecular catalysts. Hydrogenases are the most efficient noble-metal-free catalysts for H2 production or oxidation. These enzymes use earth abundant metals in the active site (as Ni or Fe) and work at almost no overpotential under mild conditions.1 Chemists have been studying these enzymes to understand their unique properties and learn how to design bio-inspired catalysts avoiding the use of noble metals. The goal is to have efficient catalysts for implementation in energy conversion devices that could be employed to efficiently store energy from discontinuous renewable sources in chemical bonds (e.g. molecular H2) as a fuel and recover that energy when required.

Protein film electrochemistry (PFE) has been proven as a highly useful technique to study immobilized hydrogenases to gain fundamental information about the enzyme kinetics and their sensitivity towards inhibitors such as O2 and CO.2-3 Much less is known about homogeneous bio-inspired catalysts. In recent years, there has been significant improvement in the development of bio-inspired synthetic catalysts based on earth abundant metals like Fe, Ni or Co. These catalysts have so far been studied using methods very different from the ones used with enzymes. We have shown that we can immobilize some of these catalysts on electrodes and characterize them under conditions mimicking those of a device e.g. a fuel cell or a H2 producing electrode. We can now also compare the activity of the bio-inspired catalysts for H2 oxidation with the enzyme (Figure 1).4-5

Hydrogenases in redox hydrogels

When designing an immobilization strategy for a catalyst on an electrode, it is possible to improve the electron transfer between catalyst and electrode and the stability of the catalytic currents. But for delicate catalysts as hydrogenases, sensible to oxidative inactivation, directly interfacing the catalyst with the electrode leads to a rapid loss of electrocatalytic current when the catalyst is exposed to a harsh environment, as is found in an operating fuel cell. In the last years, together with our colleagues at the Ruhr University in Bochum, Wolfgang Schuhmann and Nicolas Plumeré,  we have specifically designed redox polymers to protect sensitive hydrogenases from oxidative inactivation and demonstrated the protection mechanism (Figure 2).6-8

In situ spectroelectrochemistry

Immobilizationof catalysts on electrode surfaces allows precise redox control of theimmobilized molecules and measurements of catalytic currents. On the otherhand, electrochemistry alone does not provide information about the electronicstructure of the immobilized catalysts. Therefore, we combine electrochemistrywith spectroscopy to obtain information from immobilized catalysts underturnover conditions. Combination of IR spectroscopy with PFE can be achievedusing surface-enhanced infrared absorption spectroscopy (SEIRA).9

In collaborationwith the Savitsky and Cox groups, we are currently developing insitu spectroelectrochemical cells for EPR, pulse and continuous wave, X and Q-band to detect paramagneticspecies participating in catalysis from electrode immobilized catalysts.

rrent when the catalyst is exposedto a harsh environment, as is found in an operating fuel cell. In the lastyears, together with our colleagues at the Ruhr University in Bochum, WolfgangSchuhmann and Nicolas Plumeré,  we havespecifically designed redox polymersto protect sensitive hydrogenases from oxidative inactivation and demonstratedthe protection mechanism (Figure 2).6-8


  1. Lubitz, W.; Ogata, H.; Ruediger, O.; Reijerse, E., Hydrogenases. Chem. Rev. 2014, 114 (8), 4081-4148.
  2. Rodríguez-Maciá, P.; Birrell, J. A.; Lubitz, W.; Rüdiger, O., Electrochemical Investigations on the Inactivation of the [FeFe] Hydrogenase from Desulfovibrio desulfuricans by O2 or Light under Hydrogen-Producing Conditions. ChemPlusChem 2016, DOI: 10.1002/cplu.201600508
  3. Adamska, A.; Silakov, A.; Lambertz, C.; Rüdiger, O.; Happe, T.; Reijerse, E.; Lubitz, W., Identification and Characterization of the 'Super-Reduced' State of the H-Cluster in [FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle? Angew. Chem. Int. Ed. 2012, 51 (46), 11458-11462.
  4. Rodriguez-Macia, P.; Priyadarshani, N.; Dutta, A.; Weidenthaler, C.; Lubitz, W.; Shaw, W. J.; Rudiger, O., Covalent Attachment of the Water-insoluble Ni((P2N2Phe)-N-Cy)(2) Electrocatalyst to Electrodes Showing Reversible Catalysis in Aqueous Solution. Electroanalysis 2016, 28 (10), 2452-2458.
  5. Rodriguez-Macia, P.; Dutta, A.; Lubitz, W.; Shaw, W. J.; Rudiger, O., Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes. Angew. Chem. Int. Ed. Engl. 2015, 54 (42), 12303-7.
  6. Fourmond, V.; Stapf, S.; Li, H.; Buesen, D.; Birrell, J.; Rüdiger, O.; Lubitz, W.; Schuhmann, W.; Plumeré, N.; Léger, C., Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films. J. Am. Chem. Soc. 2015.
  7. Oughli, A. A.; Conzuelo, F.; Winkler, M.; Happe, T.; Lubitz, W.; Schuhmann, W.; Rudiger, O.; Plumere, N., A Redox Hydrogel Protects the O-2-Sensitive FeFe -Hydrogenase from Chlamydomonas reinhardtii from Oxidative Damage. Angew. Chem. Int. Ed. 2015, 54 (42), 12329-12333.
  8. Plumeré, N.; Rüdiger, O.; Oughli, A. A.; Williams, R.; Vivekananthan, J.; Pöller, S.; Schuhmann, W.; Lubitz, W., A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat Chem 2014, 6 (9), 822-827.
  9. Gutiérrez-Sanz, O.; Marques, M.; Pereira, I. A. C.; de Lacey, A. L.; Lubitz, W.; Rüdiger, O., Orientation and Function of a Membrane Bound Enzyme Monitored by Electrochemical Surface Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 2794-2798.